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The concept of the Earth’s Critical Zone (CZ), the near-surface heterogeneous environment 

of our planet, was originally defined to include the land surface, vegetation canopy, rivers, lakes, 

and shallow seas [1]. CZ accommodates interactions among air, water, soil, rock, and living 

organisms and determines the availability of life-sustaining resources needed for the well-being 

and sustainability of human society. Therefore, there are new opportunities for integrative studies 

of the CZ as a key research frontier [1, 2] to address the grand challenges of global sustainability 

in the 21st century [3]. 

In CZ research, attention is given to processes operating from the vegetation canopy to rock 

in the vertical dimension. Studies of CZ structure, processes, functions and evolution provide the 

core scientific themes in contemporary CZ science [e.g., 4-7]. Consequently, natural laboratories 

and field-based observations with integrated modeling were advocated at the outset as key 

methodological tools for addressing these themes, along with multidisciplinary collaborations, 

particularly across local to regional scales [1, 8]. 

To date, progress in CZ science has strengthened our understanding of the responses of the 

near-surface processes to climatic and human perturbations. This has been underpinned by the 

establishment of CZ observatories and their networks [9]. Monitoring-based research activities 

have grown significantly due to the development and operation of the observatories. Therefore, 

most of their findings are restricted to local scales on structures, processes, and their interactions. 

A more comprehensive picture of CZ structures, processes and functions at watershed, regional 

and global scales can be derived by establishing networks of CZ observatories that facilitate 

statistical inference [10]. To aid such an expansion, some studies have investigated the spatial 

heterogeneity of key CZ characteristics in large watersheds and across regional scales through the 
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analysis of long distance transect survey data or of regionally-distributed watersheds of different 

sizes along environmental gradients [11-13]. At the global scale, CZ thickness and its controlling 

factors have been quantified by combining climate, vegetation height, water table depth, 

groundwater thickness, topography, and lithological data [14]. Nevertheless, a comprehensive 

typology of CZs at regional scales is still lacking and there has been insufficient development of a 

classification methodology to do this [15]. Such a CZ classification could provide a cornerstone 

for the cost-effective prioritization and planning of CZ observatories and in doing so, advance CZ 

science.  

To address this research gap, we provide an operational framework for classifying CZ types 

at the regional scale (Fig. 1). According to the underpinning concepts of CZs, a CZ can be 

characterized by its geological, biological, ecological, and atmospheric features and human and 

socioeconomic factors. In our framework, we use the term ‘geodiversity’ to refer to the structural 

diversity of CZs within a specific geographic region. It can be quantified by geological, 

geomorphological, soil, hydrological, and topographical properties of the CZ [16-18]. Climate 

operates as a driver that modifies not only Earth surface conditions but also the distributions of 

biota [16, 18]. Therefore, we considered geodiversity, ecosystems, and climate as the three key 

features of CZ. However, humans have exerted huge impacts on CZs through demands for food, 

materials, and living spaces. Hence, we also included human and socioeconomic factors as 

anthropogenic driving forces of CZ change.  

REGIONAL CRITICAL ZONE CLASSIFICATION 

The CLP is the largest and deepest loess deposit area in the world and is the most successful 

ecological restoration zone in China (Supplementary Fig. S1-Fig. S3). In our operational 
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framework, 24 CZ indicators were obtained from spatial datasets and used to classify the CLP 

(Supplementary Fig. S7-Fig. S10). This was achieved by transforming the 24 indicator variables 

through a principal components analysis (PCA), and using the PC scores from first six PCs as 

input into a clustering algorithm (details for indicators and methods can be found in 

Supplementary data). 

