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Abstract. Cardiac functional parameters, such as, the Ejection Frac-
tion (EF) and Cardiac Output (CO) of both ventricles, are most imme-
diate indicators of normal/abnormal cardiac function. To compute these
parameters, accurate measurement of ventricular volumes at end-diastole
(ED) and end-systole (ES) are required. Accurate volume measurements
depend on the correct identification of basal and apical slices in cardiac
magnetic resonance (CMR) sequences that provide full coverage of both
left (LV) and right (RV) ventricles. This paper proposes a novel adver-
sarial learning (AL) approach based on convolutional neural networks
(CNN) that detects and localizes the basal/apical slices in an image
volume independently of image-acquisition parameters, such as, imaging
device, magnetic field strength, variations in protocol execution, etc. The
proposed model is trained on multiple cohorts of different provenance,
and learns image features from different MRI viewing planes to learn the
appearance and predict the position of the basal and apical planes. To
the best of our knowledge, this is the first work tackling the fully au-
tomatic detection and position regression of basal/apical slices in CMR
volumes in a dataset-invariant manner. We achieve this by maximizing
the ability of a CNN to regress the position of basal/apical slices within a
single dataset, while minimizing the ability of a classifier to discriminate
image features between different data sources. Our results show superior
performance over state-of-the-art methods.

Keywords: Deep Learning · Dataset Invariance · Adversarial Learning
· Ventricular Coverage Assessment · MRI.

1 Introduction

To obtain accurate and reliable volume and functional parameter measurements
in CMR imaging studies, recognizing basal and apical slices for both ventricles is
crucial. Unfortunately, current practice to detect basal/or apical slice positions
is still carried out by visual inspection of experts on the image. This practice
is costly, subjective, error prone, and time consuming [1]. Although significant
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progress [14] has been made in automatic assessment of full LV coverage in
cardiac MRI, to accurately measure volumes and functional parameters for both
ventricles where the basal/apical slices are missing, methods to estimate the
position of the missing slices are required [10]. Such methods would be critical to
prompt the intervention of experts to correct problems in data measurements, or
to trigger algorithms that can cope with missing data by, for instance, imputation
[5] through image synthesis, or shape based extrapolation. This paves the way
to “quality-aware image analysis” [13]. To the best of our knowledge, previous
work regarding image quality control has focused solely on coverage detection of
the LV, but not on missing slice position estimation.

In medical image analysis, it is sometimes convenient or necessary to infer an
image in one modality from another for image quality assessment purposes. One
major challenge of basal/apical slice estimation for CMR comes from differences
between data sources, which are tissue appearance and/or spatial resolution of
images sourced from different physical acquisition principles or parameters. Such
differences make it difficult to generalize algorithms trained on specific datasets
to other data sources. This is problematic not only when the source and target
datasets are different, but more so, when the target dataset contains no labels.
In all such scenarios, it is highly desirable to learn a discriminative classifier or
other predictor in the presence of a shift between training and test distributions,
which is called dataset invariance. The general approach of achieving dataset
adaptation has been explored under many facets. Among the existing cross-
dataset learning works, dataset adaptation has been adopted for re-identification
hoping labeled data from a source dataset can provide transferable identity-
discriminative information for a target dataset. [7] explored the possibility of
generating multimodal images from single-modality imagery. [8] [9] employed
multi-task metric learning models to benefit the target task. However, these
works are focused mainly on linear assumptions.

In this paper, we focus on the non-linear representations and analysis of
short-axis (SA) and long-axis (LA) cine MRI for the detection and regression of
the basal and apical slices of both ventricles in CMR volumes. To deal with the
problem where there is no labeled data for a target dataset, and one hopes to
transfer knowledge from a model trained on sufficient labeled data of a source
dataset sharing the same feature space, but with a different marginal distribu-
tion we present these contributions: 1) We present a unified model (MDAL) for
any cross-dataset basal/apical slice estimation problem in CMR volumes; 2) We
integrate adversarial feature learning by building an end-to-end architecture of
CNNs and transferring non-linear representations from a labeled source dataset
to a target dataset where labels are non-existent. Our deep architecture effec-
tively improves the adaptability of learning with data of different databases;
3) A multi-view image extension of the adversarial learning model is proposed
and exploited. By making use of multi-view images acquired from short- and
long-axis views, one can further improve and constrain the basal/apical slice
position. We evaluate our method on three datasets and compare with state-
of-the-art methods. Experimental results show the superior performance of our
method compared to other approaches.
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2 Methodology

