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ABSTRACT

The region of the second ionization of helium in the Sun is a narrow layer near the surface.

Ionization induces a local change in the adiabatic exponent Ŵ1, which produces a characteristic

signature in the frequencies of p modes. By adapting the method developed by Monteiro,

Christensen-Dalsgaard & Thompson, we propose a methodology for determining the properties

of this region by studying such a signature in the frequencies of oscillation.

Using solar data we illustrate how the signal from the helium ionization zone can be isolated.

Using solar models which each use different physics – the theory of convection, equation of

state and low-temperature opacities – we establish how the characteristics of the signal depend

on the various physical processes contributing to the structure in the ionization layer. We further

discuss how the method can be used to measure the solar helium abundance in the envelope

and to constrain the physics affecting this region of the Sun.

The potential usefulness of the method we propose is shown. It may complement other

inversion methods developed to study the solar structure and to determine the envelope helium

abundance.

Key words: equation of state – Sun: abundances – Sun: helioseismology – Sun: interior –

Sun: oscillations – stars: abundances.

1 I N T RO D U C T I O N

The direct determination of the helium abundance in the solar near-

surface layers is difficult and subject to uncertainty, although it is

very important to the modelling of the internal structure and evo-

lution of the Sun (see Kosovichev et al. 1992 for a comprehensive

discussion of the sources of uncertainty). It is usually taken as a fit-

ting parameter of an evolutionary sequence that provides the correct

luminosity for the Sun at the present age. The ability to constrain

this parameter to have the observed value for the Sun is important in

order to improve the mass-loss estimates and early evolution of the

Sun, as well as to test the effects of mixing and settling on stellar

evolution.

Several attempts have been made to use solar seismic data

to calculate the abundance of helium (Y) in the solar enve-

lope (Dziembowski, Pamyatnykh & Sienkiewicz 1991; Vorontsov,

Baturin & Pamyatnykh 1991, 1992; Christensen-Dalsgaard & Pérez

Hernández 1992; Pérez Hernández & Christensen-Dalsgaard 1994;

Antia & Basu 1994; Basu & Antia 1995; Gough & Vorontsov 1995;

Richard et al. 1998). However, the dependence of the determination

⋆E-mail: mjm@astro.up.pt (MJPFGM); Michael.Thompson@sheffield.

ac.uk (MJT)

on other aspects, in particular on the equation of state, means that

there are serious difficulties in obtaining an accurate direct seismic

measurement of the envelope abundance of helium (Kosovichev

et al. 1992; Pérez Hernández & Christensen-Dalsgaard 1994; Basu

& Christensen-Dalsgaard 1997). The sensitivity of the modes to the

helium abundance is primarily provided by the change of the local

adiabatic sound speed c as a result of ionization. Such sensitivity is

given by the behaviour of the first adiabatic exponent, Ŵ1, because

c2 ≡ Ŵ1 p/ρ, where p and ρ are the pressure and density respec-

tively, and consequently the sensitivity is strongly dependent on the

assumed equation of state and on other physics relevant for the re-

gion where the ionization takes place. This is the main reason why

the seismic determination of the envelope abundance of helium is

highly complex.

Here we propose a method complementary to those used pre-

viously, by adapting the procedure developed by Monteiro et al.

(1994, hereafter MCDT) and Christensen-Dalsgaard, Monteiro &

Thompson (1995, hereafter CDMT ). By using the solar frequen-

cies in a different way, and thus providing a direct probe to the region

of ionization, we aim to provide a method in which the various ef-

fects at play in the ionization zone can be isolated, and therefore

to construct a procedure to access the chemical abundance. Local-

ized variations in the structure of the Sun, such as occur at the base

of the convective envelope (see MCDT and Monteiro 1996) and
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1188 M. J. P .F. G. Monteiro and M. J. Thompson

in the region of the second ionization of helium (Monteiro 1996),

create a characteristic signal in the frequencies of oscillation. The

properties of such a signal, as measured from the observed frequen-

cies, are related to the location and thermodynamic properties of

the layer within the Sun in which the sharp or localized variation

occurs. The main advantage we see in this method is the possibility

of utilizing different characteristics of the signal to distinguish dif-

ferent aspects of the physics of the plasma in the region where the

signal is generated. In particular we may be able to separate the ef-

fects arising from convection, the low-temperature opacities and the

equation of state from the quantification of the helium abundance

that we seek to obtain. Here we mainly concentrate on separating

these distinct contributions in order to establish the dependence of

the parameters of the signal in the frequencies on the various as-

pects of the structure in the ionization region. Using a variational

principle we determine how the zone of the second ionization of

helium can indeed be considered as a localized perturbation to an

otherwise ‘smooth’ structure, generating a characteristic signal in

the frequencies of the modes.

