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Abstract

In many practical situations concerned with high temperatures/pressures/loads and/or hostile
environments, certain properties of the physical medium, geometry, boundary and/or initial con-
ditions are not known and their direct measurement can be very inaccurate or even inaccessible. In
such situations, one can adopt an inverse approach and try to infer the unknowns from some extra
accessible measurements of other quantities that may be available. However, the simultaneous
identification of several non-constant physical properties along with initial and/or boundary con-
ditions is very challenging, especially when it cannot be decoupled, as it combines both nonlinear
as well as ill-posedness features. One such new inverse problem concerning the identification of the
space-dependent reaction coefficient, the initial temperature and the source term from measured
temperatures at two instants t1, t2 and at the final time T , where 0 < t1 < t2 < T , is investigated
in this paper. Insight into the uniqueness of solution is gained by considering various particular
cases. Moreover, as in practice the input temperature data are usually noise polluted due to the
errors that are inherently present, their influence on the solution of inversion has to be assessed. As
such, the least-squares objective functional modelling the gap between the measured and computed
data is minimized to obtain the quasi-solution to the inverse problem, and the Fréchet gradients
are obtained. The conjugate gradient method (CGM) with the Fletcher-Reeves formula is applied
to estimate the three unknown coefficients numerically. Numerical examples are illustrated to
show that accurate and stable numerical solutions are obtained using the CGM regularized by the
discrepancy principle.

Keywords: inverse problem; parabolic equation; conjugated gradient method; initial
temperature; reaction coefficient; heat source

1. Introduction

The complex modelling of heat transfer process involves solving a wide range of inverse prob-
lems concerned with the identification of physical properties and heat transfer coefficients, internal
sources, boundary and/or initial conditions [1]. Most of previous studies on inverse problems con-
cerned determining a single unknown physical quantity. For instance, the nonlinear identification
of the space-dependent reaction coefficient from final temperature observation was theoretically
investigated in [2, 3, 4, 5], and numerically reconstructed using many numerical algorithms, such
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as the Armijo algorithm combined with the finite element method (FEM) [6], or the CGM with the
finite-difference method (FDM) [7]. The linear identification of the space-dependent source term
from temperature measurements at the final time was also widely studied, e.g., [8, 9, 10]. Finally,
the backward heat conduction problem (BHCP) for the reconstruction of the initial temperature
from measured temperature at a later time was extensively studied, e.g., using the CGM [11, 12],
the boundary element method (BEM) with regularization [13], the BEM combined with an elliptic
approximation [14], the Fourier regularization method [15], and the self-adaptive Lie-group method
[16].

In [17, 18], the space-dependent reaction coefficient and the initial temperature were simul-
taneous identified from the final observation of temperature and the measured temperature in
ω × (0, T ), where ω is a subregion of the space domain Ω. Also, in [19], the space-dependent heat
source and the initial temperature were identified from temperature measurements of two distinct
instants.

In this paper, the simultaneous reconstruction of the spatially-distributed reaction coefficient,
the initial temperature, the heat source, and the temperature throughout the solution domain from
temperature measurements at three different instants, is investigated for the first time. The least-
squares objective functional, whose minimizer is proven to exist, is minimized to obtain a quasi-
solution to the inverse problem. A variational method is applied to derive the Fréchet gradients
subject to the three unknown coefficients together with the adjoint and sensitivity problems. The
CGM [11, 20], which is established from the gradients, and the adjoint and sensitivity problems,
are utilized to simultaneously reconstruct the three unknown functions. Furthermore, since the
inverse problem is ill-posed, the CGM is regularized by the discrepancy principle [11] to obtain
stable numerical results.

This paper is organized as follows: Section 2 presents the inverse problem to reconstruct the
unknown space-dependent reaction coefficient, initial temperature and source term. The least-
squares objective functional to be minimized is described having several properties in Section 3.
The CGM is established in Section 4 based on the gradients of the objective functional, and the ad-
joint and sensitivity problems, and the global convergence for the CGM algorithm is obtained. Two
numerical examples for the one-dimensional inverse problem are discussed in Section 5. Finally,
Section 6 highlights the conclusions of this work.

2. Mathematical formulation and analysis

In the cylinder Q := Ω × (0, T ), where Ω ⊂ R
N , (N = 1, 2, 3), is a bounded domain with a

sufficient smooth boundary ∂Ω, and T > 0 is a final time of interest, consider the heat transfer
process governed by the parabolic equation

∂u

∂t
(x, t) = ∇ · (k(x)∇u(x, t))− q(x)u(x, t) + F (x, t), (x, t) ∈ Q, (1)

where u(x, t) is the temperature, k is the thermal conductivity, q(x) ≥ 0 is the space-dependent
reaction (radiative [17], perfusion [7], heat transfer) coefficient, F (x, t) is the heat source term,
and for simplicity the heat capacity has been taken to be unity. For the boundary condition we
assume that this of Robin convection type

k(x)
∂u

∂ν
(x, t) + α(x)u(x, t) = µ(x, t), (x, t) ∈ S := ∂Ω× (0, T ), (2)
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where ν is the outward unit normal to the boundary ∂Ω, µ is a given heat flux function and
α(x) ≥ 0 is the surface heat transfer coefficient. Condition (2) becomes the Neumann heat flux
boundary condition when α(x) ≡ 0.

At the initial time t = 0,
u(x, 0) = φ(x), x ∈ Ω, (3)

denotes the initial temperature.
The space L2(Ω) consists of all square-integrable functions v(x) over Ω, endowed with the norm

‖v‖L2(Ω) =

(
∫

Ω

|v(x)|2dx
)1/2

.

The space L∞(Ω) comprises all essentially bounded functions v(x) in Ω, equipped with the norm

‖v‖L∞(Ω) = ess sup
x∈Ω

|v(x)| := inf{M ≥ 0 : |v(x)| ≤M, a.e. x ∈ Ω}.

