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Abstract

The majority of studies on environmental justice show that groups with lower socio-economic status are more likely to face 
higher levels of air pollution. Most of these studies have assumed simple, linear associations between pollution and deprived 
groups. However, empirical evidence suggests that health impacts are greater at high-pollution concentrations. In this paper, 
we investigate the associations of extreme levels of particulate matter up to 10 micrometres in size  (PM10) and ozone with 
deprived conditions, children and elderly people at sub-municipal level in Mexico City, using Áreas Geoestadisticas Bási-
cas (AGEBs) as the unit of analysis. We used spatial quantile regression to analyse the association for each quantile of the 
range of pollution values, while also addressing spatial autocorrelation issues. Across AGEBs, higher levels of  PM10 are 
significantly positively associated with deprived economic conditions and elderly people. These results demonstrate clear 
variations in the associations between  PM10 and vulnerable groups across the ranges of these pollutants. Ozone levels are 
positively associated with higher numbers of children. The findings reflect differences in the source and degradation of these 
pollutants and provide important evidence for decision-makers addressing air pollution inequalities and injustice in Mexico 
City and other cities.

Keywords Environmental inequality · Air pollution · Quantile analysis · Socio-economic conditions · Vulnerable groups

Introduction

Environmental injustice refers to the unequal impact of envi-
ronmental degradation on social groups depending on their 
social, economic, racial and ethnic background (Zimmerman 
1993; Pulido 1996; Mohai et al. 2009; Raddatz and Mennis 
2013; Laurian and Funderburg 2014).1 Evidence has been 
accumulating on the unequal distribution of environmental 
risk across social groups, with people of low socio-economic 
status (SES) living in close proximity to hazardous facilities 
(Zimmerman 1993; Krieg 1995; Pastor et al. 2001; Saha 
and Mohai 2005; Mohai and Saha 2007; Schoolman and 
Ma 2012; Raddatz and Mennis 2013), and incinerators 
(Laurian and Funderburg 2014), having fewer green areas 
nearby (Johnson-Gaither 2011; Wolch et al. 2014), living 
in areas with a high risk of flooding (Grineski et al. 2015a), 
and being exposed to air pollution (Asch and Seneca 1978; 

Grineski et al. 2007; Downey and Hawkins 2008; Havard 
et al. 2009). However, other studies have not found environ-
mental injustice (Hajat et al. 2013; Richardson et al. 2013; 
Padilla et al. 2014). The mixed nature of this evidence may 
be explained by differences in the type of hazard, geographi-
cal unit, methodology and local context (Briggs et al. 2008; 
Havard et al. 2009). This study focus on air pollution, where 
again, there are studies showing that people with lower 
socio-economic status are more exposed to air pollution 
(Grineski et al. 2007; Bell and Ebisu 2012; Carrier et al. 
2014; Clark et al. 2014; Zou et al. 2014), while other stud-
ies debate whether such links exist (Branis and Linhartova 
2012; Hajat et al. 2013; Richardson et al. 2013; Padilla et al. 
2014). This literature emphasises the importance of targeting 
heterogeneous environments in policy-making. This paper 
aims to investigate spatial heterogeneity in the relationship 
between air pollution and social vulnerability in the urban 
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1 Environmental justice as a concept emerged after the social move-
ment against the dumping of PCBs (polychlorinated biphenyls) in 
Warren County, North Carolina in 1982, where high proportions of 
people of colour and low socio-economic status were residing. This 
raise social awareness about the environmentally hazardous living 
conditions experienced by those with the most unfavourable socio-
economic status.
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setting of Mexico City, to provide further information that 
could facilitate the improved targeting of local policies to 
mitigate or adapt to pollution threats. Spatially targeted envi-
ronmental programmes potentially have the advantage of 
focusing on small areas, where policy measures can have a 
higher impact, particularly for the most vulnerable groups, 
than is the case when public resources are dissipated across 
the city. Moreover, local programmes may increase confi-
dence and capacity to incentivise community participation 
in policy initiatives (Smith 1999; Tunstall and Lupton 2003).

The analysis will focus on  PM10 and ozone, because of 
the serious impacts on human health at high levels of these 
pollutants (Maantay et al. 2009), which highlight the need to 
better understand where the social heterogeneity in exposure 
to air pollution may occur.  PM10 can cause heart disease, 
lung cancer, asthma, and acute lower respiratory infections, 
with more than 2 million people dying annually because 
of breathing tiny particles, present in indoor and outdoor 
air pollution (World Health Organization 2011b). Ozone 
is positively associated with daily mortality levels (World 
Health Organization 2006), and can cause reduction of lung 
capacity and serious lung damage (Levy et al. 2001). Moreo-
ver, Arceo et al. (2016) estimated that 1 μg/m3 increase of 
in 24-h  PM10 in our study area, Mexico City, results in an 
additional 0.24 deaths per 100,000 births. Thus, dispropor-
tional exposure of air pollution is strongly linked with health 
inequalities. Jerrett et al. (2001) defined this as ‘triple jeop-
ardy’; people with deprived economic and social conditions 
are more likely to be exposed to high levels of contaminants 
and hence experience more negative impacts on their health. 
As a result, air pollution is a concern at the public health 
level due to its detrimental impact on human health and 
on the economy (Lagercrantz and Sundell 2000; Schwartz 
and Repetto 2000; Jerrett et al. 2004; Maantay et al. 2009; 
Nishimura et al. 2013; Parent et al. 2013; Beatty and Shim-
shack 2014). Hanna and Oliva (2015) estimated some of 
the economic costs of air pollution in Mexico City, showing 
that a 20% increase in air pollution can result in a reduction 
of 1.3 working hours in the following week. Filippini and 
Martínez-Cruz (2016) found that the individual’s willing-
ness to pay for improved air quality in this city amounts to 
an average of US $262 (2008 US dollars) annually.