We note that simplified versions of the expression for the signal

discussed here have been applied successfully to cases in which

there are only very low-degree frequencies. The signal has been

fitted either to the frequencies of low-degree modes (Monteiro &

Thompson 1998; Verner, Chaplin & Elsworth 2004), or to frequency

differences (Miglio et al. 2003; Basu et al. 2004; Vauclair & Théado

2004; Bazot & Vauclair 2004; Piau, Ballot & Turck-Chièze 2005).

Here we obtain the expression for the general case, in which there

are also modes of higher degree, with the low-degree applications

being a special case. We also demonstrate the method for making

use of the information in moderate-degree data available only for

the Sun. When using modes with degree above 4 or 5 we can avoid

using frequencies affected by the base of the convection zone and

may hope to achieve a much higher precision in the results, as many

more frequencies with lower uncertainties can be used.

In this work we present an analysis of the characteristics of the

signal under a variety of conditions. Several models containing dif-

ferent physics and envelope helium abundances are used to test the

method in order to prepare the application to the observed solar

data.

2 T H E R E G I O N O F T H E S E C O N D

I O N I Z AT I O N O F H E L I U M

In order to model the sensitivity of the modes to this region we

must first try to understand how ionization changes the structure.

Secondly, we need to estimate how the modes are affected by such a

region. The details of the derivations are discussed in the Appendix,

but the assumptions and the main expressions are reviewed and

analysed here.

2.1 Properties of the ionization region

Because the helium second ionization zone (He II ionization zone)

is sufficiently deep (well within the oscillatory region of most of

the modes) we propose to adapt the method discussed in MCDT to

the study of this layer. The contribution to the frequencies arising

from a sharp variation in the structure of the Sun can be estimated

by using a variational principle for the modes to calculate the effect

due to such a localized feature. In the work by MCDT the feature

was the base of the convection zone, and the sharp transition was

represented by discontinuities in the derivatives of the sound speed.

Because of the size of the ionization region when compared with the

Figure 1. Plot of the adiabatic exponent Ŵ1 for various solar models. As a

reference we have calculated a model (Z0) in which the second ionization

of helium has been suppressed. The other three models are calculated using

different equations of state. (See Table 1 for further details of the models.)

The second ionization of helium takes place around an acoustic depth of

600 s, corresponding to the depression in the value of Ŵ1.

local wavelength of the modes, that representation is inadequate for

reproducing the effect on the frequencies in the ionization region.

Here we must, instead, consider how the ionization changes the

first adiabatic exponent Ŵ1 ≡ (∂ ln p/∂ ln ρ)s (the derivative at con-

stant specific entropy s) locally, generating what can be described

as a ‘bump’ over a region of acoustic thickness of about 300 s (see

Fig. 1). This allows us to estimate how the frequencies of oscillation

are ‘changed’ as a result of the presence of this feature in the struc-

ture of the Sun. The effect will be mainly taken into account through

the changes induced in the adiabatic gradient Ŵ1 by the ionization.

Other thermodynamic quantities are also affected, but the changes

in the local sound speed are mainly determined by changes in

Ŵ1. Therefore, we will calculate the dominant contribution to the

changes in the frequencies by establishing the effect on the modes

resulting from changes of the adiabatic exponent.

Däppen & Gough (1986) and Däppen, Gough & Thompson

(1988) have proposed a method based on the same principle, using

the sensitivity of the sound speed to changes in the adiabatic expo-

nent. Using this sensitivity they calibrate a quantity that is associated

with ionization in order to try to measure the helium abundance in

the solar envelope from seismic data. Most methods, however, have

difficulties in removing the dependence of the calibration on the

physics of the reference models, making it difficult to obtain a value

for the abundance. This is the problem we try to address in this con-

tribution, by developing a method able to measure in the frequencies

the effect of the ionization and its dependence on the abundance,

isolated as much as possible from the other uncertainties.

