
This is a repository copy of Carbon Sequestration in Biogenic Magnesite and Other 
Magnesium Carbonate Minerals.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/145175/

Version: Accepted Version

Article:

McCutcheon, J orcid.org/0000-0002-9114-7408, Power, IM, Shuster, J et al. (3 more 
authors) (2019) Carbon Sequestration in Biogenic Magnesite and Other Magnesium 
Carbonate Minerals. Environmental Science and Technology, 53 (6). pp. 3225-3237. ISSN 
0013-936X 

https://doi.org/10.1021/acs.est.8b07055

© 2019 American Chemical Society. This document is the unedited Author’s version of a 
Submitted Work that was subsequently accepted for publication in Environmental Science 
and Technology, after peer review. To access the final edited and published work see 
https://doi.org/10.1021/acs.est.8b07055.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


This document is confidential and is proprietary to the American Chemical Society and its authors. Do not 

copy or disclose without written permission. If you have received this item in error, notify the sender and 

delete all copies.

Carbon sequestration in biogenic magnesite and other 

magnesium carbonate minerals

Journal: Environmental Science & Technology

Manuscript ID es-2018-070555.R2

Manuscript Type: Article

Date Submitted by the 

Author:
n/a

Complete List of Authors: McCutcheon, Jenine; University of Leeds, School of Earth and 

Environment; Western University, Department of Earth Sciences

Power, Ian; Trent University, Trent School of the Environment; The 

University of British Columbia, Department of Earth, Ocean and 

Atmospheric Sciences

Shuster, Jeremiah; University of Adelaide, School of Biological Sciences; 

CSIRO Land and Water

Harrison, Anna; Queen's University; Queen's University

Dipple, Gregory; University of British Columbia, Department of Earth, 

Ocean and Atmospheric Sciences

Southam, Gordon; The University of Queensland, School of Earth and 

Environmental Sciences

 

ACS Paragon Plus Environment

Environmental Science & Technology



Carbon sequestration in biogenic magnesite and 
other magnesium carbonate minerals

Jenine McCutcheon1,2*, Ian M. Power3,4, Jeremiah Shuster5,6, Anna L. Harrison7,8, Gregory M. 

Dipple3, Gordon Southam9

1Department of Earth Sciences, Western University, London, Ontario, N6A 5B7, Canada

2School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom

3Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, 

Vancouver, British Columbia, V6T 1Z4, Canada

4School of the Environment, Trent University, Peterborough, Ontario, K9L 0G2, Canada 

5School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia

6CSIRO Land and Water, Glen Osmond, South Australia 5064, Australia

7Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, 

Ontario, K7L 3N6, Canada 

8School of Environmental Studies, Queen’s University, Kingston, Ontario, K7L 3N6, Canada 

9School of Earth & Environmental Sciences, The University of Queensland, St Lucia, Queensland 

4072, Australia

*Corresponding contributor: j.mccutcheon@leeds.ac.uk 

Keywords: carbon dioxide, cyanobacteria, magnesite, hydromagnesite, carbon sequestration, 

tailings, microbial carbonation, carbon pricing

Page 1 of 33

ACS Paragon Plus Environment

Environmental Science & Technology

mailto:j.mccutcheon@leeds.ac.uk


2

1 Abstract 

2 The stability and longevity of carbonate minerals make them an ideal sink for surplus atmospheric 

3 carbon dioxide. Biogenic magnesium carbonate mineral precipitation from the magnesium-rich 

4 tailings generated by many mining operations could offset net mining greenhouse gas emissions, 

5 while simultaneously giving value to mine waste products. In this investigation, cyanobacteria in 

6 a wetland bioreactor enabled the precipitation of magnesite (MgCO3), hydromagnesite 

7 [Mg5(CO3)4(OH)2·4H2O], and dypingite [Mg5(CO3)4(OH)2·5H2O] from a synthetic wastewater 

8 comparable in chemistry to what is produced by acid leaching of ultramafic mine tailings. These 

9 precipitates occurred as micrometer-scale mineral grains and microcrystalline carbonate coatings 

10 that entombed filamentous cyanobacteria. This provides the first laboratory demonstration of low 

11 temperature, biogenic magnesite precipitation for carbon sequestration purposes. These findings 

12 demonstrate the importance of extracellular polymeric substances in microbially enabled 

13 carbonate mineral nucleation. Fluid composition was monitored to determine carbon sequestration 

14 rates. The results demonstrate that up to 238 t of CO2 could be stored per hectare of wetland/year 

15 if this method of carbon dioxide sequestration was implemented at an ultramafic mine tailing 

16 storage facility. The abundance of tailings available for carbonation and the anticipated global 

17 implementation of carbon pricing make this method of mineral carbonation worth further 

18 investigation. 

19

20

21

22

23
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24 1. Introduction 

25 Microbially-mediated carbonate mineral precipitation reactions, commonly referred to as 

26 microbial carbonation, have been documented in numerous environments, induced by organisms 

27 including cyanobacteria (1-3), sulfate reducing bacteria (4, 5), ureolytic bacteria (6, 7), and 

28 oxalotrophic bacteria (8, 9). This biogeochemical process has potential to produce stable, long-

29 term sinks for atmospheric carbon dioxide (CO2) (10-13). Stable carbonate minerals are a desirable 

30 sink for atmospheric CO2, prompting the investigation of a range of carbon sequestration strategies 

31 that aim to precipitate carbonate minerals (10, 11, 14-24). 