In this study, we apply a quantile regression approach to 
investigate the hypothesis that the association between vul-
nerable groups and air pollution grows stronger as pollution 
concentrations increase. That is, in highly polluted locations, 
we expect the evidence for environmental injustice to be 
stronger than in locations with lower levels of pollution. We, 
therefore, extend the work of Chakraborti et al. (2017) and 
Rissman et al. (2013), with the latter authors showing that 
higher airport-contributed  PM2.5 (fine particulate matter that 
is 2,5 microns in diameter and less) concentrations have dif-
ferent relationships with social minority indicators compared 

with the rest of the  PM2.5 distribution. Our approach con-
trasts with most empirical studies, which explore the asso-
ciation between socio-economic conditions and air pollution 
assuming a homogeneous air pollution pattern across the 
studied area, using mean levels of air pollution with stand-
ard regression (i.e., ordinary least squares regression, OLS), 
leaving aside its lower and upper values with respect to the 
mean. The use of quantile regression, examining different 
percentiles of the conditional air pollutant distribution, can 
better account for spatial heterogeneity in air pollution levels 
and identify changes in its relationship with deprived eco-
nomic conditions, that may be missed by the application of 
conventional mean regressions. It can hence be more inform-
ative to policy-makers. Programmes that mitigate air pollu-
tion impose social consequences associated with compliance 
with new regulations, as well as health benefits; the greater 
insights from quantile regression can help to identify any 
distributional issues that may need addressing in spatially 
targeted policies. In this sense, it is of interest to analyse the 
sensitivity of the environmental justice hypothesis (i.e. dif-
ferences in vulnerable groups’ exposures) at locations with 
extreme values of pollutants, as this may be the result of 
particular actions in these locations that do not necessarily 
occur elsewhere (e.g. the location of industrial facilities near 
age-vulnerable communities). In that case, policy-makers 
can consider spatially targeted emission-reduction policies 
(e.g. truck-rerouting, low-emission zones, industry re-allo-
cation) in some locations to produce the strongest benefits to 
environmental justice (Nguyen and Marshall 2018).

This research takes the sub-municipality Áreas Geoesta-
disticas Básicas (AGEBs), the smallest administrative units 
in Mexico, as the spatial unit of analysis. This has the advan-
tage that socio-economic characteristics are likely to be 
fairly homogeneous within these small geographical areas, 
which will enhance the reliability of results obtained (Bowen 
et al. 1995; Maantay 2002). Potential spatial autocorrelation 
will be accounted for to ensure robust hypothesis testing 
and the estimation of coefficients. Otherwise, the assump-
tions regarding the independence and identical distribution 
of the residuals would not meet. This may bias the estimators 
due to the inflated values of t statistics, and hence to reject 
the null hypothesis incorrectly, Type error I results (Anselin 
2002; Dormann et al. 2007). That is, the estimators would 
appear significant when they are not.

Data and Methods

Area of Study

The choice of the case study of Mexico City is consistent 
with growing concerns about air pollution in urban areas in 
developing countries, where high population densities and 
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low quality health services collide with high levels of harm-
ful pollutant concentrations, impacting on residents’ health 
and well-being (Krzyzanowski et al. 2014; Marlier et al. 
2016). In Mexico City, the annual average  PM10 concentra-
tion for 2014 and 2015 was 43.5 ug/m3, and the concentra-
tion of ozone is increasing, with an annual average of 27 and 
29.5 parts per billion (ppb) in 2014 and 2015, respectively 
(Air Quality in Mexico City 2014). These values are higher 
than the World Health Organization (World Health Organi-
zation 2006) thresholds,2 above which there are significantly 
increased risks to health. Moreover, there is also limited 
literature on environmental justice in developing countries 
(Pearce and Kingham 2008; Rooney et al. 2012). For the 
specific case of Mexico, there is only scant evidence around 
environmental injustice, which is focused on industrial con-
taminants in the north and border regions with US, and with 
emissions generally obtained by measures of proximity to 
industrial facilities (Blackman et al. 2003; Grineski and Col-
lins 2008, 2010; Lara-Valencia et al. 2009; Grineski et al. 
2015b; Chakraborti et al. 2017). Chakraborti et al. (2017) 
provide an exception, as they undertook a nation-wide analy-
sis focusing on water disposal of toxic metals. They found a 
positive association between marginalisation (poorer com-
munities) and pollution, with stronger evidence at locations 
with higher levels of water toxic pollutants.

Pollution Data

The pollution data, ozone and  PM10 for the year 2015, were 
obtained from the measuring stations operated by the Auto-
matic Air Quality Monitoring Network of Mexico City 
(RAMA n.d.), which provide hourly records. We estimated 
the 24hr mean for  PM10 and ozone (from 10am to 6pm), each 
averaged into annual mean concentrations, following previ-
ous studies (e.g. Romieu et al. 2012). This analysis included 
data for all the stations that had at least 75% of informa-
tion in the studied year. The numbers of measuring stations 
that met this criterion, and were therefore used to compute 
the 24hr values, were 23 and 31 available stations for  PM10 
and ozone, respectively. The geographical coverage of the 
monitoring stations network contains some areas with sparse 
data (see Figs. 3, 4 on Appendix). The discussion further 
elaborates on this issue.

We applied a universal kriging algorithm to obtain inter-
polated values for each pollutant, at the AGEB level, from 
the monitoring stations data. This technique is considered 
one of the best interpolation methods because it deals better 
with erroneous local variability compared with other inter-
polation techniques such as inverse distance weight (IDW) 

(Jerrett et al. 2005a). We, therefore, complement previous 
work (Hanna and Oliva 2015; Arceo et al. 2016) which has 
used the IDW technique to carry out the interpolation, leav-
ing aside the spatial variability which is common in pollut-
ant datasets. We chose universal instead of ordinary kriging 
because this approach considers the global trend over the 
area of study and takes into account the spatial dependence 
(Burrough and McDonnell 1998). Moreover, universal krig-
ing models have been used previously in the area of envi-
ronmental justice along with epidemiological studies (Jer-
rett et al. 2001, 2005b; Finkelstein et al. 2003; Künzli et al. 
2005; Su et al. 2011) to interpolate air pollution data.