2.2 A variational principle for the effect on the frequencies

A variational principle for non-radial adiabatic oscillations, assum-

ing zero pressure at the surface located at radius R as a boundary

condition, can be formulated. It is possible to consider only higher-

order acoustic modes, for which we can neglect the perturbation

in the gravitational potential. The outcome of such a variational

principle is an estimate of how the frequencies change as a re-

sult of changes in (Ŵ1 p) and ρ. This is described and discussed in

Appendix A.
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Second ionization region of helium in the Sun 1189

Figure 2. (a) Plot of the differences (δŴ1/Ŵ1) between two models, one with

and the other without the second ionization of helium, versus the acoustic

depth τ . These correspond to models Z0 and Z1 discussed in the text and de-

scribed in Table 1. The dotted line represents our assumed smooth reference

structure. (b) The change of Ŵ1, relative to the smooth reference structure,

is shown. The parameters represented schematically, to be determined from

the characteristics of the signal in the frequencies, are: δd, the amplitude of

the differences at τ d; and β, the half-width of δŴ1/Ŵ1 (values taken from

Table 3). Also indicated is the value of τ̄d as found from the frequencies.

In order to model the signature of the ionization zone we repre-

sent the effect of the second ionization in terms of the changes it

induces in the adiabatic exponent Ŵ1. Such a change (see Fig. 2) is

approximately represented by a ‘bump’ of half-width β in acoustic

depth, and relative height

δd ≡

(

δŴ1

Ŵ1

)

τd

, (1)

located at a radial position corresponding to an acoustic depth τ d.

Here, and in the following, the acoustic depth τ at a radius r is

defined as

τ (r ) ≡

∫ R

r

dr

c
, (2)

where R is the photospheric radius of the Sun.

Relative to the frequencies of a reference model, assumed to be

‘smooth’ and corresponding approximately to a model with no He II

ionization region, we find that the bump changes the frequencies in

such a way that there is a periodic component of the form

δω ∼ A(ω, l) cos 	d (3)

(see Appendix A), where the amplitude, as a function of mode fre-

quency ω and mode degree l, is given by

A(ω, l) ≡ a0

1 − 2△/3

(1 − △)2

sin2[βω(1 − △)1/2]

βω
, (4)

and the argument is

	d ≡ 2

[

ω

∫ τd

0

(1 − △)1/2 dτ + φ

]

. (5)

Here the factor in � represents the geometry of the ray path, ac-

counting for deviation from the vertical when the mode degree is

non-zero. It is associated with the Lamb frequency, as given below

(equations 8 and 9). In fact, because the ionization zone is close to

the surface, and provided we are not using very high-degree data,

we can neglect △ in the expression for the argument 	d; we can

similarly neglect the effect of the mode degree on the surface phase

function φ. Consequently, for the ionization zone the expression for

the argument becomes

	d ∼ 2 (ωτd + φ) ≃ 2 (ωτ̄d + φ0) . (6)

In the asymptotic expression used for the eigenfunction (see equa-

tion A4), the phase φ depends on the mode frequency and degree

(see MCDT for details). Here we have expanded the phase to first

order in frequency, by writing φ(ω) ≃ φ0 + aφω. From this it fol-

lows that τ̄d ≡ τd + aφ , while the frequency-independent term of

the phase is now φ0.

The amplitude of the signal is proportional to a0, a quantity given

by

a0 =
3δd

2τt

, (7)

where τ t ≡ τ (0) is the total acoustic size of the Sun. The small factor

△, present in the amplitude, is given by

△ = △d

l(l + 1)

l̃(l̃ + 1)

ω̃2

ω2
, (8)

where the value of △d is given by

△d =
l̃(l̃ + 1)

ω̃2

(

c

r

)2

τ=τd

, (9)

and l̃ and ω̃ are two reference values. These values are chosen taking

into account the expected behaviour of the signal and the set of

modes used, as discussed below.

In order to compare the amplitude as found for different models

it is convenient to define a reference value Ad, given by

Ad ≡ A(ω̃, l̃) = a0

1 − 2△d/3

(1 − △d)2

sin2
[

βω̃ (1−△d)1/2
]

βω̃
. (10)

The parameters of the signal relevant to characterizing the lo-

cal properties of the ionization zone, as given in equation (3), are

τ̄d, β, a0 and △d.