32 Passive carbonate mineral formation from ultramafic tailings produced by nickel, diamond, 

33 and asbestos mining operations has been studied at active and historic mine sites (15, 25-28). The 

34 high surface area of tailing minerals allows for greater weathering and carbonation reaction rates 

35 than those typically observed for natural bedrock (29). The ability of cyanobacteria to mediate the 

36 precipitation of hydrated magnesium carbonate minerals has been previously documented (30-32), 

37 and could be stimulated by utilizing soluble magnesium derived from dissolution of ultramafic 

38 tailings (13, 33). Cyanobacterial photosynthesis produces hydroxyl (OH-) anions that promote 

39 carbonate mineral precipitation by increasing the pH value and thus the proportion of dissolved 

40 carbonate (CO3
2-) species, as outlined in Reactions 1-3 (34). The extracellular surfaces of bacteria 

41 and their encapsulating exopolymer are negatively charged due to the presence of functional 

42 groups, such as carboxyls (35). These functional groups can bind divalent cations, thereby 

43 generating microenvironments with high cation concentrations that favor carbonate mineral 

44 precipitation reactions. 

HCO3
- + H2O  CH2O + O2 + OH- (1)

HCO3
- + OH-  CO3

2- + H2O (2)
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5 Mg2+ + 4 CO3
2- + 2 OH- + 4 H2O  Mg5(CO3)4(OH)2·5H2O(s) (3)

                                                              Dypingite

45

46 The present study characterizes the ability of a phototrophic microbial consortium to drive 

47 Mg-carbonate mineral formation using atmospheric CO2 in a wetland bioreactor (Figure 1). The 

48 bioreactor was inoculated with microbial mats predominantly composed of filamentous 

49 cyanobacteria that were collected from a natural wetland associated with a hydromagnesite-

50 magnesite playa near Atlin, British Columbia, Canada (32, 36, 37). In addition to cyanobacteria, 

51 the microbial mats host abundant diatoms that remove dissolved silica from solution. The mats 

52 overlie anoxic sediments known to host sulfate reducing bacteria that have been previously shown 

53 to precipitate iron sulfide minerals (37). An Mg-rich synthetic mine wastewater, the chemistry of 

54 which was based on a tailings leaching experiment completed by McCutcheon et al. (33), was 

55 added to the bioreactor. Spatial and temporal changes in water chemistry and mineral precipitates 

56 were used to calculate the rate of carbon storage, thereby demonstrating this carbon sequestration 

57 strategy on a scale at least one order of magnitude greater than typical laboratory experiments. 

58 2. Methods

59 2.1 Bioreactor design

60 In this 67-day experiment, synthetic mine wastewater and nutrient solutions were added to 

61 a 10 m long flow-through bioreactor constructed of 15 cm diameter polyvinyl chloride pipe (see 

62 Supplementary Information (SI) for details). The bioreactor was initially constructed for the 

63 experiment presented in McCutcheon et al. (13), in which the natural biogeochemical conditions 

64 of the wetland associated with the hydromagnesite-magnesite playa near Atlin were modelled. 

65 Prior to the present study, the microbial mats in the bioreactor were culled to allow for growth of 
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66 second generation mats containing no Mg-carbonate minerals (confirmed using electron 

67 microscopy). Rather than modelling the natural wetland, the present study targeted the 

68 biogeochemical conditions of an engineered mine site bioreactor wetland for the purposes of 

69 maximizing carbon sequestration in Mg-carbonate minerals. A critical experimental parameter by 

70 which the present study differs from its precursor is that an inorganic carbon source was not 

71 provided, which is crucial as the ingress of CO2 into mineral carbonation reactors is a known 

72 limiting factor (38), and must be overcome for large-scale implementation of mineral carbonation. 

73 Additionally, the synthetic mine wastewater added to the bioreactor contained 5000 ppm (205.8 

74 mM) Mg2+. This value, which is five times greater than that used in the 2014 study, was based on 

75 the results of a tailings leaching experiment (33) in order to better represent an industrial tailing 

76 leachate. With dypingite as the target mineral (Reaction 3), the number of cycles of carbon fixation 

77 (Reaction 1) required to make the necessary hydroxyl and carbonate anions (Reaction 3) per 

78 molecule of dypingite produced was calculated as ten (13). The classic phytoplankton biomass 

79 formula [(CH2O)106(NH4)16(H3PO4)] was used as a guideline to determine the phosphorous and 

80 nitrogen required in the nutrient solution (39). The synthetic mine wastewater solution chemistry 

81 was used to calculate the nutrient requirements of the microbes in the bioreactor using modified 

82 BG-11 growth medium (SI Tables S1 and S2) (40). The solutions were added to one end of the 

83 bioreactor (0 m), from which they could passively flow through the gravity-driven system and 

84 drain out the other end. A second nutrient solution inflow was located at 5 m. The inflow rate of 

85 both solutions was increased over time to determine the response of the bioreactor to a high influx 

86 of soluble magnesium (Table 1). The bioreactor was housed in greenhouse with an average air 

87 temperature of 23.5°C, as documented at all sampling time points, and subject to diurnal 12 h 
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88 light/dark conditions. The experiment took place in southern Canada from December to March, 

89 and thus the light was provided by a combination of natural and artificial sources. 