2.1 Problem Formulation

The cross-dataset localization of basal or apical slices can be formulated as two
tasks: (i) Dataset Invariance: given a set of 3D images X s = [Xs

1, ...,X
s
N ] ∈

R
m×n×zs

×Ns

of modality Ms in the source dataset, and X t = [Xt
1, ...,X

t
N ] ∈

R
m×n×zt

×Nt

of modality Mt in the target dataset. m,n are the dimensions of
axial view of the image, and zs and zt denote the size of images along the z-
axis, while Ns and N t are the number of volumes in source and target datasets,
respectively. Our goal is to build mappings between the source (training-time)
and the target (test-time) datasets, that reduce the difference between the source
and target data distributions; (ii) Multi-view Slice Regression: In this task, slice
localization performance is enhanced by using multiple image stacks, e.g. SA
and LA stacks, into a single regression task. Let Xs = {xs

i , r
s
i }

Zs

i=1 and Ys =
{ys

i , r
s
i }

Zs

i=1 be a labeled 3D CMR volume from source modality Ms in short-
and long-axis, respectively, and xs

b, x
s
a, and ys

b, y
s
a be the short-axis slices, and

long-axis image patches of the basal and apical views; let Xt = {xt
i}

Zt

i=1 and

Yt = {yt
i}

Zt

i=1 represent an unlabeled sample from the target dataset in short-
and long-axis, i represents the ith slice and Z is the total number of CMR
slices. Our goal is to learn the discriminative features from xs

b, x
s
a, and ys

b, y
s
a to

localize the basal and apical slices in two axes for CMR volumes in the target
dataset1. We use the labeled UK Biobank (UKBB) [11] cardiac MRI data cohort
together with the MESA2 and DETERMINE3 datasets, and apply our method
to cross-dataset basal and apical slice regression tasks.

Fig. 1. a: Schematic of our dataset-invariant adversarial network; b: System overview
of our proposed dataset-invariant adversarial model with multi-view input channels for
bi-ventricular coverage estimation in cardiac MRI. Each channel contains three conv
layers, three max-pooling layers and two fully-connected layers. Additional dataset
invariance net (yellow) includes two fully-connected layers. Kernel numbers in each
conv layer are 16, 16 and 64 with sizes of 7× 7, 13× 13 and 10× 10, respectively; filter
sizes in each max-pooling layer are 2× 2, 3× 3 and 2× 2 with stride 2.

1 Notation: Matrices and 3D images are written in bold uppercase (e.g., image X,
Y), vectors and vectorized 2D images in bold lowercase (e.g., slice x, y) and scalars
in lowercase (e.g., slice position label r).

2 http://www.cardiacatlas.org/studies/mesa/
3 http://www.cardiacatlas.org/studies/determine/
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2.2 Multi-Input and Dataset-Invariant Adversarial Learning

Inspired by Adversarial Learning (AL)[6] and Dataset Adaptation (DA)[12]
for cross-dataset transfer, we propose a Dataset-Invariant Adversarial Learn-
ing model, which extends the DA formulation into a AL strategy, and performs
them jointly in a unified framework. We propose multi-view adversarial learning
by creating multiple input channels (MC) from images which are re-sampled
to the same spatial grid and visualize the same anatomy. An overview of our
method is depicted in Fig. 1. Given two sets of slices {xs

i}
N
i=1, {y

s
i}

N
i=1 with slice

position labels {rsi }
N
i=1 for training, to learn a model that can generalize well

from one dataset to another, and is used both during training and test time to
regress the basal/apical slice position, we optimize this objective in stages: 1)
we optimize the label regression loss

Li
r = Lr(Gsigm(Gconv(xs,ys; θf ); θr), ri)

=
∑

i

‖ri −Gsigm(Gconv(xs,ys; θf ); θr), ri)‖
2
2 +

1

2

(

‖θf‖
2
2 + ‖θr‖

2
2

)