The values of τ̄d and △d can be used to measure mainly the

location of the ionization zone; they both vary strongly with distance

to the surface. The acoustic depth is a cumulative function of the

sound speed behaviour over all layers from the surface to a particular

position, whereas △d is a local quantity, which is not affected by

the behaviour of the sound speed in the layers above the ionization

zone.

The values of β and a0 (or δd) are expected to be directly related

to the local helium abundance, because the size of the bump will

be determined by the amount of helium available to be ionized.

These parameters are also expected to be strongly affected by the

equation of state, and, to a lesser extent, by other aspects of the

physics affecting the location of the ionization zone (τ d). We may

hope, however, to be able to use the other parameters to remove this

dependence, while retaining the strong relation between the bump

and the helium abundance (Y).

2.3 Measuring the signal in the frequencies

Our first goal is to find the five parameters describing the signal from

the frequencies of oscillation. In order to do that we must isolate a

C© 2005 RAS, MNRAS 361, 1187–1196
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1190 M. J. P .F. G. Monteiro and M. J. Thompson

signature of about 1 µHz in amplitude, which is superimposed on

the actual frequencies. We do so by isolating, in the frequencies,

the periodic signal described by equation (3) using a non-linear

least-squares iterative fit to find the best set of parameters. The

method used is an adaptation of the one proposed by MCDT; for the

present problem we must redefine the characteristic wavelength of

the signal to be isolated (quantity λ0 in MCDT), as it is significantly

larger than for the signal from the base of the convective envelope.

The parameters describing the signal (equation 3), and found by our

fitting procedure, are as follows:

τd, φ0, a0, △d, β .

We choose a set of modes that cross the ionization zone, but that

do not cross the base of the convection zone. By removing modes

that penetrate deep into the Sun (low-degree modes), we avoid the

contamination coming from the signal generated at the base of the

convection zone (see MCDT). When selecting only modes of higher

degree (between 45 and 100), however, it becomes necessary to

include the contribution from the mode degree to the amplitude of

the signal. This is the reason why it is necessary to include the

parameter △d in the fitting. This parameter is not necessary when

studying other stars (Monteiro & Thompson 1998; Basu et al. 2004;

Piau et al. 2005), resulting in a simplified description of the expected

observed behaviour. In the case of the Sun it is highly advantageous

to use all available high-degree modes that cross the ionization zone.

The modes considered correspond to the ones available in solar

data, having degrees and frequencies such that the lower turning

point is between 0.75 and 0.95 of the solar radius. The latter limit

ensures that the modes cross the ionization zone, while the for-

mer avoids contamination from the signal originating at the base of

the convective envelope (see, for example, CDMT and references

therein). These conditions define a set of typically about 450 modes

having frequency ω/2π in the range [1500, 3700] µHz, and with

mode degree in the range 45 � l � 100.

As we are using only modes of high degree in this work, the

reference values preferred in the fitting of the signal are

l̃ = 100 and
ω̃

2π
= 2000 µHz.

The first value is an upper limit for modes that cross beyond the

ionization zone, while the value of ω̃ corresponds to the frequency

region in which the signal is better defined. These values are only

relevant for normalizing the parameters fitted for different models.

For solar observations, only frequencies with a quoted observa-

tional error of below 0.5 µHz are included. We ensure consistency

of the data sets by restricting the selection of mode frequencies from

the models to the modes present in the solar data after applying the

above selection rules.

We stress that the method adopted for removing the smooth com-

ponent of the frequencies is a key assumption in the process of fitting

the signal. Here we use a polynomial fit with a smoothing parame-

ter on the third derivative (see CDMT). In any case, as long as the

analyses for the different models and for the solar data are consis-

tent, the comparison of the parameters will be independent of the

choice of how to describe the smooth component. Such consistency

is ensured by using exactly the same set of frequencies and the same

numerical parameters for the fitting for each model.