90

0 m

8 m10 m

2 m

Water

Microbial mat

Sediment

Bioreactor

Cross-section
Microbial mat

Outflow

solution

Nutrient

solution

Mine

waste

water

Bioreactor in plan view
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6 m

8 m

Microbial mat

6 m

91 Figure 1. Plan view schematic of the bioreactor inoculated with microbial mats for the carbonation experiment. The 
92 synthetic mine wastewater was added at one end of the channel (0 m), while the nutrient solution was added at 0 m 
93 and 5 m. The gravity driven system allowed for the solution to flow passively through the bioreactor and out a valve 
94 in the other end. Arrows indicate the direction of flow. The four straight segments of the bioreactor were open to the 
95 air and contained the active microbial mats (green segments in the schematic), while the bends were covered. A cross-
96 section of the bioreactor contents is shown, along with a photograph of the pellicle that formed at the air-water 
97 interface.

98

99 After 21 days, a pellicle, a biofilm at the air-water interface, developed as sections of mat 

100 were buoyed up to the water surface by trapped photosynthetically-generated oxygen bubbles. The 

101 pellicle was removed because it was restricting the photosynthesis of the benthic microbial mats 

102 and causing a decrease in dissolved oxygen concentration in the bioreactor water. At this time, the 
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103 addition of the wastewater solution was ceased and the growth medium concentration was halved 

104 to moderate microbial activity (Table 1). The bioreactor outflow volume was measured to quantify 

105 evaporation, which indicated that 45% of the added water evaporated during the experiment. This 

106 water loss was taken into account for mass balance calculations for the system and when 

107 interpreting conductivity, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), 

108 ion chromatography (IC), and dissolved inorganic carbon (DIC) results (SI Table S3). 

109

110 Table 1. Fluid composition for the nutrient and synthetic mine wastewater solutions added to the 
111 bioreactor during the carbonation experiment. Summary of the timeline for solution addition to the 
112 bioreactor at the 0 and 5 m locations. Note, the experiment was paused between day 21 and 32 due 
113 to the formation of the pellicle. 

Fluid composition measurements Cation and anion concentrations (mM)

Solution type pH DO (mg/mL) Conductivity (mS/cm) Mg
2+

Ca
2+

 DIC PO
4

3-
NO

3

-
NO

2

-

100% nutrient solution 5.91 4.20 6.64 0.01 0.78 0.20 6.10 74.9 0.00

50% nutrient solution 5.91 6.11 3.65 0.00 0.34 0.20 2.28 30.7 0.00

Wastewater 8.10 7.37 18.1 196 8.16 0.21 0.00 0.00 0.00

Solution addition timeline

0 m solution addition point 5 m solution addition point

Day Solution Flow rate (L/day) Solution Flow rate (L/day)

1-21 100% nutrients 1 100% nutrients 1

Wastewater 1

21 Experiment paused and the pellicle removed

22-31 Standard BG-11 1 Standard BG-11 1

32 Experiment resumed

32-38 50% nutrients 1 100% nutrients 1

Wastewater 1

39-45 50% nutrients 2 50% nutrients 2

Wastewater 2

46-52 100% nutrients 3

Wastewater 3

53-59 100% nutrients 4

Wastewater 4

60-67 50% nutrients 5

Wastewater 5

114

115 2.2 Mineral and microbe characterization 

116 Microbial mat samples collected at 0 m prior to the experiment, and at 0 m, 5 m, and 10 m 

117 on days 28 and 67 were analyzed using X-ray diffraction (XRD). The mats were air dried in petri 

118 dishes and powdered using a mortar and pestle. The samples were analyzed using a Bruker D8 
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119 Focus Bragg-Brentano diffractometer and mineral phases were determined using DIFFRACplus 

120 Eva software (see SI for details). Additional microbial mat samples were collected on days 14 and 

121 28 from the same locations representing upstream, midstream, and downstream mats for analysis 

122 using scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS; see SI for 

123 details). After 67 days, microbial mats were sampled at 1 m increments for SEM-EDS. A sample 

124 of microbial mat collected from the 10 m location in the bioreactor on day 67 was fixed using 

125 2%(aq) glutaraldehyde, and stained using 2%(aq) OsO4, 1.5%(aq) ferricyanide, and 1%(aq) 

126 thiocarbohydrazide prior to being dehydrated using acetone, and embedded in Epon Embed 812 

127 resin, described in detail in McCutcheon and Southam (41) as a protocol adapted for use on natural 

128 microbial biofilms (42). Ultrathin sections of the embedded sample were characterized using 

129 transmission electron microscopy (TEM) in conjunction with selected area electron diffraction 

130 (SAED) and EDS (see SI for details).

131 2.3 Fluid composition analyses

132 Fluid composition was monitored weekly at 1 m increments along the length of the 

133 bioreactor. Dissolved oxygen (DO), pH, and conductivity were measured using probes (see SI for 

134 details). Water samples were collected and filtered (0.1 µm pore-size) to determine DIC, and major 

135 cation (ICP-AES) and anion (IC) concentrations at each location (see SI for details). Due to the 

136 high concentration, magnesium was analysed using IC instead of ICP-AES. Stable carbon isotopic 

137 measurements of DIC is another means of determining whether a solution is at equilibrium with 

138 atmospheric CO2 (25). Stable carbon, oxygen, and hydrogen isotope analysis was conducted on 

139 water samples collected 1 week after the experiment concluded (see SI for details). Saturation 

140 indices (SI) for possible mineral products were determined using PHREEQC (43) and the fluid 
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141 composition data were used to evaluate how pH, and the availability of Mg2+ and DIC species 

142 influence carbonate mineralization (see SI for PHREEQC details). 