The spaces L2(Q) and L∞(Q) can be defined similarly. We denote by H1,0(Q) the normed space
of all functions u(x, t) ∈ L2(Q) having weak first-order derivatives with respect to x in L2(Q),
endowed with the norm

‖u‖H1,0(Q) =
(

‖u‖2L2(Q) + ‖∇u‖2L2(Q)

)1/2
.

In the literature the space H1,0(Q) coincides with the space L2(0, T ;H
1(Ω)) and with the

Sobolev space W 1,0
2 (Q), ([21], p.138).

The spaceH1,1(Q), defined byH1,1(Q) =
{

u ∈ L2(Q) :
∂u
∂t

and ∇u ∈ L2(Q)
}

, is a normed space
with

‖u‖H1,1(Q) =
(

‖u‖2L2(Q) + ‖∇u‖2L2(Q) + ‖ut‖2L2(Q)

)1/2
,

where the gradient ∇ is with respect to x.
Throughout this work, we assume that the operator L := ∂

∂t
− ∇ · (k∇) + qI, where I is the

identical operator, is assumed to be uniformly parabolic, i.e., the matrix (kij)i,j=1,N is positive
definite, namely,

υ1|ξ|2 ≤
N
∑

i,j=1

kij(x)ξiξj ≤ υ2|ξ|2, a.e. x ∈ Ω, ∀ξ = (ξi)i=1,N ∈ R
N , (4)

for some given positive constants υ1 and υ2.

Definition 1. A function u ∈ H1,0(Q) is called as a weak solution to the initial-boundary value

direct problem (1)–(3) if

∫

Q

(

−u∂η
∂t

+ k∇u · ∇η + quη

)

dxdt+

∫

S

αuηdsdt

=

∫

Q

Fηdxdt+

∫

S

µηdsdt+

∫

Ω

φη(·, 0)dx, ∀η ∈ H1,1(Q) with η(·, T ) = 0. (5)

The existence and uniqueness of the weak solution to the initial-boundary value direct problem
(1)–(3) is stated in the following theorem ([21], p.373).
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Theorem 1. Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary ∂Ω, and suppose that the

matrix k = (kij)i,j=1,N is symmetric and positive definite, i.e., kij = kji ∈ L∞(Ω) and satisfy (4),
q ∈ L∞(Ω), F ∈ L2(Q), α ∈ L∞(∂Ω), µ ∈ L2(S) and φ ∈ L2(Ω). Then the initial-boundary value

direct problem (1)–(3) has a unique weak solution u ∈ H1,0(Q). In addition, the solution satisfies

the estimate

max
t∈[0,T ]

‖u(·, t)‖L2(Ω) + ‖u‖H1,0(Q) ≤ c
(

‖F‖L2(Q) + ‖µ‖L2(S) + ‖φ‖L2(Ω)

)

(6)

for some positive constant c(k, q, α) which is independent of F , µ and φ.

For the inverse problem with an unknown heat source we suppose that the source term F (x, t)
has the form F (x, t) = f(x)h(x, t) + g(x, t), such that (1) becomes

∂u

∂t
(x, t) = ∇ · (k(x)∇u(x, t))− q(x)u(x, t) + f(x)h(x, t) + g(x, t), (x, t) ∈ Q, (7)

where h ∈ L∞(Q), g ∈ L2(Q) are given functions and f ∈ L2(Ω) is an unknown component of the
heat source F . Then, the inverse problem is to reconstruct (q(x), φ(x), f(x), u(x, t)) ∈ L+

∞(Ω) ×
L2(Ω) × L2(Ω) × H1,0(Q) satisfying (2) and (7) together with the temperature measurements at
two time instants t1, t2, 0 < t1 < t2 < T and the final time T , namely,

u(x, t1) = φ1(x), x ∈ Ω, (8)

u(x, t2) = φ2(x), x ∈ Ω, (9)

u(x, T ) = φT (x), x ∈ Ω, (10)

where φ1(x), φ2(x) and φT (x) are given data in L2(Ω) which may be subject to noise due to
measurement errors satisfying

‖φǫ1 − φ1‖L2(Ω) ≤ ǫ, ‖φǫ2 − φ2‖L2(Ω) ≤ ǫ, ‖φǫT − φT‖L2(Ω) ≤ ǫ, (11)

where ǫ ≥ 0 represents the noise level.

2.1. Discussion on the uniqueness of solution

Clearly, the initial temperature (3) can be uniquely retrieved by solving the BHCP in the
layer Ω × (0, t1], if it would be the possible to establish separately the uniqueness for the triplet
(q(x), f(x), u(x, t)) satisfying (2), (7)–(10) in the upper layer Ω× [t1, T ], which includes the inter-
mediate temperature measurement (9) at t = t2 ∈ (t1, T ). However, the uniqueness of solution
of this latter, combined multiple coefficient nonlinear problem is more difficult, as described next.
Ignoring for time being the regularity of the data and solution, let us proceed formally by first
differentiating (2) and (7) with respect to t to obtain

∂v

∂t
(x, t) = ∇ · (k(x)∇v(x, t))− q(x)v(x, t) + f(x)ht(x, t) + gt(x, t), (x, t) ∈ Q, (12)

k(x)
∂v

∂ν
(x, t) + α(x)v(x, t) = µt(x, t), (x, t) ∈ S, (13)

where v(x, t) := ut(x, t). Conditions (8)–(10) also yield
∫ t2

t1

v(x, t)dt = φ2(x)− φ1(x) =: ψ1(x), x ∈ Ω, (14)

∫ T

t2

v(x, t)dt = φT (x)− φ2(x) =: ψ2(x), x ∈ Ω. (15)
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If h is independent of t, then ht = 0 and the unknown source f eliminates from (12). Then the
resulting inverse problem for determining the reaction coefficient q(x) and the temperature u(x, t)
becomes as given by equations (13)–(15) and

∂v

∂t
(x, t) = ∇ · (k(x)∇v(x, t))− q(x)v(x, t) + gt(x, t), (x, t) ∈ Q, (16)

which has recently been investigated by the authors in [22]. In particular, it is possible to eliminate
q(x) from (16) by integrating it from t1 to t2 and from t2 to T and use (14) and (15) to result
in the following quasi-direct problem for v(x, t) (dropping, for simplicity, the known term gt(x, t)
taken to be zero):















∂v
∂t
(x, t) = ∇ · (k(x)∇v(x, t))− v(x, t)

(

∇·(k(x)∇ψ2(x))−v(x,T )+v(x,t2)
ψ2(x)

)

, (x, t) ∈ Q,

k(x) ∂v
∂ν
(x, t) + α(x)v(x, t) = µt(x, t), (x, t) ∈ S,

v(x, t2)− v(x, t1) = ∇ · (k(x)∇ψ1(x))− ψ1(x)
(

∇·(k(x)∇ψ2(x))−v(x,T )+v(x,t2)
ψ2(x)

)

, x ∈ Ω.