The resulted eight CZ classes was optimal determined by evaluating the within-group sum of 

squares (low values) and pseudo F-statistics (high values) of different numbers of clusters 

(Supplementary Fig. S12 and Fig. S13). The distribution and percentage of each CZ class is 

mapped in Fig. 2 and plotted in Supplementary Fig. S14. A nomenclature was applied to the eight 

classes with the principal aim of reflecting the geographic characteristics of the class, its 

vegetation as well as auxiliary factors, such as soil and climate. The characteristics and 

heterogeneity of the eight CZ classes in terms of their geodiversity, terrain, climate, energy, 

vegetation, soil properties, and human and socioeconomic indicators are shown using error-bar 

plots (Supplementary Fig. S15-Fig. S20).  

There are clear differences between the eight CZ categories in their typical positions in the 

indicator feature space used for the classification. Class I is termed ‘mountainous forest’ CZ and is 

found in 13.11% of CLP with trees and shrubs accounting for 49.92% and 31.29% of the area, 

respectively. Class II  is termed the ‘floodplain agricultural’ CZ. It accounts for 9.75% of the CLP 

with cropland covering over 60% of its area, the highest of the eight CZ classes. Class III  is 

termed the ‘loess hill-gully agriculture and grassland’ CZ covering 22.51% of the CLP with a 

mean cropland and grassland coverage of 43.92% and 43.20%, respectively. Class IV is termed 

the ‘loess hill-gully agriculture-grassland-woodland transition’ CZ with agriculture having a mean 
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percentage cover of 34.78%, grassland having a mean percentage cover of 38.96% and woodland 

having a mean percentage cover of 23.95% (second in percentage cover in the CLP). Class III and 

Class IV CZs  are typical of a loess region, with higher GIs than the other six CZ classes 

(Supplementary Fig. S3 and Fig. S15). In addition, these two CZ classes represent the most 

significant vegetation recovery regions in China after the implementation of the national 

government’s sloping cropland re-vegetation program known as “Grain for Green” in 1999 [19]. 

Class V is the smallest CZ class and is termed the ‘urbanizing’ CZ (accounting for 0.78% of 

the CLP). This class had the highest GDP and population density at 13470.95 104 yuan/km2 and 

4917.17 Individuals/km2, respectively. The spatial distribution of the ‘urbanizing’ CZ class is 

relatively patchy and spatially interacts with all other CZ classes (Fig. 2). Class VI is termed the 

‘dry gentle hilly grassland and agriculture’ CZ with mean grassland and cropland coverage of 

50.15% and 24.80%, respectively. Class VII is termed the ‘highland shrubby grassland’ CZ with 

mean grass and shrub coverage of 42.75% and 28.88%, respectively. The final class, class VIII is 

termed the ‘gentle hilly sandy desert-grassland’ CZ with a grassland percentage coverage of 

54.74%, but with 15.03% of the region reclaimed as cropland.  

The above CZ classification is an integrative one that incorporates multiple indicators, which 

themselves are representative of key biophysical properties, socioeconomic characteristics, land 

surface conditions and deep geological features (depth of loess soil and rocks). This is novel and 

unlike many ecological- or physical geography-based regionalization studies [20-22]. However, 

the framework and its indicators were not exhaustive and can be adapted according to the 

situations of other regions.  
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THE IMPORTANCE OF CAPTURING SPATIAL HETEROGENEITIES 

CZ science is in its second decade of development [15]. There are still challenges associated 

with further advancement associated with the highly dynamic and heterogeneous nature of CZs, 

which require interdisciplinary and integrated approaches [10]. One of the toughest challenges 

involves deep-coupling research, which seeks to link across different spatiotemporal scales, across 

different CZ components and their interactions. In order to address this challenge, there is a need 

to build a network of CZ observatories that traverse the regional CZ types and to do this in a 

scientifically informed and cost-effective manner.  

Characterizing the spatial variation in regional CZs can provide insight for the prioritization 

and systematic planning of CZ observatories. There are always trade-offs between the number of 

field-based observatories and measurement detail. For example, a site-scale CZ observatory in the 

USA (the Susquehanna Shale Hills Critical Zone Observatory) has been enlarged from its original 

0.08 km2 catchment to a 164 km2 watershed to accommodate the wider spatial processes, 

including lithologies and land uses [10]. However, most field-based studies have avoided taking a 

“everything and everywhere” measurement philosophy and instead have focused on measuring 

only those features necessary to study the local CZ as a holistic Earth surface system. Therefore, 

the problem of determining how many field-based observatories are needed and deciding on the 

scope and detail of relevant measurements have been barriers for the advancement of CZ science, 

especially from data acquisition and methodological development perspectives at regional scales. 