143 3. Results 

144 3.1 Carbonate mineral precipitation

145 XRD analysis of the pre-experiment microbial mat sample identified thenardite (Na2SO4) 

146 and aragonite (CaCO3) (SI Figure S1A), neither of which were observed with SEM (SI Figure 

147 S2A). Magnesite, hydromagnesite, dypingite, aragonite (CaCO3), and nesquehonite 

148 [Mg(HCO3)(OH)·2H2O] were identified as mineral precipitates in the bioreactor microbial mats 

149 using XRD (Figure 2, SI Figure S1B,C). Subhedral rhombohedral magnesite crystals were 

150 predominantly observed between 4 and 10 m in the bioreactor and were identified using TEM-

151 EDS and SAED (Figure 3A,B, SI Table S4). The magnesite often occurred at convergent points 

152 between multiple hydromagnesite plates (Figure 3C-E), a relationship documented in natural 

153 samples by Power et al. (36). Note the tendency of magnesite crystals to fall out of the ultrathin 

154 sections, as seen in Figure 3E. For those that were retained, SAED confirms that these precipitates 

155 are hexagonal, and indicates that they are polycrystalline in nature (Figure 3A,B). 
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157 Figure 2. X-ray diffraction and SEM results for the key mineral precipitates produced in this study. A: Pattern 
158 produced by XRD analysis of a sample of microbial mat collected at 5 m on day 67 of the carbonate precipitation 
159 experiment. Scanning electron micrographs depicting: B: rhombohedral magnesite crystals found between 4 and 10 
160 m in the bioreactor; C: platy hydromagnesite or dypingite crystals formed throughout the bioreactor; D: a rosette of 
161 hydromagnesite or dypingite covered in EPS (day 67, 1 m); E: platy hydromagnesite or dypingite crystal (left), 
162 disarticulated aragonite crystals (centre), and mineral coated coccoid bacterium (right); and F: cyanobacterium 
163 filament encased in Mg-carbonate encrusted EPS (day 14, 10 m).

164

165 Hydromagnesite or dypingite crystals were the most abundant precipitates and occurred as 

166 plates and rosettes, often associated with large amounts of extracellular polymeric substances 

167 (EPS; Figure 2C,D). The EPS exhibits the collapsed, mesh-like morphology commonly observed 
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168 when biofilms are prepared for SEM via solvent dehydration and critical point drying (41). The 

169 platy hydromagnesite or dypingite precipitates visible using SEM (Figure 4A) can also be observed 

170 using TEM, oriented tangential to the filamentous cells such that only the edge of the platy crystals 

171 can be observed (Figure 4B). The platy precipitates can be observed nucleating on EPS 

172 surrounding filamentous cyanobacteria (Figure 4B,C), as demonstrated by McCutcheon and 

173 Southam (41). In addition to crystalline precipitates, cells and surrounding EPS often appear coated 

174 in microcrystalline precipitates (Mg-C-O based on EDS), resulting in cells becoming entombed 

175 (Figure 2F), likely interfering with microbial metabolism. Many empty Mg-carbonate casts 

176 exhibiting the morphology of cyanobacterium filaments were observed using TEM (Figure 4D) 

177 and SEM (Figure 4E,F), appearing to encase a framework of EPS. Poorly crystallized ~100 nm-

178 scale pseudo-acicular precipitates composed of Ca-Mg-C-O-P formed directly on coccoid 

179 microbial cells (Figure 2E, 4G,H), much like the extracellular precipitate morphology observed by 

180 Shuster et al. (44).

181 Aragonite was observed as prismatic crystals (SI Figure S2B,C), similar to those 

182 documented by Power et al. (37) from sediments in the Atlin wetland (See SI for aragonite and 

183 nesquehonite results). Struvite (NH4MgPO4·6H2O) was identified in the samples collected from 

184 the bioreactor, with this mineral phase being most abundant at 0 m and 5 m (SI Figure S2E,F). 
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185
186 Figure 3. Transmission electron micrographs showing A: the microbial biofilm in ultrathin section, including a 
187 magnesite grain (corresponding SAED pattern and spectrum on left) adjacent to the EPS outline of a cell; B: a 
188 magnesite grain in ultrathin section with corresponding SAED (inlay); and C: a magnesite grain (centre) at the junction 
189 between platy hydromagnesite crystals. Note the tendency of magnesite to fall out of the ultrathin section (C). D and 
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190 E: Secondary electron micrographs depicting the same magnesite-hydromagnesite relationship visible in (C), over 
191 which a coating of EPS can be observed. 

192
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E F

2 μm 2 μm

2 μm
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2 µm

2 µm
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1 µm

1 µm
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C D

193 Figure 4. A: Secondary electron micrograph showing the platy hydromagnesite crystals. B: Transmission electron 
194 micrograph showing platy hydromagnesite crystals as they nucleate on EPS adjacent to filamentous cyanobacteria 
195 (visible here in cross-section). EPS-nucleated hydromagnesite and mineral encrusted EPS outlining cyanobacterium 
196 filaments visible using C: SEM and D: TEM. Note the magnesite crystal visible in the top right corner of both C and 
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197 D. E and F: Casts of filamentous bacteria composed of magnesium carbonate. Scanning electron micrographs of G: 
198 the large amount of EPS generated in the bioreactor along with the microcrystalline pseudo-acicular mineral 
199 precipitate (H) found coating coccoid cells within the microbial mat (coated cells indicated by arrows in G and H).