(17)

Problems of this type (17) were previously mentioned in [23] and considered in [24], but afterwards
they have been somewhat overlooked in the literature.

In conclusion, the analysis of uniqueness of solution is still pending and subject to ongoing
investigation, but nevertheless, it is still possible to develop a variational formulation for obtaining
a quasi-solution, as described in the next section.

3. Variational formulation

Let u(q, φ, f) := u(x, t; q, φ, f) ∈ H1,0(Q) denote the solution to the initial-boundary value
direct problem (1)–(3) for a particular triplet (q(x), φ(x), f(x)) ∈ L∞(Ω) × L2(Ω) × L2(Ω). The
quasi-solution of the inverse problem (2), (7)–(10) can be attained by minimizing the following
least-squares objective functional

J(q, φ, f) =
1

2

{

‖u1 − φǫ1‖2L2(Ω) + ‖u2 − φǫ2‖2L2(Ω) + ‖uT − φǫT‖2L2(Ω)

}

, (18)

where u1(x) = u(x, t1; q, φ, f), u2(x) = u(x, t2; q, φ, f) and uT (x) = u(x, T ; q, φ, f).
Let us define the sets

A1 = {q ∈ L∞(Ω) : 0 ≤ q(x) ≤ κ1, a.e. x ∈ Ω},

A2 = {φ ∈ L2(Ω) : |φ(x)| ≤ κ2, a.e. x ∈ Ω}
and

A3 = {f ∈ L2(Ω) : |f(x)| ≤ κ3, a.e. x ∈ Ω},
where κ1, κ2 and κ3 are given positive constants. The existence of a minimizer to the optimization
problem (18) over the admissible set A1 ×A2 ×A3 is established in the following theorem based
on the approach utilized in [17, 25].

Theorem 2. There exists at least one minimizer to the optimization problem (18).
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Proof. Based on the estimate (6), it is obvious that min J(q, φ, f) is finite over the admissible set
A1×A2×A3. Thus, there exists a minimizing sequence {qn, φn, fn} from A1×A2×A3 such that

lim
n→∞

J(qn, φn, fn) = inf
q∈A1,φ∈A2,f∈A3

J(q, φ, f).

This implies the boundedness of {qn, φn, fn} in L∞(Ω) × L2(Ω) × L2(Ω), which yields that there
exists a subsequence, still denoted by {qn, φn, fn}, such that qn, φn and fn converge weakly to q∗

in L∞(Ω), φ∗ in L2(Ω), and f
∗ in L2(Ω). Clearly q

∗ ∈ A1, φ
∗ ∈ A2 and f

∗ ∈ A3, since the sets A1,
A2 and A3 are closed and convex. Then, Theorem 1 and the a priori estimate (6) imply that the
sequence {un := u(qn, φn, fn)} exists, is unique and is uniformly bounded in H1,0(Q). Thus, we
can extract a subsequence, still denoted by {un}, and some u∗ ∈ H1,0(Q) such that un → u∗ weakly
in H1,0(Q). Since H1,0(Q)|S is compactly imbedded into L2(S), we obtain that un|S converges to
u∗|S in L2(S), [26].

By Definition 1 and F (x, t) = f(x)h(x, t) + g(x, t), for any η ∈ H1,1(Q) with η(·, T ) = 0, we
have

∫

Q

(

−un∂η
∂t

+ k∇un · ∇η + qnunη

)

dxdt+

∫

S

αunηdsdt

=

∫

Q

fnhηdxdt+

∫

Q

gηdxdt+

∫

S

µηdsdt+

∫

Ω

φnη(·, 0)dx. (19)

The weak convergence of un to u∗ in H1,0(Q) and the convergence of un|S to u∗|S in L2(S) imply
that

lim
n→∞

∫

Q

−un∂η
∂t
dxdt =

∫

Q

−u∗∂η
∂t
dxdt, lim

n→∞

∫

Q

k∇un · ∇ηdxdt =
∫

Q

k∇u∗ · ∇ηdxdt,

lim
n→∞

∫

S

αunηdsdt =

∫

S

αu∗ηdsdt,

and the weak convergence of φn to φ∗ and fn to f ∗ in L2(Ω) implies that

lim
n→∞

∫

Q

fnhηdxdt =

∫

Q

f ∗hηdxdt, lim
n→∞

∫

Ω

φnη(·, 0)dx =

∫

Ω

φ∗η(·, 0)dx.

The third term in the left hand side of (19) can be rewritten as
∫

Q

qnunηdxdt =

∫

Q

q∗unηdxdt+

∫

Q

(qn − q∗)unηdxdt.