To address these problems, the regional geographical classification of CZ systems can be 

used to inform the design of sampling frameworks to cover different types of CZs with certain 

spatial configurations specific to different regional contexts. At least one formal CZ observatory is 
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needed for each CZ class and a common biophysical-based measurement scheme is required. This 

should be formulated to characterize key entities, including atmosphere, water, biota, regolith, and 

land surface [10, 23] and their interactions across all CZ observatories in a given region. Optional 

measurements in the human dimension that are relevant to each CZ class can be used to provide 

information about the socioeconomic services supported by CZs [24, 25].  

The results of this study (Fig. 2) exemplifies the potential for trade-offs in prioritization and 

systematic planning of CZ observatories and measurements. To date, a series of field-based 

observatories have been established in the CLP region by different organizations, such as the 

Chinese FLUX Observation and Research Network (ChinaFLUX), the Chinese Ecosystem 

Research Network (CERN), and soil and water conservation stations (SWCSs) (Fig. 2). Most of 

these observatories are characterized by the dominant ecosystem types or Earth surface processes. 

To establish a network of CZ observatories in the CLP region, a practical and effective approach 

would be to update and adapt existing observatories according to the requirements of integrated 

CZ science [4, 5, 9, 10, 24], and then to bridge any gaps by establishing new observatories in CZ 

classes lacking observatories. In this manner, a cost-efficient regional CZ observatory network can 

be planned and established in the CLP. From this study’s results, the CZ classes I, II , V, and VII 

are under-represented in the existing observatory network (Fig. 2) and should be prioritized in 

future CZ observatory planning and construction. This approach for developing functioning CZ 

observatory networks is adaptable to other regions and at continental and global scales [26].  

Besides improving CZ observations, recognizing the regional variation of CZs can result in 

improved understanding and modeling of horizontal CZ interactions. In an interconnected and 

increasingly globalizing world, the scientific investigation of CZs should not be confined only to 
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few specific locations or to very local scales, as observed CZ changes at one location can result from 

changes in the CZs elsewhere. CZ drivers and impacts over geographical distances have recently 

been recognized as `telecoupling` in ecological and environmental research [26-28]. The CZ is 

intrinsically affected by local couplings and telecouplings from both biophysical and 

socioeconomic respects. The categorization of regional CZs provides a spatially-explicit framework 

for considering such couplings as well as supporting hypothesis testing and model development 

[29].  

In the CLP region, the ‘urbanizing’ CZs (Class V) intersect with all the other CZ classes (Fig. 

2). There are close links in environmental impacts and flows of materials and ecosystem services 

among urban and other CZs [30, 31]. Similarly, investigation of the trans-boundary processes and 

services of CZ classes I and VII (Fig. 2), predominantly in the highlands and mountainous areas, 

would advance understanding of the functional links (e.g. hydrological links) between CZs and 

support regional conservation (e.g. soil and habitat conservation) and development planning. In 

summary, regional-scale, integrative understandings of the spatial interactions among different 

types of CZs on processes, functions and services are key for the advancement of CZ science as a 

core interdisciplinary and trans-disciplinary research field for targeting and underpinning 

environmental sustainability [24].  
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Fig. 1. The operational framework for classifying the types of CZs at the regional scale. 

 

 

Fig. 2. The types of CZs and field observation stations of the CLP region. ChinaFLUX: Chinese 

FLUX Observation and Research Network, CERN: Chinese Ecosystem Research Network, 

CTERN: Chinese Terrestrial Ecosystem Research Network, and SWCSs: soil and water 

conservation stations. 
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