,
(1)

where θf is the representation parameter of the neural network feature extractor,
which corresponds to the feature extraction layers. θr is the regression param-
eter of the slice regression net, which corresponds to the regression layers. ri
denotes the ith slice position label. θf and θr are trained for the ith image by
using the labeled source data {Xs

i , r
s
i}

Ns

i=1 and {Ys
i , r

s
i}

Ns

i=1. 2) Since dataset ad-
versarial learning satisfies a dataset adaptation mechanism, we minimize source
and target representation distances through alternating minimax between two
loss functions: one is the dataset discriminator loss

Li
d = Ld(Gdisc(Gconv(xs,ys,xt,yt; θf ); θd), di)

= −
∑

i

1 [od = di] log(Gdisc(Gconv(xs,ys,xt,yt; θf ); θd), di),
(2)

which classifies whether an image is drawn from the source or the target dataset.
od indicates the output of the dataset classifier for the ith image, θd is the param-
eter used for the computation of the dataset prediction output of the network,
which corresponds to the dataset invariance layers; di denotes the dataset that
the example slice i is drawn from. The other is the source and target mapping
invariant loss

Li
f = Lf (Gconf (Gconv(xs,ys,xt,yt; θf ); θd), di)

= −
∑

d

1

D
log(Gconf (Gconv(xs,ys,xt,yt; θf ); θd), di),

(3)

which is optimized with a constrained adversarial objective by computing the
cross entropy between the output predicted dataset labels, and a uniform distri-
bution over dataset labels. D indicates the number of input channels. Our full
method then optimizes the joint loss function

E(θf , θr, θd) = Lr(Gsigm(Gconv(xs,ys; θf ); θr), r)

+ λLf (Gconf (Gconv(xs,ys,xt,yt; θf ); θd), d),
(4)

where hyperparameter λ determines how strongly the dataset invariance influ-
ences the optimization; Gconv(·) is a convolution layer function that maps an
example into a new representation; Gsigm(·) is a label prediction layer function;
Gdisc(·) and Gconf (·) are the dataset prediction and invariance layer functions.
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2.3 Optimization

Similar to classical CNN learning methods, we propose to tackle the optimization
problem with the stochastic gradient procedure, in which updates are made in the
opposite direction of the gradient of Equation (4) to minimize parameters, and
in the direction of the gradient to maximize other parameters [4]. We optimize
the objective in the following stages.

Optimizing the Label Regressor: In adversarial adaptive methods, the
main goal is to regularize the learning of the source and target mappings, so
as to minimize the distance between the empirical source and target mapping
distributions. If so then the source regression model can be directly applied
to the target representations, eliminating the need to learn a separate target
regressor. Training the neural network then leads to this optimization problem
on the source dataset:

arg min
θf ,θr

{
1

Ns

Ns

∑

i=1

Li
r(Gsigm(Gconv(xs,ys; θf ); θr), ri)}. (5)

Optimizing for Dataset Invariance: This optimization corresponds to the
true minimax objective (Ld and Lf ) for the dataset classifier parameters and
the dataset invariant representation. The two losses stand in direct opposition to
one another: learning a fully dataset invariant representation means the dataset
classifier must do poorly, and learning an effective dataset classifier means that
the representation is not dataset invariant. Rather than globally optimizing θd
and θf , we instead perform iterative updates for these two objectives given the
fixed parameters from the previous iteration:

argmin
θd

{−
1

N

N
∑

i=1

Li
d(Gdisc(Gconv(xs,ys,xt,yt; θf ); θd), di)}, (6)

argmax
θf

{−
1

N

N
∑

i=1

Li
f (Gconf (Gconv(xs,ys,xt,yt; θf ); θd), di)}, (7)

where N = Ns+N t being the total number of samples. These losses are readily
implemented in standard deep learning frameworks, and after setting learning
rates properly so Equation (6) only updates θd and (7) only updates θf , the up-
dates can be performed via standard backpropagation. Together, these updates
ensure that we learn a representation that is dataset invariant.