Since un weakly converges to u∗ in H1,0(Q), we have limn→∞

∫

Q
q∗unηdxdt =

∫

Q
q∗u∗ηdxdt, and due

to qn weakly converges to q∗ in L∞(Ω), using the estimate (6) for un and the Lebesgue dominant
convergence theorem we obtain that the term

∫

Q
(qn − q∗)unηdxdt converges to zero, and hence

lim
n→∞

∫

Q

qnunηdxdt =

∫

Q

q∗u∗ηdxdt,

and (19) yields
∫

Q

(

−u∗∂η
∂t

+ (k∇u∗) · ∇η + q∗u∗η

)

dxdt+

∫

S

αu∗ηdsdt

=

∫

Q

f ∗hηdxdt+

∫

Q

gηdxdt+

∫

S

µηdsdt+

∫

Ω

φ∗η(·, 0)dx,

6



which means that u∗ = u(q∗, φ∗, f ∗), due to the uniqueness of solution to the initial-boundary value
direct problem (1)–(3) in Theorem 1, with q = q∗, f = f ∗ in (1), and φ = φ∗ in (3), respectively.
The lower semi-continuity of norms implies

J(q∗, φ∗, f ∗) =
1

2

{

‖u∗1 − φǫ1‖2L2(Ω) + ‖u∗2 − φǫ2‖2L2(Ω) + ‖u∗T − φǫT‖2L2(Ω)

}

≤1

2
lim
n→∞

{

‖un1 − φǫ1‖2L2(Ω) + ‖un2 − φǫ2‖2L2(Ω) + ‖unT − φǫT‖2L2(Ω)

}

= lim
n→∞

J(qn, φn, fn) = min
q∈A1,φ∈A2,f∈A3

J(qn, φn, fn),

which indicates that the triplet {q∗, φ∗, f ∗} is a minimizer of the optimization problem (18) over
A1 ×A2 ×A3.

Lemma 1. The mapping (q, φ, f) 7→ u(q, φ, f) from L∞(Ω)×L2(Ω)×L2(Ω) to H
1,0(Q) is Lipschitz

continuous, i.e.,

‖u(q +∆q, φ, f)− u(q, φ, f)‖H1,0(Q) ≤ c‖∆q‖L∞(Ω), (20)

‖u(q, φ+∆φ, f)− u(q, φ, f)‖H1,0(Q) ≤ c‖∆φ‖L2(Ω), (21)

‖u(q, φ, f +∆f)− u(q, φ, f)‖H1,0(Q) ≤ c‖∆f‖L2(Ω), (22)

for any q, q + ∆q ∈ A1, φ, φ + ∆φ ∈ A2 and f, f + ∆f ∈ A3. Moreover, the mapping is Fréchet

differentiable.

Proof. Denote by ∆uq = u(q + ∆q, φ, f) − u(q, φ, f), ∆uφ = u(q, φ + ∆φ, f) − u(q, φ, f) and
∆uf = u(q, φ, f + ∆f) − u(q, φ, f) the increments of the temperature u with respect to q, φ and
f . Then, based on the initial-boundary value problem (2), (3) and (7) they satisfy the following
problems:

{

∂(∆uq)

∂t
= ∇ · (k∇(∆uq))− q∆uq −∆qu(q +∆q, φ, f), (x, t) ∈ Q,

k ∂(∆uq)
∂ν

+ α∆uq = 0, (x, t) ∈ S, ∆uq(x, 0) = 0, x ∈ Ω,
(23)

{

∂(∆uφ)

∂t
= ∇ · (k∇(∆uφ))− q∆uφ, (x, t) ∈ Q,

k
∂(∆uφ)

∂ν
+ α∆uφ = 0, (x, t) ∈ S, ∆uφ(x, 0) = ∆φ, x ∈ Ω,

(24)

and
{

∂(∆uf )

∂t
= ∇ · (k∇(∆uf ))− q∆uf +∆fh, (x, t) ∈ Q,

k
∂(∆uf )

∂ν
+ α∆uf = 0, (x, t) ∈ S, ∆uf (x, 0) = 0, x ∈ Ω,

(25)

Using the a priori estimate (6) to the above problem, we obtain

‖∆uq‖H1,0(Q) ≤ c‖∆qu‖L2(Q) ≤ c‖∆q‖L∞(Ω)‖u‖L2(Q),

‖∆uφ‖H1,0(Q) ≤ c‖∆φ‖L2(Ω),

‖∆uf‖H1,0(Q) ≤ c‖∆fh‖L2(Q) ≤ c‖∆f‖L2(Ω)‖h‖L∞(Q),

which conclude the proof of the first part at the lemma.
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To prove the Fréchet differentiability in the q-component, consider the problem

{

∂v
∂t

= ∇ · (k∇v)− qv −∆qu(q, φ, f), (x, t) ∈ Q,

k ∂v
∂ν

+ αv = 0, (x, t) ∈ S, v(x, 0) = 0, x ∈ Ω,
(26)

where ∆q ∈ L∞(Ω) such that q +∆q ∈ A1. Then, there exists a unique solution v(x, t) ∈ H1,0(Q)
to the initial-boundary value problem (26), and the mapping ∆q 7→ v from L∞(Ω) to H1,0(Q)
defines a bounded linear operator Uq by the a priori estimate (6).

Denote w := u(q + ∆q, φ, f) − u(q, φ, f) − Uq∆q = ∆uq − v, where ∆uq satisfies the problem
(23). Then, w satisfies the problem

{

∂w
∂t

= ∇ · (k∇w)− qw −∆q∆uq, (x, t) ∈ Q,

k ∂w
∂ν

+ αw = 0, (x, t) ∈ S, w(x, 0) = 0, x ∈ Ω.

By applying (6) and (20), we obtain

‖w‖H1,0(Q) ≤ c‖∆q∆uq‖L2(Q) ≤ c‖∆q‖L∞(Ω)‖∆uq‖L2(Q) ≤ c‖∆q‖L∞(Ω)‖∆uq‖H1,0(Q) ≤ c‖∆q‖2L∞(Ω).

This implies that

lim
‖∆q‖L∞(Ω)→0

‖u(q +∆q, φ, f)− u(q, φ, f)− Uq∆q‖H1,0(Q)

‖∆q‖L∞(Ω)

= 0. (27)

which means the differentiability in the q-component.
The differentiability in the φ and f components follows immediately from applying Theorem 1

and the estimate (6) to the initial boundary value problems (24) and (25), which imply that they
have the unique solutions ∆uφ ∈ H1,0(Q) and ∆uf ∈ H1,0(Q) and that the mappings L2(Ω) ∋
∆φ 7→ ∆uφ ∈ H1,0(Q) and L2(Ω) ∋ ∆f 7→ ∆uf ∈ H1,0(Q) define the bounded linear operators
Uφ and Uf , which, by definition, they satisfy Uφ∆φ = ∆uφ = u(q, φ + ∆φ, f) − u(q, φ, f) and
Uf∆f = ∆uf = u(q, φ, f +∆f)− u(q, φ, f), respectively.