200

201 3.2 Fluid composition 

202 The pH and DO concentrations both decreased during the first 21 days of the experiment, 

203 coincident with the formation of the pellicle, from respective system averages of 9.8 and 15.2 mg/L 

204 on day 0, to 9.4 and 5.9 mg/L on day 21 (Figure 5A,B; SI Table S5). The conductivity, and Mg2+ 

205 and Ca2+ concentrations increased over time with the increase in flow rate from day 39 to 67, while 

206 spatially, these three parameters decreased down the length of the bioreactor (Figure 5C-E). With 

207 a wastewater inflow rate of 1 - 3 L/day, the bioreactor precipitated carbonate minerals at a rate that 

208 reduced the conductivity and magnesium concentration to equal or less than the Time = 0 values 

209 (Figure 5C-E). Conductivity (Figure 5C) and magnesium concentration (Figure 5D) values 

210 increased with inflow rates of 4 and 5 L/day despite magnesium continuously being removed from 

211 the water, suggesting the influx exceeded the rate of removal via precipitation. The average 

212 magnesium concentration of the entire bioreactor increased from 2.6 mM to 68.8 mM over time, 

213 owing to the increased inflow rate (Figure 5D, SI Table S5). 

214 The DIC was relatively constant during the first 21 days, after which it decreased as the 

215 wastewater inflow rate was increased (Figure 5F; SI Table S5). DIC concentrations increased with 

216 distance from the source of nutrient and synthetic mine wastewater input at 0 m and 5 m. Higher 

217 nutrient availability at these locations may have caused localized increases in heterotrophy; 

218 however, it appears that autotrophy dominated the microbial activity beyond 5 m, resulting in a 

219 pH value increase due to photosynthesis driven CO2 consumption and OH- generation. The DIC 

220 concentration on day 67 was 64% of what was measured on day 60, indicating rapid removal of 
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221 DIC from solution via carbonate precipitation (SI Table S5). Note, approximately 11% of this 

222 decrease is due to the increase in flow rate.

223 The phosphate concentration showed no clear trend during the first 21 days of the 

224 experiment, apart from a clear increase in concentration at the 5 m sampling location, 

225 corresponding to the second nutrient addition point (Figure 5G; SI Table S5). From day 39 to 67, 

226 the phosphate concentration approached 0, and never increased above 0.1 mM. The nitrate 

227 concentration was irregular during the first 21 days, after which nitrate accumulated over time to 

228 a system average concentration of 17.3 mM on day 67 (Figure 5H). The nitrate concentration 

229 decreased down the length of the bioreactor. No nitrite was measured in the nutrient solution or 

230 mine wastewater (Table 1). The nitrite concentration was irregular in the bioreactor during the first 

231 21 days, fluctuating between 0.04 and 1.15 mM (Figure 5I). From day 39 to 67, the nitrite 

232 concentration decreased markedly to less than 0.1 mM (Figure 5I; SI Table S5). 

233
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234
235 Figure 5. Change in the fluid composition parameters down the length of the bioreactor over the 
236 duration of the experiment. A) pH, B) dissolved oxygen, C) conductivity, D) Mg2+, E) Ca2+, F) 
237 DIC, G) phosphate, H) nitrate, and I) nitrite. Note, no phosphate, nitrate, or nitrite data is available 
238 for day 0. 
239

240 On day 67, the δ2H and δ18O values of the water increased with distance down the 

241 bioreactor length (Table 2). The equilibrium fractionation between CO2(g) and HCO3
-, the 

242 dominant DIC species at the experimental pH, is +7.9‰ at 25°C (45), and the δ13C value of 

243 atmospheric CO2 is approximately -8.3‰ (46). The stable carbon isotope analysis indicated that 

244 the δ13CDIC was -6.76‰ at 0 m and decreased down the length of the bioreactor to -9.04‰ at 10 
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245 m (Table 2), while the DIC concentration increased from 2.42 to 4.16 mM over the same distance 

246 (SI Table S5).

247
248 Table 2. Stable isotope data for water samples collected following the carbonate precipitation 
249 experiment. 

Sample location δ13C (‰) δ2H (‰) δ18O (‰)

0 m -6.76 -27.3 -0.32

1 m -7.17 -31.12 0.08

2 m -7.99 -28.93 0.12

3 m -9.15 -23.38 0.27

4 m -8.97 -27.3 0.47

5 m -9.35 -23.3 0.24

6 m -8.99 -26.57 1.25

7 m -8.59 -27.28 1.43

8 m -8.77 -23.7 2.09

9 m -8.92 -20.62 2.64

10 m -9.04 -14.9 2.43
250

251 Carbonate mineral Saturation Indices (SI) were calculated using the fluid composition data 

252 and PHREEQC (SI Tables S6-24). The synthetic mine wastewater had SIs for hydromagnesite and 

253 magnesite of -10.07 and -0.65, respectively. On day 0, the sampling locations in the bioreactor had 

254 hydromagnesite and magnesite SIs ranging between -0.36 and 0.51, and 1.39 and 1.45, 

255 respectively. The average hydromagnesite SI for the bioreactor increased from 0.05 (day 0) to 3.64 

256 (day 39) followed by a decrease over the remainder of the experiment. The system average SI for 

257 magnesite increased over time from 1.43 on day 0 to 2.09 on day 39, followed by a decrease to 

258 1.62 by day 67 (SI Table S23). The average magnesite SI by sampling location changed little over 

259 time, remaining between 1.72 and 1.86. On the final day of the experiment (day 67), the magnesite 

260 SI increased down the length of the bioreactor from 1.2 (0 m) to 1.81 (10 m). The bioreactor did 

261 not reach equilibrium with atmospheric pCO2(g) at any point during the experiment (SI Table S19). 