Economic and Geographic Data

Economic information was obtained from the Population 
and Housing Census (Instituto Nacional de Estadística y 
Geografía - INEGI 2010) at the level of the AGEB, which 
includes the number of households with TV, car, computer, 
landline phone, mobile phone and internet; this informa-
tion, households’ purchasing power, is used in this study to 
characterise the households’ SES. Demographic information 
from the same data source was obtained on the number of 
children and elderly people. Children were considered from 
0 to 11 years old (US Food and Drug Administration 2014) 
and elderly people were from 65 years old onwards (World 
Health Organization 2011a). Those AGEBs for which this 
information was either not available or labelled in the dataset 
as confidential (n = 126) were excluded from the analysis, 
resulting in a total of 2287 AGEBs in the analysis. Inter-
polated pollution and economic–geographic datasets were 
merged, assigning a pollutant value to each of the eco-
nomic–demographic variable at the AGEB level.

Statistical Analysis

A principal component analysis was used to generate a 
deprivation index as a proxy for households’ economic 
deprivation conditions. This approach follows the previ-
ous literature, where the method has been used to create 
socio-economic indices (Richardson et al. 2013; Rissman 
et al. 2013; Grineski et al. 2015a), particularly in a develop-
ing country context, due to a frequent lack of official data 
on income e.g. (Fiadzo et al. 2001; Fotso and Kuate-Defo 
2005). A principal component analysis also controls for the 
high collinearity among the economic variables. This anal-
ysis identifies the components which explain a significant 
cumulative proportion of the variance of the data set; We 
extracted the components with Varimax rotation to simplify 
the expression and hence its interpretation.

A Global Moran Index (Anselin et al. 1996) was cal-
culated to explore the spatial distribution of  PM10, ozone 
(the original values from the monitoring stations and the 

2 World Health Organization thresholds are 20 ug/m3 annual average 
and 100 ug/m3 8-hour mean of  PM10 and ozone, respectively.
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interpolated values), deprivation index and vulnerable-aged 
groups. This index takes values from − 1 to 1, where a large 
negative or positive value means that there is spatial auto-
correlation, there are some clusters, where the values of the 
neighbouring AGEBs are dissimilar or similar, respectively. 
In contrast, when the value approaches zero, it means that 
there is random spatial pattern.

As an initial exploratory analysis to assess environmen-
tal injustice, We assigned the annual averages of  PM10 and 
ozone into five economic deprivation categories (quintiles) 
across Mexico City’s AGEBs and used one-way ANOVA 
and Tukey–Kramer test to evaluate whether there were any 
statistical differences in the mean pollution levels for the 
extreme quintiles (i.e., between AGEBs with households 
with the lower and higher levels of deprivation conditions). 
We then used regression analysis, as done in previous stud-
ies (Rissman et al. 2013; Carrier et al. 2014; Fecht et al. 
2015) to assess the association of a given minority group 
with each pollutant, and determine its statistically signifi-
cance, after controlling for the other groups. We first car-
ried out standard ordinary least squares (OLS) regressions 
to quantify general associations of economic deprivation 
and vulnerable-aged groups with  PM10 and ozone concen-
trations. We also analysed the potential heteroscedasticity, in 
terms of different variance of the residuals across the distri-
bution, of the regression with the Breusch and Pagan (1979) 
test. To better understand exposure to high pollutant levels, 
and to deal with the potential heteroscedasticity, we applied 
a quantile regression. This simple technique allowed us to 
assess the levels of association of the economic deprivation 
index and the proportion of children and elderly people with 
concentrations of  PM10 and ozone across the full range of 
concentration levels for each pollutant. This allowed us to 
examine how the relationship of pollution levels for vul-
nerable groups changes at different levels of the pollutants 
(for example at the highest and lowest pollution levels). The 
presence of residual spatial autocorrelation was examined 
using the Moran Index for the analysis of both  PM10 and 
ozone, which led to evidence of the potential biased esti-
mators; therefore, a spatial regression was applied in the 
quantile analysis to obtain accurate coefficients.

Briefly, we describe below the quantile regression which 
estimates the conditional quantile functions in contrast with 
the conditional mean functions of ordinary least square 
(OLS). Quantile regression uses the full sample and allows 
to determine the effect of the determinants across the full 
distribution (quantiles) of the dependent variable. Unlike 
OLS, the quantile approach can deal with heteroscedasticity, 
outliers and unobserved heterogeneity (Koenker and Hallock 
2001; Koenker 2005); in this analysis, this is convenient 
because it does not assume any distributional assumption 
(independent and identically distributed) of the residu-
als, allowing uneven distribution on the  PM10 and ozone. 

According to Koenker (2005) instead of minimizing the 
sum of the squared residuals as in OLS, quantile regres-
sion focuses on minimizing a weighted sum of the absolute 
deviations:

where y = dependent variable, X is the vector of the covari-
ates and � is the vector of the slopes. The weight is defined 
either as ~ hi = 2q when the residual for the ith observation 
is positive or as ~ hi = 2 − 2q if the residual is negative; and 
q ∈ (0, 1) denotes the quantile of the dependent variable to 
be estimated.

Spatial autoregressive models (SAR), lag model and spa-
tial error, are commonly used to tackle the potential spatial 
autocorrelation in linear regressions (Anselin and Arribas-
Bel 2013). In this paper, We applied the lag model approach 
due to the fact that the quantile analysis is not applicable to 
the spatial error model (Liao and Wang 2012) and because 
the dependent variable is highly clustered, with nearby 
AGEBs tending to have similar levels of pollution. Follow-
ing McMillen (2012), the quantile regression with spatial 
lag model is defined as:

where W  is the spatial weight matrix, which denotes the 
spatial relation between each value of y and its neighbours; 
�(q) is the spatial lag parameter; u is the error term. The W 
(weighted matrix) was constructed to model the structure of 
the spatial lag component, as shown above, using the first 
contiguity method. This method was chosen because the size 
of AGEBs is highly heterogeneous (with mean 0.317 and 
standard deviation 0.324 square kilometres); it involves cre-
ating regions with links if AGEB i and AGEB j share one or 
more boundary points. Three isolated AGEBs were excluded 
from analysis because they did not have any neighbour.