The CGM based on the gradient of J(q, φ, f) is applied to obtain the minimizer of the objective
functional numerically. In order to obtain the gradient, we introduce the following adjoint problem:











∂λ
∂t

= −∇ · (k∇λ) + qλ− (u1 − φǫ1)δ(t− t1)

−(u2 − φǫ2)δ(t− t2)− 2(uT − φǫT )δ(t− T ), (x, t) ∈ Q,

k ∂λ
∂ν

+ αλ = 0, (x, t) ∈ S, λ(x, T ) = 0, x ∈ Ω,

(28)

where δ(·) is the Dirac delta function. According to Definition 1, the weak solution λ ∈ H1,0(Q)
of the adjoint problem (28), satisfies the variational equality

∫

Q

(

λ
∂η

∂t
+ k∇λ · ∇η + qλη

)

dxdt+

∫

S

αληdsdt =

∫

Ω

{(u1 − φǫ1)η(x, t1)

+(u2 − φǫ2)η(x, t2) + (uT − φǫT )η(x, T )} dx, ∀η ∈ H1,1(Q) with η(·, 0) = 0. (29)

Lemma 2. Under the assumption of Theorem 1, there exists a constant c > 0, such that

‖λ‖H1,0(Q) ≤ c(‖u1 − φǫ1‖L2(Ω) + ‖u2 − φǫ2‖L2(Ω) + ‖uT − φǫT‖L2(Ω)) ≤ 3cǫ. (30)

8



Proof. Multiplying by λ the first equation in (28) and integrating over Q using the boundary and
initial conditions, we have

1

2
‖λ(·, 0)‖2L2(Ω) +

∫

Q

{

k∇λ · ∇λ+ qλ2
}

dxdt+

∫

S

αλ2dsdt

=

∫

Ω

{(u1 − φǫ1)λ(x, t1) + (u2 − φǫ2)λ(x, t2) + (uT − φǫT )λ(x, T )} dx.

Then, by (4), q(x) ≥ 0 and α(x) ≥ 0, we have

‖λ‖2H1,0(Q)

≤ c(‖u1 − φǫ1‖L2(Ω)‖λ(·, t1)‖L2(Ω) + ‖u2 − φǫ2‖L2(Ω)‖λ(·, t2)‖L2(Ω) + ‖uT − φǫT‖L2(Ω)‖λ(·, T )‖L2(Ω))

≤ c(‖u1 − φǫ1‖L2(Ω) + ‖u2 − φǫ2‖L2(Ω) + ‖uT − φǫT‖L2(Ω))‖λ‖H1,0(Q),

which means that the inequality (30) holds.

Theorem 3. The objective functional J(q, φ, f) is Fréchet differentiable, and the partial derivatives

J ′
q(q, φ, f), J

′
φ(q, φ, f), J

′
f (q, φ, f) are given by

J ′
q(q, φ, f) = −

∫ T

0

u(x, t)λ(x, t)dt, (31)

J ′
φ(q, φ, f) = λ(x, 0), (32)

J ′
f (q, φ, f) =

∫ T

0

λ(x, t)h(x, t)dt. (33)

Proof. Taking ∆q ∈ L∞(Ω) such that q + ∆q ∈ A1, and denoting by ∆Jq = J(q + ∆q, φ, f) −
J(q, φ, f), the increment of the objective functional J(q, φ, f) in the q direction, then equation (18)
yields

∆Jq =

∫

Ω

{∆uq,1(u1 − φǫ1) + ∆uq,2(u2 − φǫ2) + ∆uq,T (uT − φǫT )} dx

+
1

2

{

‖∆uq,1‖2L2(Ω) + ‖∆uq,2‖2L2(Ω) + ‖∆uq,T‖2L2(Ω)

}

,

where ∆uq,1 := ∆uq(x, t1; q, φ, f), ∆uq,2 := ∆uq(x, t2; q, φ, f) and ∆uq,T := ∆uq(x, T ; q, φ, f).
Using the property of the Dirac delta function, the first term of the right hand side in the above
formula can be written as

∫

Ω

{∆uq,1(u1 − φǫ1) + ∆uq,2(u2 − φǫ2) + ∆uq,T (uT − φǫT )} dx

=

∫

Q

∆uq {(u1 − φǫ1)δ(t− t1) + (u2 − φǫ2)δ(t− t2) + 2(uT − φǫT )δ(t− T )} dxdt,

and by the adjoint problem (28), we have

∆Jq =

∫

Q

∆uq

{

−∂λ
∂t

−∇ · (k∇λ) + qλ

}

dx+
1

2

{

‖∆uq,1‖2L2(Ω) + ‖∆uq,2‖2L2(Ω) + ‖∆uq,T‖2L2(Ω)

}

.
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Also, by (23) for ∆uq and integration by parts, we get

∫

Q

∆uq

{

−∂λ
∂t

−∇ · (k∇λ) + qλ

}

dxdt = −
∫

Ω

∆uqλ|T0 dx

+

∫

Q

λ

{

∂(∆uq)

∂t
−∇ · (k∇(∆uq)) + q∆uq

}

dxdt+

∫

S

{

k
∂(∆uq)

∂ν
λ− k

∂λ

∂ν
∆uq

}

dsdt

=−
∫

Q

∆qu(q +∆q, φ, f)λdxdt = −
∫

Q

∆q∆uqλdxdt−
∫

Q

∆quλdxdt.

Thus, the above two equations and the property of the Dirac delta function imply

∆Jq = −
∫

Q

∆q∆uqλdxdt−
∫

Q

∆quλdxdt+
1

2

{

‖∆uq,1‖2L2(Ω) + ‖∆uq,2‖2L2(Ω) + ‖∆uq,T‖2L2(Ω)

}

.