2.4 The signal in the solar data

To illustrate the signal extraction, the method proposed here was

applied to an analysis of solar seismic data from MDI on the SOHO

Figure 3. (a) Residuals left after a smooth component of the frequencies,

as a function of mode order and degree, is removed. The data are from

MDI/SoHO, with the error bars corresponding to a 3σ of the quoted obser-

vational errors. (b) Plot of the signal isolated, and shown in panel (a), after

division by the amplitude function as given by equation (4) when using the

values of (a0, δd, β, △d) found in the fitting. Modes with degree below l =

60 are shown as filled circles, while modes with a higher value of the degree

are represented by open circles. The line indicates the fitted periodic signal

as expected from equation (3).

spacecraft (Scherrer et al. 1995). The signal was isolated as de-

scribed above for the models. The fitted signal of the Sun is shown

in Fig. 3(a), together with the error bars. In order to illustrate how

well the expression for the signal (equation 3) fits the data points

we show in Fig. 3(b) the signal in the frequencies normalized by

the amplitude as given in equation (4). The quality of the fit done

with equation (3) confirms the adequacy of the first-order analy-

sis developed in Appendix A leading to the expression given by

equation (4).

The values of the parameters found for the data are given in Ta-

ble 1. From Monte Carlo simulations we have estimated the uncer-

tainty in the determination of the parameters resulting from observa-

tional uncertainties, as indicated by the quoted observational errors.

The values found, at the 3σ level, are also listed in Table 1. It is clear

that, as a result of the large amplitude of this signature (above 1 µHz

at ω/2π = 2000 µHz), the precision with which the parameters are

determined is very high. As long as the method to isolate this char-

acteristic signature is able to remove the ‘smooth’ component, the

results can be used with great advantage for analysing the zone of

the second ionization of helium in the Sun.

3 S O L A R M O D E L S W I T H D I F F E R E N T

P H Y S I C S

In order to establish how sensitive the various characteristics of the

signal are to the properties of the ionization zone, and therefore to the

aspects of the Sun that affect the ionization zone, we consider various

static models of the Sun calculated with the same mass, photospheric

C© 2005 RAS, MNRAS 361, 1187–1196
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Second ionization region of helium in the Sun 1191

Table 1. Parameters obtained by fitting the observed solar frequency data

with the expression for the signal as given in equation (3). The quantities τ d

and β are given in seconds, while the amplitudes (a0 and Ad) are given in

µHz. Note that Ad is not a fitting parameter, as it is derived from the other

parameters using equation (10). The standard deviations σ are estimated

from 200 simulations of the effect of the observational uncertainties on the

determination of the parameters.

τ̄d φ0 a0/2π Ad/2π β △d

Sun 741.2 1.743 1.987 2.655 141.3 0.493

3σ 1.9 0.027 0.056 0.037 0.96 0.015

radius and luminosity. The profile of the helium abundance in the

models is obtained by calibrating with a constant factor a prescribed

abundance profile from an evolution model with the age of the Sun

(without settling).

We note that the imposition of the same radius and luminosity for

all models is the key difference between the analysis presented here

and the work by Basu et al. (2004). If the models are not required

to have the same luminosity and radius as the Sun, the properties of

the ionization zone are not affected in the same way. Consequently,

the behaviour of the amplitude of the signal in this case is different

from what we find when the above two conditions are imposed on

the models.

The aspects of the physics being tested here are the equation

of state (EoS), the theory of convection and the opacity. All these

aspects affect the ionization zone by changing its location, size and

thermodynamic properties.

All models were calculated as in Monteiro (1996; see also Mon-

teiro, Christensen-Dalsgaard & Thompson 1996). These are not in-

tended to give an accurate representation of the Sun, but simply to

illustrate the usefulness of the method we propose in the study of a

particular region of the solar envelope.

As the simplest possible EoS we have used a Saha equation of state

with full ionization at high pressure – this corresponds to SEoS in

Table 2. As a more complete EoS we have used the CEFF equation of

Table 2. Solar models and their helium (Y) abundances. Also indicated

are the equation of state (EoS): SEoS – Simple Saha equation of state with

pressure ionization, and CEFF (cf. Christensen-Dalsgaard & Däppen 1992);

the opacity: SOp – simple power-law fit of the opacities, and Kur – low-

temperature opacities from Kurucz (1991); and the formulation for mod-

elling convection: MLT – standard mixing-length theory (Böhm-Vitense

1958, parametrized as in Monteiro et al. 1996), and CGM – Canuto et al.

(1996). See the text for a description of the parameter f ǫ used in the calcu-

lation of the emissivity.