There are different methods to handle the spatial lag 
component in a quantile regression model. Kim and Mul-
ler (2004) introduced the Two-Stage Quantile Regression 
(2SQR) which requires the estimation of two consecutive 
quantile regressions. In this paper, however, We used an 
Instrumental Variable Quantile Regression (IVQR) (Cher-
nozhukov and Hansen 2006), where the same quantile is 
used just in one stage leading to more robust results (McMil-
len 2012). First, an instrumental variable is created for Wy 
from the predictive values of an OLS regression of Wy on 
a set of instruments Z ( XandWX ). Then, a quantile regres-
sion is fitted (one regression for each � value) y − �Wy on X 
and Ŵy , using the created instrumental variable for Wy(Ŵy). 
The estimated value of �leads to small coefficients (closest 
to zero) on Ŵy . Having the values of �̂  a quantile regression 
y − Ŵy on X is fitted to get the estimated values of � . It is 

min
{bj}

k
j=0

n∑

i=1

|yi −

k∑

j=0

�jXj,i|hi

y = �(q)Wy + X�(q) + u
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expected that Ŵy will be zero when the instruments are cho-
sen properly (McMillen 2012). We analysed the estimated 
spatial lag variable to illustrate the level of spatial autocor-
relation. Finally, an analysis of variance was applied to test 
whether the spatial coefficients across the different quantiles 
on the pollutants are statistically different from one another 
(Koenker 2006). The final dataset contained 2287 observa-
tions. We used R program version 3.2.3 for the analysis.

Results

Descriptive Analysis

Table 1 provides an overview of the descriptive statistics of 
the pollution, economic and demographic variables, of the 
households, in percentages (%) in Mexico City. More than 
half of the households lacked internet access (60%) or had 
no car access (53%). In addition, approximately a quarter of 
them did not have landline or mobile phone access (28% and 
25%, respectively).

Table 2 shows the results of principal component analysis 
(PCA) capturing the households’ economic deprivation con-
ditions. It shows that the first component explains 89% of the 
cumulative in all collinear economic variables and its eigen-
value is greater than 1. This component comprises one clus-
ter which describes the level of deprivation of car, computer, 
landline, mobile phone and internet for the households. All 
variables had high loading values which reflect the important 
contribution on this first component. We considered this as 
an economic deprivation index. Households in AGEBs with 

low values of this deprivation index had better purchasing 
power (in terms of the economic variables), while high val-
ues represent worse deprived conditions.

Spatial Analysis

An analysis on the potential spatial autocorrelation within 
the original pollutant dataset, coming from the monitoring 
stations, showed a positive and significant Global Moran 
Index [Moran Index = 0.34 and 0.48 with a p-value < 0.001] 
for  PM10 and ozone, respectively. Similarly, the Moran Index 
results for the interpolated pollution data also showed that 
there is a significant positive spatial autocorrelation in the 
concentration levels of both pollutants (Moran Index = 0.99 
with a p value < 0.001, for both pollutants). Thus, Fig. 1a 
and b show the spatial distribution of the  PM10 and ozone 
interpolated values, with a high level of clustering. The 
darker red shading shows the highest levels of concentra-
tion of  PM10 and ozone. Figure 1a illustrates that the higher 
levels of  PM10 were mainly found in the north of the city, 
whereas the south-faced lower levels. For ozone, it is the 
opposite: the south area presented higher levels of concen-
tration, while in the north the levels were lower (Fig. 1b). 
These pollutants were thus found to be highly negatively 
correlated (r = − 0.77, Pearson correlation), with a p-value 
< 0.001. These different patterns reflect differences in the 
sources and chemical processes associated with particulate 
and ozone pollution. Particulate pollution is concentrated 
in cities due to its source in power generation, domestic 
heating and traffic. Ozone is not emitted directly into the 
city environment to any great extent but is formed through a 
series of photochemical reactions involving reactive organic 

Table 1  Description and descriptive statistics of the pollution, and households’ economic and demographic variables in percentages (%) in Mex-
ico City

All the variables are at the AGEB level (in total 2287) with a population mean of 3799.8 and standard deviation of 2179
a RAMA means Automatic Air Quality Monitoring Network of Mexico City
b Parts per billion
c PHC INEGI 2010 means Population and Housing Census 2010, INEGI
d Includes private homes for the housing characteristics, classified as detached house, apartment building, house or room at home or neighbour-
hood and fourth roof and did not specify that kind of housing are captured (INEGI)