By the same approach for the problems (24) for ∆uφ and (25) for ∆uf , we can obtain

∆Jφ =

∫

Ω

∆φλ(x, 0)dx+
1

2

{

‖∆uφ,1‖2L2(Ω) + ‖∆uφ,2‖2L2(Ω) + ‖∆uφ,T‖2L2(Ω)

}

,

∆Jf =

∫

Q

∆fhλdxdt+
1

2

{

‖∆uf,1‖2L2(Ω) + ‖∆uf,2‖2L2(Ω) + ‖∆uf,T‖2L2(Ω)

}

.

From (6), we can obtain that

max{‖∆uq,1‖2L2(Ω), ‖∆uq,2‖2L2(Ω), ‖∆uq,T‖2L2(Ω)} ≤ max
t∈[0,T ]

‖∆uq(·, t)‖2L2(Ω) ≤ c‖∆q‖2L∞(Ω),

max{‖∆uφ,1‖2L2(Ω), ‖∆uφ,2‖2L2(Ω), ‖∆uφ,T‖2L2(Ω)} ≤ max
t∈[0,T ]

‖∆uφ(·, t)‖2L2(Ω) ≤ c‖∆φ‖2L2(Ω),

max{‖∆uf,1‖2L2(Ω), ‖∆uf,2‖2L2(Ω), ‖∆uf,T‖2L2(Ω)} ≤ max
t∈[0,T ]

‖∆uf (·, t)‖2L2(Ω) ≤ c‖∆f‖2L2(Ω),

and via the estimate (30) and Lemma 1, we get

∣

∣

∣

∣

∫

Q

∆q∆uqλdxdt

∣

∣

∣

∣

≤ ‖∆q‖L∞(Ω)‖λ‖L2(Q)‖∆uq‖L2(Q) ≤ c‖∆q‖2L∞(Ω),

thus

∆Jq = −
∫

Q

∆quλdxdt+ o(‖∆q‖L∞(Ω)), ∆Jφ =

∫

Ω

∆φλ(x, 0)dx+ o(‖∆φ‖L2(Ω)),

∆Jf =

∫

Q

∆fhλdxdt+ o(‖∆f‖L2(Ω)), (34)

which means that the formulae (31)–(33) for the Fréchet derivatives hold. The theorem is proved.

4. Conjugate gradient method

In this section, the CGM will be developed and applied to obtain the numerical solutions for
the reaction coefficient q(x), the initial temperature φ(x) and the source term f(x) to the inverse

10



problem (2), (7)–(10). The following iterative process is used for the estimation of the triplet of
functions (q, φ, f) by minimizing the objective functional (18):

qn+1 = qn + βnq d
n
q , φn+1 = φn + βnφd

n
φ, fn+1 = fn + βnf d

n
f , n = 0, 1, 2, · · · (35)

with the search directions dnq , d
n
φ and dnf given by

dnq =

{

−J ′0
q ,

−J ′n
q + γnq d

n−1
q ,

dnφ =

{

−J ′0
φ ,

−J ′n
φ + γnφd

n−1
φ ,

dnf =

{

−J ′0
f ,

−J ′n
f + γnf d

n−1
f , n = 1, 2, · · ·

(36)

where the subscript n indicates the number of iterations, q0, φ0 and f 0 are the initial guesses for
the three unknown functions, J ′n

q = J ′
q(q

n, φn, fn), J ′n
φ = J ′

φ(q
n, φn, fn), J ′n

f = J ′
f (q

n, φn, fn), βnq ,
βnφ and βnf are the step sizes with respect to q, φ and f in passing from iteration n to the next
iteration n+1. In our work, the Fletcher-Reeves formula [27] is applied for the conjugate gradient
coefficients γnq , γ

n
φ and γnf given by

γnq =
‖J ′n

q ‖2L2(Ω)

‖J ′n−1
q ‖2L2(Ω)

, γnφ =
‖J ′n

φ ‖2L2(Ω)

‖J ′n−1
φ ‖2L2(Ω)

, γnf =
‖J ′n

f ‖2L2(Ω)

‖J ′n−1
f ‖2L2(Ω)

, n = 1, 2, · · · (37)

Denote un1 := u(x, t1; q
n, φn, fn), un2 := u(x, t2; q

n, φn, fn) and unT := u(x, T ; qn, φn, fn), then
the step sizes βnq , β

n
φ and βnf can be found by minimizing

J(qn+1, φn+1, fn+1) =
1

2

∫

Ω

{

(un+1
1 − φǫ1)

2 + (un+1
2 − φǫ2)

2 + (un+1
T − φǫT )

2
}

dx.

Setting ∆qn = dnq , ∆φ
n = dnφ and ∆fn = dnf , the functions un+1

1 , un+1
2 and un+1

T are linearised by
the Taylor series expansion in the following form:

u(x, t; qn + βnq d
n
q , φ

n + βnφd
n
φ, f

n + βnf d
n
f ) ≈ u(x, t; qn, φn, fn)

+ βnq d
n
q

∂u(x, t; qn, φn, fn)

∂qn
+ βnφd

n
φ

∂u(x, t; qn, φn, fn)

∂φn
+ βnf d

n
f

∂u(x, t; qn, φn, fn)

∂fn

≈ u(x, t; qn, φn, fn) + βnq∆uq(x, t; q
n, φn, fn) + βnφ∆uφ(x, t; q

n, φn, fn) + βnf∆uf (x, t; q
n, φn, fn)

where t represents t1, t2 and T . Denote ∆u
n
q,1 = ∆uq(x, t1; q

n, φn, fn), ∆unq,2 = ∆uq(x, t2; q
n, φn, fn)

and ∆unq,T = ∆uq(x, T ; q
n, φn, fn), and ∆unφ,1, ∆u

n
φ,2, ∆u

n
φ,T , ∆u

n
f,1, ∆u

n
f,2 and ∆unf,T can be defined

in the same way. We have

J(qn+1, φn+1, fn+1) =
1

2

∫

Ω

(

un1 + βnq∆u
n
q,1 + βnφ∆u

n
φ,1 + βnf∆u

n
f,1 − φǫ1

)2
dx

+
1

2

∫

Ω

(

un2 + βnq∆u
n
q,2 + βnφ∆u

n
φ,2 + βnf∆u

n
f,2 − φǫ2

)2
dx

+
1

2

∫

Ω

(

unT + βnq∆u
n
q,T + βnφ∆u

n
φ,T + βnf∆u

n
f,T − φǫT

)2
dx.