262 The calculated pCO2 in equilibrium with the measured DIC values was in the range of 1.0 to 158 

263 ppm (SI Table S19). 
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264

265 4. Discussion

266 4.1 Microbial magnesium carbonate mineral precipitation

267 The trends observed between Mg-carbonate type and location in the bioreactor can be 

268 explained using Ca-carbonate precipitation kinetics (47-50), as carbonate crystal size and 

269 abundance is dependent on the balance between crystal nucleation rate and crystal growth rate. 

270 Higher degrees of supersaturation promote mineral nucleation, resulting in a greater abundance of 

271 individual crystals (48, 50), a relationship observed in the upper 5 m of the bioreactor as rapid 

272 nucleation of the microcrystalline coatings on microbial cells. In contrast, crystal growth is favored 

273 over crystal nucleation in solutions with a low degree of supersaturation and results in fewer, larger 

274 crystals. This relationship is evident in the downstream 5 m of the bioreactor, where micrometer-

275 scale hydromagnesite and magnesite grains were the prevailing precipitates.

276 Microbial mats aid carbonate mineral nucleation, in part, by assisting the dehydration of 

277 divalent cations. This is a particularly critical precursor in the case of Mg-carbonates, which are 

278 more difficult to precipitate than their calcium counterparts. Mg2+ ions in solution are enclosed in 

279 a stable hydration shell composed of two layers of water molecules (51, 52). The inner layer 

280 consists of an octahedrally coordinated shell of six water molecules, around which a second shell 

281 of twelve water molecules is bound by hydrogen-bonds (52-54). The hydration energy of 

282 magnesium (1926 kJ/mol) compared to calcium (1579 kJ/mol) results in water molecule exchange 

283 in calcium’s hydration shell occurring ~1000× faster than around magnesium (55, 56), resulting in 

284 much lower precipitation rates of anhydrous Mg-carbonates compared to Ca-carbonates, and thus 

285 the tendency to form hydrated Mg-carbonates at low temperature. The biogenic process by which 

286 the magnesite identified using TEM-SAED-EDS formed explains why the lattice spacings for 
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287 these precipitates do not precisely match reference values (57) (Figure 3, SI Table S4).  Biogenic 

288 carbonate minerals tend to exhibit a higher degree of crystal lattice disorder than their abiotically 

289 synthesized counterparts (58, 59), a characteristic that is detectable using SAED (60). 

290 Abiotic precipitation of magnesite at temperatures below 80°C is typically inhibited by the 

291 energy required for the spiral step crystal growth pattern by which magnesite forms (61).  

292 However, Power et al. (51) demonstrated that the hydration shell surrounding Mg2+ ions can be 

293 disrupted by binding to carboxyl-coated polystyrene microspheres, thereby inducing low 

294 temperature magnesite precipitation. The results of the present study demonstrate that the 

295 negatively charged cell exteriors and EPS in cyanobacterial mats are capable of facilitating Mg2+ 

296 dehydration through a similar mechanism (32). As much as 90% of the total organic carbon in 

297 biofilms is found in the EPS, which comprises a matrix of water, polysaccharides, lipids, proteins, 

298 and nucleic acids (62). Extracellular polysaccharides provide a large proportion of the stability of 

299 biofilms (63), which is influenced by the prevalence of cation binding. Cross-linking of 

300 polysaccharides in the EPS with cations can increase biofilm stability, while simultaneously 

301 generating localized microenvironments of high cation concentrations (64). The EPS becomes a 

302 cation reservoir to which low molecular weight (LMW) organic compounds can attach. 

303 Heterotrophic metabolic processes oxidize these LMW compounds to product bicarbonate, which 

304 can subsequently react with the cations to form carbonate minerals (64). Mineral precipitates may 

305 remain attached to the EPS, as in the case of the cellular carbonate coatings (Figure 4C), or be 

306 released like many of the hydromagnesite plates observed using SEM (Figure 4A). The apparent 

307 tendency for hydromagnesite to nucleate on, and subsequently be shed from, EPS was 

308 demonstrated by McCutcheon and Southam (41), and highlights that microbial mats must be 

309 actively producing and metabolizing EPS to provide carbonate mineral nucleation sites. 
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310 Carbonate precipitation can lead to mat lithification, a process demonstrated in the rock 

311 record and many contemporary environments (4, 65-67). For the reasons outlined above, calcium, 

312 rather than magnesium, carbonate minerals are the predominant deposits found in natural settings 

313 and throughout the rock record. The formation of magnesite, versus less stable, hydrated Mg-

314 carbonate mineral phases is likely dependant on the optimization of a number of factors, namely: 

315 the efficiency of the biogeochemical process of cation dehydration described above, development 

316 of EPS-hosted microenvironments of high Mg2+ concentration, and alkalinity generation via 

317 microbial metabolism. Hydrated Mg-carbonate minerals, such as hydromagnesite, typically 

318 dominate known Mg-carbonate deposits because the magnesium ions need not be completely 

319 dehydrated (61, 68), thus making the successful demonstration of low temperature, microbially-

320 aided magnesite precipitation in the present study noteworthy. 