Name Variable description Type of variable Data source Mean SD Min Max

PM10 Particulate matter 10 (ug/m3) Environmental RAMAa 42.6 5.5 33.5 56.1

Ozone Ozone (ppb)b Environmental RAMA 56.8 4.6 44.2 65.7

H. no car Households without car (%)d Economic PHC INEGI  2010c 0.53 0.16 0.05 0.89

H. no pc Households without computer (%)d Economic PHC INEGI 2010 0.51 0.17 0.05 0.94

H. no ll Households without land line (%)d Economic PHC INEGI 2010 0.28 0.12 0.01 0.98

H. no cel Households without mobile phone (%)d Economic PHC INEGI 2010 0.25 0.08 0 0.66

H. no inter Households without internet (%)d Economic PHC INEGI 2010 0.6 0.18 0.06 0.98

Children Children (%) Demographic PHC INEGI 2010 0.19 0.07 0.02 0.43

Elderly Elderly (%) Demographic PHC INEGI 2010 0.19 0.06 0.02 0.37
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compounds and nitrogen oxides emitted from combustion 
engines. However, the nitrous oxide (NO) produced from 
combustion engines also reacts with ozone itself to form 
nitrogen dioxide  (NO2), thus removing ozone from the city 
environment. In suburban or peri-urban areas (those areas 
which are on the edge of the city), there is less traffic, hence 
less available nitrous oxide to react with ozone, and ozone 
is therefore more persistent (Briggs et al. 2008; Fecht et al. 
2015). Suburban or peri-urban areas are common to the 
south of Mexico City, and hence there is greater ozone in this 
area. The spatial distribution of the economic deprived index 
in Fig. 1c shows a relatively high level of clustering (Moran 
Index = 0.7 with a p-value < 0.001). In such figure, the red 
colour shows the areas with the more deprived conditions. 
The distribution of the deprivation index shows an economic 
gradient from the less-deprived AGEBs (green colour) to 
the most deprived AGEBs (red colour). The AGEBs with 
the less-deprived households form a big cluster located at 
centre-west, where the purchasing power is higher than in 
other locations in the city. Households with most deprived 
conditions form small clusters in the north, centre-east and 
south. Higher percentages of vulnerable groups (children 
and elderly people) are located in red-coloured AGEBs. The 
Moran Indices for children and elderly people were 0.45 
and 0.37, respectively, indicating the presence of statisti-
cally significant clustering of AGEBs with similar propor-
tions of vulnerable age groups (with a p-value < 0.001). 
Figure 1d and e, with the dark red and whiter colours show 
the areas with the higher and lowest proportion of children 
and elderly, respectively.

Table 3 reports the descriptive statistics of  PM10 and 
ozone concentrations according to the quintiles of the dep-
rivation index. The category q1 denotes the AGEBs with 

less economic deprivation conditions in terms of purchasing 
power and q5 captures those with the most deprived condi-
tions. The results in this table show that the most economic 
deprived AGEBs (q5) experienced higher  PM10 concentra-
tion levels (43.3 ug/m3) compared with the less-deprived 
AGEBs (q1) (40.3 ug/m3). In contrast, for ozone the most 
deprived AGEBs (q5) had lower concentrations (56.7 ppb) 
and the less-deprived AGEBs (q1) had higher concentrations 
of this pollutant (57.4 ppb).

We carried out one-way ANOVA and Tukey–Kramer tests 
to compare the differences in the mean values of both pollut-
ants across the different deprived categories (i.e., across all 
the quintiles and between each quintile, respectively). One-
way ANOVA shows that the means for all the quintiles were 
statistically different (with a p value < 0.005) for both pol-
lutants. The Tukey–Kramer test indicates that the differences 
for q1-q2, q1-q3, q1-q4 and q1-q5 were significant (with a p 
value < 0.005) for  PM10. Similarly, the differences for q2-q1, 
q2-q3, q2-q4 and q2-q5 were also significant (with a p value 
< 0.005) for ozone.

Regression Analysis

The regression analysis further assesses the relationship of 
pollution levels with the deprivation index, and the propor-
tion of children and elderly. Table 4 illustrates the results 
of both OLS and the spatial quantile regressions, showing 
the relationship of  PM10 (table 4a) and ozone (Table 4b), 
the economic deprivation index, percentage of children and 
percentage of elderly people, at AGEB level. The heterosce-
dasticity identified in the OLS model (Breusch-Pagan with 
a p value < 0.001] and the positive spatial autocorrelation 
detected in the residuals of the quantile regression [Moran 

Table 2  Principal component analysis (PCA) results with component loadings for the economic variables for Mexico City AGEBs

The first component explains 89% of variance in all collinear independent variables

Components Eigenvalue Proportion Cumulative

Comp1 4.60 0.89 0.89

Comp2 0.24 0.04 0.94

Comp3 0.20 0.04 0.98

Comp4 0.08 0.01 0.99

Comp5 0.18 0.00 1

H. no car 0.93 0. 87

Variable PC1 h2

Varimax rotated component matrix

H. no car 0.93 0. 87

H. no pc 0.99 0. 98

H. no ll 0.92 0.84

H. no cel 0.90 0.81

H. no inter 0.98 0.96
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Index ≥ 0.8 with a p value < 0.001) justify the use of this 
spatial quantile regression. Both models in Table 4 show 
that the two pollutants were significantly related with the 

deprivation index and vulnerable-aged groups (p value < 
0.001), but in different ways. In general, the analysis of the 
coefficients, for both models, shows that  PM10 (ozone) was 

Fig. 1  a and b Spatial distribution of  PM10 and ozone across Mexico City in 2015. c–e Spatial units according to AGEBs. Spatial distribution of 
deprivation index, proportion of children and elderly people across Mexico City in 2010. Spatial units according to AGEBs

Table 3  Distribution of  PM10 
and ozone concentrations levels 
by deprived index in quintiles, 
in ug/m3 and ppb units, 
respectively

qi represents quintiles of the deprivation index, with q1 being the less and q5 being the most deprived 
AGEBs in terms of households’ purchasing power

Category PM10 Ozone

Mean Min Max Mean Min Max

q1 40.30 34.40 53.90 57.40 48.40 65.70

q2 43.20 34.00 54.40 55.80 44.20 65.70

q3 43.30 33.70 54.20 56.70 45.30 65.70

q4 42.80 33.80 55.70 57.40 46.60 65.70

q5 43.30 33.50 56.10 56.70 44.90 65.30
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Table 4  OLS and spatial quantile regression estimates assessing the relationship of (a)  PM10 and (b) ozone and the economic deprivation index, children and elderly within each AGEB

For table Children and elderly are in percentages. The percentages (%) denote the different quantiles of the spatial quantile regression. All the estimators are significant with a p value < 0.001. 
The spatial component, Wy has values of 0.01, except the 90% which is < 0.01, with a p value < 0.005, for both pollutants. Standard errors (provided in parenthesis)