2.4 Detection and Regression for Basal/Apical Slice Position

We denote Ĥt, Ĝt as extracted query features, and Ĥs, Ĝs as extracted basal/apical
slice representations from SAX and LAX, respectively. In order to regress basal
and apical slices according to query features, we compute the dissimilarity ma-
trix δi,j based on Ĥt, Ĝt and Ĥs, Ĝs using the volume’s inter-slice distance as:

δi,j(Ĥt, Ĥs, Ĝt, Ĝs) =

√

(Ĥi
t − Ĥj

s)
2
+ (Ĝi

t − Ĝj
s)

2
. Then, ranking can be carried

out based on the ascending order of each row of the dissimilarity distance, i.e.,
the lower the entry value δi,j is, the closer the basal/apical slice and the query
slice are.
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3 Experiments and Analysis

Data specifications: Quality-scored CMR data is available for circa 5,000 vol-
unteers of the UK Biobank imaging (UKBB) resource. Following visual inspec-
tion, manual annotation for SAX images was carried out with a simple 3-grade
quality score [2]. 4,280 sequences correspond to quality score 1 for both ventri-
cles, these had full coverage of the heart from base to apex and were the source
datasets to construct the ground-truth classes for our experiments. Note that
having full coverage should not be confused with having the top/bottom slices
corresponding exactly to base/apex. Basal slices including the left ventricular
outflow tract, pulmonary valve and right atrium, and apical slices with a visi-
ble ventricular cavity were labeled manually. The distance between the actual
location of the basal/apical slice to other slices in the volume were used as train-
ing labels for the regression. We validated the proposed MDAL on three target
datasets: UKBB, DETERMINE and MESA (protocols of the three datasets are
shown in Table. 1). To prevent over-fitting due to insufficient target data, and
to improve the detection rate of our algorithm, we employ data augmentation
techniques to artificially enlarge the target datasets. For this purpose we chose a
set of realistic rotations, scaling factors, and corresponding mirror images, and
applied them to the MRI images. The set of rotations chosen were −45◦ and
45◦, and the scaling factors 0.75 and 1.25. This increased the number of training
samples by a factor of eight. After data augmentation, we had 2400, and 2384
sequences for DETERMINE and MESA datasets, respectively. For evaluating
of multi-view models, we defined two input channels, one for SAX images, and
another for LAX (4-chamber) from the UKBB, MESA and DETERMINE. The
LAX image information was extracted by collecting pixels values along the in-
tersecting line between the 4-chamber view plane and corresponding short-axis
plane over the cardiac cycle. We extracted 4 pixels above and below the two
plane intersection. We embedded the constructed profile within a square image
with zeros everywhere except the profile diagonal (see Fig. 1b bottom channel).

Table 1. Cardiovascular magnetic resonance protocols for UKBB, MESA and DE-
TERMINE Datasets.

Dataset View
Number of

Sequences

Cardiac

Phases

Matrix

Size

Slice

Thickness

Slice

Gap

Slice

Spacing

Slices

per Volume

UKB
SAX 4280 50 208×187 8 mm 2 mm 10 mm ca. 10

LAX 4280 50 208×187 6 mm n.a n.a 1

MESA
SAX 298 20∼30 256×160 6 mm 4 mm 10 mm ca. 10

LAX 298 20∼30 256×160 6 mm n.a n.a 1

DETERMINE
SAX 300 25 128×256 6 10 mm 6 2 mm 10 mm ca. 10

LAX 300 25 128×256 6 mm n.a n.a 1

Experimental set-up: The architecture of our proposed method is shown
in Fig. 1. To maximize the number of training samples from all datasets, while
preventing biased learning of image features from a particular dataset and given
that the number of samples from the UKBB is at least an order of magnitude
larger than from MESA or DETERMINE, we augmented both the MESA and
DETERMINE datasets, to match the resulting number of samples from the
UKBB. This way our dataset classification task will not over-fit to anyone sam-
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Table 2. The comparison of basal/apical slice detection accuracy (Mean± standard de-
viation) (%) between adaptation and non-adaptation methods, each with single (SAX)-
and multi-view inputs (BS/AS indicate basal/apical slice detection accuracy). Best re-
sults are highlighted in bold.