321 4.2 Microbial activity and fluid composition

322 Some of the CO2 used in carbonate precipitation may have been generated by heterotrophic 

323 oxidation of photosynthetically-derived organic compounds, and contributed to DIC by producing 

324 dissolved CO2 or HCO3
- (12, 69). Organic matter in microbial mat systems is largely derived from 

325 atmospheric carbon fixed by phototrophs, which can be oxidized by heterotrophs, providing an 

326 indirect pathway for transferring atmospheric CO2 into water (12). Heterotrophic activity, 

327 therefore, may have been partially responsible for the patterns observed in the DIC, a possibility 

328 supported by the depletion in 13CDIC (70). Phototrophic metabolism preferentially removes 12CDIC 

329 thereby enriching the remaining DIC pool in 13C while decreasing DIC concentrations (71). 

330 Carbonate precipitation may decrease both DIC concentration and δ13CDIC values (25). However, 

331 for the majority of the bioreactor length, δ13CDIC values and DIC generally co-vary, likely due to 

332 dissolution of atmospheric CO2, as this will increase both DIC and δ13C values. Progressive 
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333 increases in δ2H and δ18O from -27.3‰ and -0.3‰ to -14.9‰ and 2.4‰, respectively, can be 

334 attributed to evaporation along the length of the bioreactor (Table 2) (72). 

335 Saturation indices cannot be used as strict indicators of Mg-carbonate precipitation, given 

336 kinetic limitations to precipitation; however, the following interpretations regarding the 

337 relationship between fluid composition, SI, and mineral precipitation can be made (13). The 

338 changes in magnesium concentration indicated that the greatest carbonation rate was achieved 

339 from day 60 - 67 and carbonate precipitation was pervasive throughout the bioreactor. The low 

340 hydromagnesite SI values calculated for day 67 are consistent with rapid mineral precipitation and 

341 may be responsible for the observed cyanobacteria entombment. The pH and DO measurements 

342 from days 60 and 67 suggest that this mineralization caused a decline in photosynthesis, with the 

343 system average pH value decreasing from 9.59 to 6.21, and system average DO from 21.0 mg/L 

344 to 17.4 mg/L (SI Table S5). Addition of 5000 ppm magnesium at a rate of 5 L/day was likely 

345 approaching the limit of the bioreactor’s ability to consume magnesium; therefore, reducing the 

346 flow rate or the magnesium concentration would be necessary for long-term maintenance of the 

347 biogeochemical conditions required for carbonation. 

348 The pellicle likely limited gas exchange between the atmosphere and bioreactor water, as 

349 well as photosynthesis in the submerged microbial mats. Reduced photosynthesis plus 

350 heterotrophic consumption of oxygen resulted in a suboxic environment that potentially stimulated 

351 sulfate reducing-bacteria (SRB) activity, organisms previously found in the anoxic sediments used 

352 to line the bottom of the bioreactor (37). These organisms use sulfate (SO4
2-) as a terminal electron 

353 acceptor to oxidize organic compounds, producing hydrogen sulfide (H2S) (73, 74), which can 

354 consume oxygen, support anoxygenic photosynthesis, and/or be toxic to cyanobacteria (75-77). 

355 The metabolic activity of SRBs would have increased as DO decreased, especially at night (75). 
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356 While SRBs can enable carbonate precipitation by driving the water chemistry conditions towards 

357 carbonate supersaturation and generating EPS (4, 5), the toxicity of H2S towards cyanobacteria 

358 was likely detrimental to the overall bioreactor function (78). Thus, the pellicle formation 

359 demonstrates the need to regulate nutrient input, microbial growth, and carbonate precipitation, 

360 such that biofilm formation does not outpace the bioreactor’s capabilities. 

361 The elevated concentration of nitrite during the initial 21 days of the experiment (Figure 

362 5I) is consistent with nitrate consumption by denitrifying bacteria in anaerobic biofilms (79), 

363 which would be enabled by the low DO conditions caused by the pellicle. Nitrite is part of active 

364 nitrogen fixation-nitrification-denitrification reaction pathway common in cyanobacteria-

365 dominated microbial mats. The nitrite depletion that occurred following the removal of the pellicle 

366 and corresponding reoxygenation of the water suggests that anaerobic denitrification was the 

367 source of the nitrite (80). The disappearance of nitrite after day 21, corresponding to the loss of 

368 the pellicle and re-oxygenation of the bioreactor suggests that denitrification was the source of the 

369 nitrite. 

370 4.3 Quantifying mineral precipitation rate and application to carbon sequestration

371 This study demonstrated that atmospheric CO2 can be sequestered via microbial 

372 carbonation in an engineered system, which is important because dissolution of atmospheric CO2 

373 into water is typically the rate-limiting step in mineral carbonation experiments and in mine 

374 tailings (14, 25). The water chemistry data, flow rate, and microbial mat surface area were used to 

375 calculate mineral precipitation and carbon storage rates. Carbon storage in biomass is considered 

376 in addition to storage in mineral phases; as its presence was minimal, aragonite was excluded from 

377 the storage calculation. See SI for details regarding how struvite precipitation was accounted for 

378 in the biomass calculation. 
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379 The first week (day 0-7; inflow: 1 L/day) of the experiment exhibited the highest proportion 

380 of magnesium removed (98%); however, the greatest mass of carbonate precipitated occurred 

381 during the final week of the experiment (day 60-67; inflow: 5 L/day) with 73% of the added 

382 magnesium being used for carbonate precipitation. During the final week, 5.05 mol or ~123 g of 

383 Mg was used to produce carbonate minerals. A carbon sequestration rate can be calculated for each 

384 of hydromagnesite and magnesite, providing a range for mineral carbonation. It was calculated 

385 that 472 g of hydromagnesite or 426 g of magnesite could have formed in the bioreactor during 

386 the final week. Extrapolating this process to the scale of a microbial carbonation wetland at a mine 

387 tailings storage facility, these values translate to combined biomass and mineralogical carbon 

388 storage rates of 222 and 238 t of CO2/ha of wetland/year for hydromagnesite and magnesite, 

389 respectively. The hydration of hydromagnesite results in a slightly greater precipitate mass when 

390 compared to magnesite, but makes it slightly less efficient in terms of carbon stored per magnesium 

391 atom. 