OLS 10% 20% 30% 40% 50% 60% 70% 80% 90%

(a) PM10 and the 
economic dep-
rivation index, 
children and 
elderly within 
each AGEB

 Intercept 41.86 ( − 0.38) 34.58 ( − 0.36) 36.00 ( − 0.40) 38.01 ( − 0.55 39.14 ( − 0.50) 40.06 ( − 0.56) 41.02 ( − 0.58) 42.22 ( − 0.60) 44.00 ( − 0.78) 49.63 ( − 1.37)

 Children − 37.00 ( − 2.33) − 27.28 − (2. 39) − 33.97 ( − 2.45) − 40.75 ( − 3.00) − 40.22 ( − 3.32) − 40.49 ( − 3.26) − 42.35 ( − 3.25) − 44.32 ( − 2.67) − 45.40 ( − 3.00) − 28.37 ( − 6.07)

 Elderly 40.20 ( − 2.25) 25.83 ( − 3.06) 31.85 ( − 3.01) 36.81 ( − 3.43) 37.33 ( − 3.28) 38.47 ( − 3.36) 40.99 ( − 3.08) 43.16 ( − 2.67) 44.68 ( − 3.85) 30.08 ( − 3.97)

 Economic 
deprivation 
Index

2.70 ( − 0.14) 1.47 ( − 0.19) 2.01 ( − 0.17) 2.79 ( − 0.20) 3.17 ( − 0.18) 3.30 ( − 0.19) 3.34 ( − 0.19) 3.17 ( − 0.22) 3.08 ( − 0.32) 3.27 ( − 0.38)

(b) Ozone and the 
economic dep-
rivation index, 
children and 
elderly within 
each AGEB

 Intercept 57.50 (0.33) 49.74 (0.68) 53.53 (0.90) 56.70 (0.73) 57.94 (0.58) 58.76 (0.48) 59.72 (0.38) 60.46 (0.34) 60.99 (0.33) 61.47 (0.38)

 Children 32.30 (1.99) 9.98 (3.79) 36.20 (4.16) 42.97 (2.66) 42.09 (2.57) 36.04 (2.53) 32.00 (2.55) 28.59 (2.62) 24.45 (2.76) 27.55 (2.49)

 Elderly − 35.40 (1.92) − 8.04 (3.59) − 38.88 (3.11) − 51.02 (2.24) − 49.97 (2.62) − 41.62 (2.69) − 36.90 (2.49) − 32.67 (2.63) − 26.06 (2.99) − 25.75 (2.66)

 Economic 
deprivation 
Index

− 1.70 (0.12) − 1.05 (0.20) − 1.51 (0.27) n− 1.92 (0.20) − 2.02 (0.16) − 1.87 (0.16) − 1.79 (0.17) − 1.66 (0.17) − 1.39 (0.17) − 1.59 (0. 17)
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positively (negatively) associated with economic deprivation 
conditions, after controlling for age groups. This provides 
evidence of environmental injustice for population with 
deprivation economic conditions residing in locations with 
higher  PM10 levels. In contrast, no such inequity was found 
for ozone; in fact, populations with lower deprivation con-
ditions were associated with higher ozone exposure. Like-
wise, elderly people (children) were associated positively 
(negatively) with  PM10 concentrations, after controlling for 
SES conditions. In contrast, ozone levels were positively 
(negatively) associated with children (elderly).

We found similar results between the mean of the OLS 
and the 50% quantile (of the spatial quantile regression) for 
each explanatory variable (except for elderly people where 
the difference was around 6 units for the case of ozone). 
However, the spatial quantile regression outcomes showed a 
clear variation in the relationship of  PM10 with the economic 
deprivation index and elderly people, except the 90% for 
elderly (see Table 4a and Fig. 2). Figures 2 shows the coef-
ficients of elderly, children and deprivation index with the 
different quantiles of PM10 and ozone (each dot represent 
from the 10% to the 90% quantiles). Regarding the economic 
deprivation, the quantile estimators showed that within the 
80% and 90% quantiles,  PM10 levels of pollution were more 
strongly positively associated with the economic depriva-
tion index than the lower quantiles (the 10% and 20% quan-
tiles). The variation was almost two times larger in the right 
tail (3.2) than the left one (around 1.7). Figure 2, left side, 
also shows a general increasing trend of estimators across 
the lower and upper levels of  PM10. With respect to elderly 
people, higher levels of  PM10 were more strongly positively 
associated with higher percentage of elderly people within 

the higher quantiles of the distribution with β = 43.9 (aver-
aged for the 70% and 80% quantiles) than within the lower 
quantiles with β = 28.8 (averaged for the 10% and 20% 
quantiles). Therefore, these results showed that the average 
estimates, β = 40.2 and β = 38.4, provided by the OLS and 
the 50% of the spatial quantile regression, respectively, were 
lower with respect to the values of the higher quantile esti-
mates but above the values of the lower quantile estimates 
of  PM10. Figure 2, left side, also illustrates a raised pattern 
from the 10% to 80% quantiles for elderly people and  PM10. 
Note that these results do not report an interesting heteroge-
neity for the different levels of  PM10 and its association with 
the percentage of children in each AGEB.

The variation between ozone higher and lower lev-
els and deprived economic conditions and vulnerable age 
groups was not clear (see table 4b and Fig. 2, right side). 
For example, there was no significant variation in the nega-
tive association of ozone with the deprivation index or the 
percentage of elderly people, at higher and lower levels of 
concentration. Nevertheless, We can identify some patterns. 
At lower levels of ozone, β = − 38.8 and β = − 51 (20% 
and 30% quantiles) the elderly people had a stronger nega-
tive association with this pollutant than when ozone was at 
its upper levels, β = − 26 and β = − 25.7 (80% and 90%). 
Likewise, within the upper quantiles, of ozone pollution, 
the level of pollution, β = 26 (averaged at the 80% and the 
90% quantiles), was more strongly positively associated with 
the percentage of children in the AGEB than in the lowest 
quantile, β = 9.9 (10% quantile).