Dataset
No dataset adaptation (BS/AS) With dataset Adaptation (BS/AS)

Single-view [14] Multi-view [14] Single-view [4] Multi-view (Ours)

UKBB 79.0±0.2/76.2±0.3 89.2±0.1/92.4±0.2 78.2±0.2/75.4±0.3 88.7±0.1/91.4±0.3

MESA 31.6±0.3/35.1±0.1 61.5±0.2/68.3±0.4 74.2±0.2/72.9±0.4 87.1±0.3/90.2±0.2

DETERMINE 48.3±0.2/51.1±0.3 75.6±0.3/78.4±0.3 77.2±0.3/76.5±0.2 89.0±0.2/91.2±0.2

Table 3. Regression error comparison between adaptation and non-adaptation meth-
ods, each with single (SAX)- and multi-view inputs for cardiac SAX slice posi-
tion regression in terms of MAE (Mean ± standard deviation)(mm)(BS/AS indicate
basal/apical slice regression errors). Best results are highlighted in bold.

Dataset
No dataset adaptation (BS/AS) With dataset adaptation (BS/AS)

Single-view [14] Multi-view [14] Single-view [4] Multi-view (Ours)

UKBB 4.32±1.6/5.73±1.9 3.42±1.1/3.98±1.7 5.13±2.1/6.33±2.3 3.64±1.9/4.02±2.0

MESA 7.78±2.0/8.34±2.4 6.47±1.7/6.83±1.4 4.81±1.0/5.73±1.5 3.98±1.1/4.07±1.3

DETERMINE 6.43±1.9/6.81±2.0 6.01±1.3/6.17±1.4 4.73±1.6/4.81±1.3 4.24±1.0/4.45±1.3

ple. Our MDAL method processes images with small blocks (120× 120), which
are crop-centered on the images to extract specific regions of interest. The exper-
iments here reported were conducted using the ConvNet library [3] on an Intel
Xeon E5-1620 v3 @3.50GHz machine running Windows 10 with 32GB RAM and
Nvidia Quadro K620 GPU. We optimize the network using a learning rate µ of
0.001 and set the hyper-parameter parameter λ to be 0.01, respectively. To eval-
uate the detection process, we measure classification accuracy, and to evaluate
the regression error between the predicted position and the ground truth, we use
the Mean Absolute Error (MAE).

Results: We evaluate the performance of the multi-view basal/apical slice
detection and regression tasks with and without dataset invariance (adaptation
vs non-adaptation), by transferring object regressors from the UKBB to MESA
and DETERMINE. To evaluate performance on MESA and DETERMINE, we
manually generated annotations as follows: we checked one slice above and below
the detected basal slice to confirm the slice is the basal and record true or false,
ditto for apex. We chose the CNN architecture in [14] for single- and multi-view
metrics with non-adaptation, and the GTSRB architecture in [4] for single-view
adaption method. Table 2 shows the detection accuracy for basal/apical slice of
the adaptation and non-adaptation from single and multi-view. For both test
datasets, the best improvements are the result of combining both of these fea-
tures. For MESA the detection accuracy was increased by 64%, and for DETER-
MINE best improvements are of 44% (right-most column). Table 3 shows the
average regression errors of slice locations in millimeter (mm). Even without us-
ing the multi-input channels, our dataset invariance framework is able to reduce
the slice localization error to less than half the average slice spacing found on our
test datasets, i.e., < 5mm. With multi-view we reduced the localization errors
to 4.24 and 4.45mm on average for both basal/apical slices. All the experiences
are significantly different at p <0.05.
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4 Conclusion

In this paper, we have proposed a Multi-Input and Dataset-Invariant Adversarial
Learning (MDAL) framework capable of learning a common image representa-
tion, and using it to detect and localize basal and apical CMR slices, we achieve
this by: first, using a Dataset-Invariant Adversarial Learning (DIAL) model to
fit the joint distribution over the images from different datasets with a minimax
game. Second, extending the DIAL model to handle multiple view input sce-
narios thereby obtaining better results for Left and Right-Ventricular coverage
estimation in Cardiac MRI. And third, by introducing a regressor network able
to predict the location of basal/apical slices. We evaluated our framework on two
large datasets MESA and DETERMINE and found that our approach signifi-
cantly outperforms state-of-the-art non-dataset-adaptive and single-input meth-
ods. Finally, Our MDAL framework can be easily generalized to any anatomical
structure or image modality.
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