The partial derivatives of the objective functional J(qn+1, φn+1, fn+1) with respect to βnq , β
n
φ and

βnf are given by

∂J

∂βnq
= A11β

n
q + A12β

n
φ + A13β

n
f − B1,

∂J

∂βnφ
= A21β

n
q + A22β

n
φ + A23β

n
f − B2,

∂J

∂βnf
= A31β

n
q + A32β

n
φ + A33β

n
f − B3,
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where A12 = A21, A13 = A31, A23 = A32,

A11 =
∑

i=1,2,T

‖∆unq,i‖2L2(Ω), A22 =
∑

i=1,2,T

‖∆unφ,i‖2L2(Ω), A33 =
∑

i=1,2,T

‖∆unf,i‖2L2(Ω),

A12 =
∑

i=1,2,T

〈∆unq,i,∆unφ,i〉, A13 =
∑

i=1,2,T

〈∆unq,i,∆unf,i〉, A23 =
∑

i=1,2,T

〈∆unφ,i,∆unf,i〉,

and

B1 = −
∑

i=1,2,T

〈uni − φǫi ,∆u
n
q,i〉, B2 = −

∑

i=1,2,T

〈uni − φǫi ,∆u
n
φ,i〉, B3 = −

∑

i=1,2,T

〈uni − φǫi ,∆u
n
f,i〉.

Setting ∂J
∂βn

q
= ∂J

∂βn
φ

= ∂J
∂βn

f

= 0, the search step sizes βnq , β
n
φ and βnf can be obtained by solving the

following linear system:
AX = B, (38)

where A = {Aij}, i, j = 1, 3 is a symmetric matrix, X = {βnq , βnφ , βnf }T and B = {B1, B2, B3}T.
The iteration process given by (35) does not provide the CGM with the stabilization necessary

for the minimizing of the objective functional (18) to be classified as well-posed because of the
errors inherent in the measured temperatures (8)–(10). However, the CGM may become well-posed
if the discrepancy principle [11] is applied to stop the iteration procedure at the smallest threshold
n for which

J(qn, φn, fn) ≈ ǫ, (39)

where ǫ is a small positive value, e.g., ǫ = 10−5 for exact temperature measurements, and

ǫ =
1

2

(

‖φǫ1 − φ1‖2L2(Ω) + ‖φǫ2 − φ2‖2L2(Ω) + ‖φǫT − φT‖2L2(Ω)

)

, (40)

if the measured temperatures contain noise. Based on (11), we indicate that ǫ ≤ 3ǫ2/2.
In summary, the CGM for the numerical estimation of the space-dependent reaction coefficient

q(x), initial temperature φ(x) and source term f(x) is presented as follows:

S1. Set n = 0 and choose initial guesses q0, φ0 and f 0 for the three unknown coefficients q(x),
φ(x) and f(x), respectively.

S2. Solve the initial-boundary value direct problem (2), (3) and (7) numerically by using the
FDM to compute u(x, t; qn, φn, fn), and J(qn, φn, fn) by (18).

S3. Solve the adjoint problem (28) to obtain λ(x, t; qn, φn, fn), and the Fréchet gradients J ′n
q in

(31), J ′n
φ in (32) and J ′n

f in (33). Compute the conjugate coefficients γnq , γ
n
φ and γnf in (37),

and the search directions dnq , d
n
φ and dnf in (36).

S4. Solve the sensitivity problems (23) for ∆uq(x, t; q
n, φn, fn), (24) for ∆uφ(x, t; q

n, φn, fn), and
(25) for ∆uf (x, t; q

n, φn, fn) by taking ∆qn = dnq , ∆φ
n = dnφ and ∆fn = dnf , and compute the

search step sizes βnq , β
n
φ and βnf by (38).

S5. Update qn+1, φn+1 and fn+1 by (35).

S6. If the stopping criterion (39) is satisfied, then go to S7. Else set n = n+ 1, and go to S2.

S7. End.
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5. Numerical results and discussion

In this section, the space-dependent reaction coefficient q(x), the initial temperature φ(x) and
the source term f(x) are simultaneously reconstructed by the CGM proposed in Section 4. The
FDM based on the Crank-Nicolson scheme [28] is applied to solve the direct, sensitivity and adjoint
problem involved. Note that in the adjoint problem (28), we approximate the Dirac delta function
δ(·) by

δa(t− t̃) =
1

a
√
π
e−(t−t̃)2/a2 , (41)

where a is a small positive constant taken as, e.g., a = 10−3, and t̃ represents t1, t2 and T . The
accuracy errors, as functions of the iteration numbers n, for q(x), φ(x) and f(x) are defined as

E1(q
n) = ‖qn − q‖L2(Ω), (42)

E2(φ
n) = ‖φn − φ‖L2(Ω), (43)

E3(f
n) = ‖fn − f‖L2(Ω), (44)

where qn, φn and fn are the numerical solutions obtained by the CGM at the iteration number n,
and q, φ and f are the analytical expressions for the reaction coefficient, initial temperature and
source term, if available.

The measured noisy temperatures φǫ1, φ
ǫ
2 and φǫT are simulated by adding the Gaussian noisy

term to the true temperatures

φǫi = φi + σ × random(1), i = 1, 2, T, (45)

where σ = p
100

maxx∈Ω {|φ1(x)|, |φ2(x)|, |φT (x)|} is the standard deviation, p% represents the per-
centage of noise, and random(1) generates random values from a normal distribution with zero
mean and unit standard deviation.