The values of the spatial lag variable, Wy , were consist-
ently small (all 0.01, except for the 90% quantile which was 
< 0.01) and significant, p value < 0.005 across all quantiles, 

Fig. 2  Spatial quantile regressions with different quantiles of  PM10 (left) and ozone (right) as response variables
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suggesting that spatial autocorrelation is minimal for both 
pollutants over the full range of quantiles.

Importantly, the results of the spatial quantile model high-
light the non-linearity of some associations across the all 
pollution levels, especially for  PM10 in relation to depriva-
tion and percentage of elderly people; and for ozone in rela-
tion to the percentage of children. One-way ANOVA, which 
measures the precision of the different estimators across the 
quantiles of each pollutant, confirmed a high significant dif-
ference between such estimators (p value < 0.005).

Discussion

The analysis investigated spatial heterogeneity, comparing 
exposure to higher and lower levels of each pollutant,  PM10 
and ozone, across vulnerable groups in Mexico City. Over-
all, our results show a positive association between deprived 
economic conditions and  PM10 and a negative association 
between lower socio-economic conditions and ozone. Even 
though the analyses focused on different levels of air pol-
lution, which have been rarely studied, our findings are 
consistent with previous studies that focused on the mean 
of air pollution. The positive association of  PM10 with the 
deprivation index is congruent with the previous literature 
(Briggs et al. 2008; Fecht et al. 2015). Moreover, other stud-
ies analysing  PM2.5 (Gray et al. 2013; Hajat et al. 2013) 
found a positive association between better socio-economic 
conditions and lower exposure of this pollutant. With respect 
to ozone and its negative association with deprivation index, 
our findings are also similar to previous research (Briggs 
et al. 2008; Gray et al. 2013). Conversely, Grineski et al. 
(2007) found a positive relation of ozone with more deprived 
economic status. With respect to vulnerable age groups, the 
findings show mixed evidence as previous studies: higher 
concentrations of  PM10 were significantly associated with 
higher proportions of elderly people but with lower propor-
tions of children. With respect to children our results are 
similar to Fecht et al. (2015) and Carrier et al. (2014), with 
the latter study using  PM2.5. Likewise, elderly people were 
to be found disproportionally exposed to other pollutants, 
 SO2 and  NO2 (Clark et al. 2014; Zou et al. 2014) which 
is consistent with our outcomes. When considering ozone, 
the outcomes illustrate that elderly people are not dispro-
portionally exposed to this pollutant. Instead children were 
found to face disproportional exposure to ozone. Calderón-
Garcidueñas and Torres-Jardón (2012) showed that children, 
living in the South of Mexico City, were highly exposed to 
ozone, which is congruent with our results.

The results highlight that the higher the  PM10 level is, the 
greater the level of disproportionate exposure of this pol-
lutant to people in deprived economic conditions and with 

elderly people. Thus, the findings show that the association 
of the AGEBs with economic deprivation conditions was 
significantly heterogeneous on the different level quantiles 
of  PM10, especially for the lower and upper concentration 
levels. In general, our results verify the hypothesis of an 
increasing pattern of this association from the lower to the 
higher quantiles of  PM10. This is, higher levels of  PM10 were 
more strongly and positively associated with those AGEBs 
with deprived conditions than those with lower levels of 
this pollutant. This result is consistent with the findings of 
Rissman et al. (2013), who found a slightly decreased asso-
ciation between median income and concentrations of  PM2.5 
pollution due to aircraft, from the 50 to 90% quantiles. In the 
case of elderly group, we also identified an increasing trend 
of  PM10 exposure, from lower to higher quantiles (except-
ing the 90% quantile). This would imply that the health of 
these groups (those with deprived economic conditions and 
elderly people) is at risk due to high levels of  PM10 con-
centration. In Mexico City, elevated levels of this pollutant 
are more than double WHO’s threshold levels, which were 
established to avoid health risks. Therefore, these specific 
groups should be targeted in pollution reduction policies at 
those locations.

The spatial distribution analyses partially explains the 
higher exposure of  PM10, where traffic and industry pro-
cesses are their principal sources (Querol et al. 2008), on 
deprived conditions and elderly people. Clusters of elderly 
people were found in the municipalities of Cuauhtémoc, 
Miguel Hidalgo and Venustiano Carranza, where the high 
proportion of this age group is due to lower fecundity rates 
and better medical services (Negrete 2003) than in other 
areas of the city. These areas are also (particularly Cuauhté-
moc and Miguel Hidalgo), where most of the public services 
and jobs in Mexico City are located (Instituto de Políticas 
para el Transporte y el Desarrollo ITDP México 2015), 
attracting much commuter traffic. From 2008 to 2012 the 
vehicular fleet increased by close to 11%, this figure was 
elaborated based on the information of ‘report of the qual-
ity of the air’ (Instituto Nacional de Ecología y de Cambio 
Climatico (INECC) 2013). Moreover, Cuauhtémoc has two 
of the main and busiest avenues: ‘Paseo de la Reforma’ and 
‘Insurgentes’. Therefore, policies, such a congestion tax, in 
these two municipalities, that incentivise the use of low-
emission public transport and less frequent vehicle usage 
would benefit the health of people living there by lowering 
the level of  PM10 emitted by vehicles. Such spatially targeted 
policy has been applied in cities like Stockholm, Gothen-
burg and London (Leape 2006; Börjesson and Kristoffers-
son 2018). Central London, after the introduction of conges-
tion charge in February 2003, experienced a reduction of 
about 20 percent on automobile traffic (Litman 2005). This 
allowed to lower the pollution emitted by vehicles (Leape 
2006). Note that these policies may need an improvement 
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of public transportation in advance; as it was the case in 
London, where there was an expanded bus lane system and 
major renovations to the subway system (Litman 2005).