392 The undersaturation of the bioreactor water with respect to atmospheric CO2 suggests that 

393 sequestration rates could be increased by providing additional carbon. Harrison et al. (14) 

394 demonstrated that supplying gas containing 10% CO2, similar to power plant flue gas, causes a 

395 240-fold increase in the rate of Mg-carbonate mineral precipitation in brucite [Mg(OH)2]-bearing 

396 slurries. Limited availability of water in dry tailings can also inhibit hydrated magnesium 

397 carbonate mineral precipitation (81). An in situ microbial mineral carbonation experiment by 

398 McCutcheon et al. (82) demonstrated the challenge of water limitation, in which a microbial 

399 inoculum, cultured from biofilms naturally occurring at the mine site, was added to chrysotile mine 

400 tailings for the purpose of producing a Mg-carbonate crust. Those results indicated that 

401 constructing microbial carbonation wetlands, similar to the one implemented in the present study, 
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402 is likely the best strategy for integrating microbial carbonation technology for industrial carbon 

403 sequestration at tailing storage facilities (82). A potential deployment strategy would include the 

404 production Mg-rich fluids via large-scale leaching of mafic or ultramafic mine tailings, which 

405 would act as a feedstock for carbonation wetlands that could be constructed in the open pits 

406 remaining from mining activity (82). Carbonate mineral precipitation in the wetlands could utilize 

407 atmospheric CO2, while simultaneously sequestering first row transition metals that may be 

408 released from the tailings during acid leaching, thus reducing the risk of toxic metal contamination 

409 of the surrounding environment (83, 84). Similar to the wetland near Atlin, which hosts sulfate 

410 reducing bacteria in the underlaying anoxic sediments, any sulfate accumulating in the system 

411 could be consumed through iron sulphide mineral generation by SRBs (37).  

412 Microbial mat lithification would occur as a more laterally extensive variation of the 

413 cementation observed in naturally occurring stromatolites, exhibiting progressive growth and 

414 cementation over time. The mats would grow upwards as lithification progresses, maintaining an 

415 active layer of microbial mat into which the ion-rich leach solution can infiltrate, thereby receiving 

416 the reactants required for carbonate precipitation. Through this process, the pit would gradually 

417 become infilled with the resulting precipitates, forming a carbonate deposit. The stability of the 

418 deposit should be monitored in order to ensure safe mine site reclamation.  

419 As a measure of scale for the deployment of this carbon sequestration strategy, applying 

420 this technology to the Mount Keith Nickel Mine (Western Australia) would require a 1900 ha 

421 bioreactor, a size comparable to the existing tailings facility. Such a wetland could sequester 422 

422 000 to 450 000 t of CO2/year, which is ~10% of the estimated 4 Mt CO2/year sequestration capacity 

423 of the Mount Keith tailings facility (85). The remaining capacity could be satisfied using other 

424 acceleration strategies, such as flue gas injection (14). In 2004, the Mount Keith Mine emitted 
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425 ~382 000 t of CO2 equivalent, demonstrating that the proposed carbon storage strategy is capable 

426 of sequestering mine-scale quantities of CO2 (12). With the correct balance of nutrients, e.g., the 

427 limiting phosphate concentrations encountered in this study (Fig. 5), microbial growth and mine 

428 wastewater input, the carbonate precipitation rate could be increased. If successful, this technology 

429 could fulfil a portion of the ~175 Mt CO2/year total carbon sequestration capacity estimated for 

430 the ~419 Mt of mafic and ultramafic tailings that are generated worldwide each year (86, 87). 

431 The lack of a global carbon price is a fundamental limiting condition for the development 

432 of mineral carbonation strategies beyond laboratory demonstrations for large-scale industrial 

433 implementation (86), however, estimates by the High-Level Commission on Global Carbon Prices 

434 indicate that meeting the temperature target of the Paris Agreement will necessitate carbon prices 

435 of $50-100 USD/t CO2 by 2030 (88). At a conservative price of $50 USD/t, economic valuation 

436 of microbial carbonation of nickel mine tailings, considering past production and reserve ore at 

437 major ultramafic nickel mine sites worldwide (excluding other ultramafic mine tailings), puts the 

438 prospective worth of this microbial carbon storage technology at $20.5 billion USD (89, 90). Such 

439 a valuation is encouraging, as it will be necessary for many countries to increase their carbon price 

440 to achieve their emission reduction targets (88). For instance, the fuel levy rates currently 

441 implemented in Canada as part of the federal carbon pricing backstop equate to $10 CAD/t 

442 CO2(equivalent) for 2018, and are due to increase by $10 CAD/year until a price of $50 CAD/t 

443 CO2(equivalent) is reached in 2022 (91). Meeting the International Energy Agency (IEA) ‘2°C 

444 Scenario’ may result in global marginal abatement costs reaching $130-160 USD/t CO2 by 2050 

445 (88, 92), providing incentive for pursuing cost-effective implementation of various mineral 

446 carbonation technologies. Additional value could be gained during the implementation of 
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447 microbial carbonation wetland bioreactors by integrating the biomass component of this carbon 

448 sequestration method with biofuel production technologies (93, 94). 

449
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