We consider a couple of one-dimensional (N = 1) test examples in a finite slab Ω = (0, 1) over
the time period T = 1. For the numerical discretisation we employ the FDM with a mesh of 100
equidistant nodes equally spread over each of the space and time intervals.

5.1. Example 1

In this example, we take t1 = 0.5, t2 = 0.7 and

k ≡ 1, α ≡ 1, g(x, t) = x(1 + x)2e−t − (1 + x)(1 + x3)t3,

h(x, t) = (1 + x)t3, µ(0, t) = e−t, µ(1, t) = 4e−t,

φ1(x) = e−0.5(1 + x2), φ2(x) = e−0.7(1 + x2), φT (x) = e−1(1 + x2).

Based on this input data, the analytical solution to the inverse problem (2), (7)–(10) is given
by

q(x) = 3 + x, φ(x) = 1 + x2, f(x) = 1 + x3, u(x, t) = (1 + x2)e−t. (46)

The initial guesses are chosen as q0(x) = 2, φ0(x) = 2+x and f 0(x) = 1. Figure 1(a) shows the
objective functional J(qn, φn, fn) given by (18) for the simultaneous reconstruction of the three
unknown coefficients with p ∈ {0, 1} noise. From this figure it can be seen that the objective
functional (18), as a function of iteration numbers n, is rapidly monotonic decreasing convergent.
The stopping iteration number is 30 for exact data, i.e., p = 0, whilst the algorithm is stopped
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at the iteration number 4 for p = 1 noise, obtained according to the discrepancy principle (39).
The accuracy errors E1(q

n) given by (42), E2(φ
n) given by (43) and E3(f

n) given by (44) are
shown in Figures 1(b)–1(d), respectively. From these figures, it can be seen that for p = 0, the
accuracy errors keep decreasing as the iterations proceed, but for p = 1 noise the errors start quickly
increasing after just a few iterations. Therefore, stopping the CGM iterations after 4 iterations, (cf.
Figure 1(a)), will yield stable and reasonably accurate numerical solutions, as illustrated in Figure
2. The larger errors near the boundary endpoints x = 0 and x = 1 are somewhat expected because
the initial guesses are quite far from their exact values near these points. In such situations, the
use of the preconditioner Sobolev gradients [29] instead of the L2-gradients (31)–(33) may improve
the accuracy of the numerical reconstructions near the boundary ∂Ω.

(a) (b)
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Figure 1: (a) The objective functional (18) and the accuracy errors (b) (42) (c) (43) and (d) (44), with p ∈ {0, 1}
noise, for Example 1.
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Figure 2: The exact and numerical solutions for (a) the reaction coefficient q(x), (b) the initial temperature φ(x)
and (c) the source term f(x), with p ∈ {0, 1} noise, for Example 1.

5.2. Example 2

We take t1 = 0.3, t2 = 0.7 and

k ≡ 1, α ≡ 1, h(x, t) = (2 + x3)et, µ(0, t) = µ(1, t) = e−t,

g(x, t) = π2 sin(πx)e−t − (3− 2x2)(2 + x3)et + (1 + π + sin(πx))e−t







1− x, x ∈ [0, 0.3],
−x+ 4x2, x ∈ (0.3, 0.7),
2 x ∈ [0.7, 1],

φ1(x) = e−0.3(1 + π + sin(πx)), φ2(x) = e−0.7(1 + π + sin(πx)),

φT (x) = e−1(1 + π + sin(πx)).

Based on this input data, the analytical solution to the inverse problem (2), (7)–(10) is given
by

q(x) =







2− x, x ∈ [0, 0.3],
1− x+ 4x2, x ∈ (0.3, 0.7),
3, x ∈ [0.7, 1],

f(x) = 3− 2x2,

φ(x) = 1 + π + sin(πx), u(x, t) = (1 + π + sin(πx))e−t. (47)

In comparison with the Example 1, this example is more severe since the reaction coefficient
q(x) in (47) to be retrieved is a discontinuous function. The initial guesses are taken as q0(x) =
1, φ0(x) = 1 and f 0(x) = 1. Figure 3(a) shows the convergence of the objective functional
J(qn, φn, fn) given by (18) with the iterative CGM stopped at the iteration numbers {50, 18} for
p ∈ {0, 1} noise, respectively. The corresponding numerical solutions to the reaction coefficient
q(x), the initial temperature φ(x) and the source term f(x) at these stopping iteration numbers
are illustrated in Figures 3(b)–3(d), respectively. From these figures, it can be seen that the
retrieved results are reasonably accurate and stable bearing in mind the severe discontinuous
reaction coefficient that had to be recovered along with the initial temperature and the source
term, simultaneously.
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Figure 3: (a) The objective functional (18) and the exact and numerical solutions for (b) the reaction coefficient
q(x), (c) the initial temperature φ(x) and (d) the source term f(x), with p ∈ {0, 1} noise, for Example 2.

6. Conclusions

The simultaneous retrieval of the space-dependent reaction coefficient, the initial temperature
and the source term from the measured temperatures at two time instants t1, t2 and at the fi-
nal time T has been investigated. The three unknown coefficients have been reconstructed by
minimizing the least-squares objective functional. Based on a variational method, the Fréchet
derivatives with respect to the three unknowns are obtained together with the adjoint and sen-
sitivity problems. The CGM has then been applied to numerically retrieve the three unknown
coefficients. Two numerical examples for one-dimensional inverse problems have been illustrated
for continuous and discontinuous reaction coefficient. The numerical solutions regularized by the
discrepancy principle have been obtained accurate and stable for all the three space-dependent un-
known quantities that have been simultaneously retrieved. Immediate beneficiaries of this research
would be the engineering heat transfer community concerned with practical situations involving
unknown reaction coefficients, heat sources and the initial temperature status. Also, in order to
increase the impact of the performed research, future work will be concerned with inverting real
raw temperature data obtained from a finned tube heat exchanger.
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