The association of deprived conditions and  PM10 can be 
explained using the arguments of Calderón-Garcidueñas and 
Torres-Jardón (2012) that less economically privileged peo-
ple spend considerable time in the traffic or close to it, walk 
long distances to take the crowded transport or work on the 
streets. In that sense, an improvement in low-emission pub-
lic transport, as mentioned above, would benefit the poorer 
communities as well. Moreover, note that the spatial analysis 
identified clusters of AGEBs with lower SES particularly in 
the north area, which includes the municipality of Gustavo 
A. Madero, which is recognised as one of the areas with the 
greatest concentration of people in poverty (CONEVAL n.d.). 
This northern area (mainly the municipality of Azcapotzalco 
and Gustavo A. Madero) is also characterised by having many 
industries and main roads (Air Quality in Mexico City 2014). 
This industrial character in the north is related to the availabil-
ity of nearby facilities, new housing construction, and better 
quality infrastructure (Cruz and Garza 2014). Therefore, spa-
tially targeted policies could be implemented, in this northern 
area, to reduce  PM10 pollution from the industries there. This 
could be done by either obligating and/or incentivising bet-
ter housekeeping, material substitution, recycling or process 
innovations (Cairncross 1992; Willig 1994).

Our findings should be interpreted with some caution due 
to some methodological and data limitations. First, data on 
air pollution could be improved using different modelling 
methods such as Atmospheric Dispersion Modelling System 
(Havard et al. 2009), Land-use Regression Models (Ryan 
and LeMasters 2007) or other models such as Integrated 
Meteorological-Emission Models or Hybrid Models. This 
is because these models use more variables and information 
such as traffic volumes, land-use, meteorology, topography 
to accurately model air pollution. However, it is because 
of this extra information and special equipment and soft-
ware (Jerrett et al. 2005a) that we could not use them in 
the study. We applied the universal kriging interpolation, 
which is based not only on the distance between the meas-
ured points but also on the overall spatial arrangement of 
the measured points to overcome this issue. One advantage 
of applying the kriging approach is the production of stand-
ard errors which quantify the degree of uncertainty of the 
spatial prediction, allowed us to identify the places with 
less reliable interpolation values (Mulholland et al. 1998). 
In that sense, we expect  PM10 pollution estimates in the 
south, where there are sparser data due to fewer monitor-
ing stations, to have larger standard errors; meaning, that 
these errors may influence the results. As monitoring sta-
tions are not equally distributed across space, this problem 
is often acknowledged in the literature. For example, Künzli 
et al. (2005) obtained larger standard errors, as the result of 

universal kriging, on the periphery of Los Angeles metro-
politan area with 23 monitoring stations. We followed Kün-
zli et al. (2005) study by carrying out a sensitivity analysis 
to check the robustness of our regression outcomes, com-
ing from the interpolated pollution values, especially for 
 PM10. This involves down-weighting estimates with larger 
errors, in weighted least-square models (the weights speci-
fied as the inverse of the standard errors) and comparing 
the results with the main models with the universal krig-
ing estimates. Thus, we accounted for the standard errors, 
obtained from the kriging interpolation, in the regressions. 
The outcomes were robust and similar to what we found in 
the original regression model, especially for ozone (results 
available in Fig. 4 in Appendix). Figure 4 shows the coef-
ficients of elderly, children and deprivation index with the 
different quantiles of PM10 and ozone (each dot represents 
a percentage quantile from 10 to 90%). There was a varia-
tion of six units for elderly people after controlling for the 
standard errors for  PM10, but the results for the other vari-
ables were quite similar to the original regressions. A sec-
ond limitation of the approach is that we did not consider 
the mobility of people. It is difficult to measure the activity 
patterns of people, which is often ignored in the literature 
(Havard et al. 2009; Fecht et al. 2015); for example, where 
they spend more time, at home or in their jobs, and how far 
away they live from their jobs. This would require exten-
sive data on behavioural patterns that were not available for 
our study site. Finally, while we recognised that alternative 
theories and approaches address the relationship between 
income and pollution (Martinez-Alier 1995; List and Gal-
let 1999; Yaduma et al. 2015; Stern 2017), we followed the 
existing literature on environmental justice (Rissman et al. 
2013; Carrier et al. 2014; Fecht et al. 2015) by not making 
a specific attempt to explain the co-location of vulnerable 
groups and pollution. This would have required us to control 
for the problem of reverse-causality (i.e., income may affect 
pollution through greater production levels, or the amount 
of pollution may affect income as people of low SES live in 
cheaper, but often also more polluted, areas), and for impor-
tant omitting variables such as political or regulatory efforts, 
strong enforcement institutions, research and development 
activities or infrastructure (on this point see Lin and Lis-
cow 2012; Germani et al. 2014). An alternative, longitudinal 
approach may have allowed us to gain additional insights 
into the chronological causal relationships that contribute 
to environmental inequalities (Briggs et al. 2008; Havard 
et al. 2011; Rissman et al. 2013), but such an approach is 
dependent on a suitable time series of data. Here, we used a 
cross-sectional approach to analyse the evidence for environ-
mental injustice across all AGEBs in Mexico City, more than 
two thousand, facing heterogeneous levels of air pollution 
(particularly for those at the edge of the distribution, lowest 
and highest values).
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Aside from these caveats, this study provides some dis-
tinct advantages over much previous work. We used spatial 
quantile regression, which shows the heterogeneous spatial 
distribution of the link between air pollution and vulnerable 
social conditions, with stronger unequal exposures for SES 
and elderly people in locations with upper levels of concen-
trations of  PM10. Moreover, we used AGEBs, the smallest 
geographical units in Mexico City, and accounted for the 
spatial effect of clustering of the data set, and hence avoided 
producing biased estimators. These methodological aspects 
all contributed to enhancing the robustness of the results.
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Appendix

See Figs. 3 and 4.
Fig. 3  a  PM10 monitoring stations across urban AGEBs in Mexico 
City in 2015. b Ozone monitoring stations across urban AGEBs in 
Mexico City in 2015
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