Model EoS Opacity Convection Y f ǫ

Z0 SEoS SOp MLT 0.24615

Z1 SEoS SOp MLT 0.24608

Z2 SEoS SOp CGM 0.24608

Z 3l CEFF SOp MLT 0.24149 0.8

Z3 CEFF SOp MLT 0.24981

Z 3h CEFF SOp MLT 0.25667 1.2

Z4 CEFF SOp CGM 0.24981

Z 5l CEFF Kur MLT 0.24148 0.8

Z5 CEFF Kur MLT 0.24980

Z 5h CEFF Kur MLT 0.25667 1.2

Z 5v CEFF Kur MLT 0.26246 1.4

Z6 CEFF Kur CGM 0.24980

Figure 4. Plot of the difference in Ŵ1 between each model considered and

the model without the second ionization of helium. See Table 2 for the details

of each model. Only the region around the second ionization of helium is

shown, corresponding to the negative bump around an acoustic depth of

650 s.

state as described in Christensen-Dalsgaard & Däppen (1992). For

the opacities we have considered a simple power-law fit (SOp), or

the Rosseland mean opacity tables at low temperatures from Kurucz

(1991). To include convection we have taken the standard mixing-

length theory (Böhm-Vitense 1958, parametrized as in Monteiro

et al. 1996) or the more recent CGM model (Canuto, Goldman &

Mazzitelli 1996).

As our reference model, in order to illustrate the changes arising

from the ionization of helium, we have calculated a very simple

solar model (Z0) with suppressed He II ionization, by setting the

ionization potential to zero. The helium abundance found for each

model corresponds to the value that fits the boundary conditions.

The value is used to scale a prescribed chemical profile taken from

an evolved solar model.

The behaviour of the adiabatic exponent for some of the models

(see Table 2), relative to our reference model (Z0), is illustrated in

Fig. 4. There is a clear difference in the location of the ionization

zone (τ d) when a different EoS is used. The effects of changes in

the formulation of convection or in the opacities are much smaller.

In order to have models with the same envelope physics, but

different helium abundances, we have calculated solar models with

the energy generation rate changed by a prescribed factor f ǫ in the

emissivity. These are models Z 3l,3h and Z 5l,5h,5v, which are similar

to Z3 and Z5, respectively, except for the value of f ǫ , which is now

different from unity. These models have different core structures,

but envelopes with exactly the same set of physics. All differences

between these models in the envelope arise from differences in the

chemical composition. To illustrate the differences we plot in Fig. 5

the differences in Ŵ1 between models with the same physics but

increasing values for the envelope abundance of helium. As the

helium abundance increases, there is a corresponding decrease in

hydrogen, which results in a slight separation in temperature of

the three major ionization regions. Consequently, both ionization

regions for the helium expand towards higher temperatures. As the

bump becomes slightly wider and moves to a higher temperature,

the effect on the frequencies is expected to become smaller.

For all models we have calculated the frequencies of linear adia-

batic oscillations. The set of frequencies for each model, as used

to fit the signature of the ionization zone, is described above.
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1192 M. J. P .F. G. Monteiro and M. J. Thompson

Figure 5. (a) Plot of the adiabatic exponent Ŵ1 for all models ‘5’, calculated

with the same physics but different surface helium abundances as imposed

by f ǫ (see Table 2). The hydrogen and both helium ionization regions are

shown. (b) Plot of the differences in Ŵ1 between models Z 5, 5h, 5v and model

Z 5l. See Table 2 for the details of each model. Only the region around the

second ionization of helium (indicated by the arrow) is shown.

The parameters obtained in fitting equation (3) to the frequen-

cies of the models listed in Table 2 (excluding Z0) are given in

Table 3.

4 T H E E F F E C T O F T H E P H Y S I C S O N T H E

C H A R AC T E R I S T I C S O F T H E S I G NA L

The set of solar models considered here, and listed in Table 2, covers

three major aspects of the physics that determines the surface struc-

ture of the models, namely the equation of state, the low-temperature

opacities, and the formulation for convection (defining the supera-

diabatic layer). In order to use the diagnostic potential of this char-

acteristic signature (as given by equation 3) in the frequencies we

need to understand how each parameter describing the signal is af-

fected by a specific aspect of the physics defining the structure of

the envelope.

One would expect the shape of the bump to be strongly deter-

mined by the EoS. However, any change in the structure that affects

the location of the ionization zone will necessarily affect the char-

acteristics of the Ŵ1 profile. Consequently, we need first to identify

the parameters that depend more strongly on the location – namely

τ̄d and △d.

Table 3. Parameters obtained by fitting the frequency data for the models

with the expression for the signal as given in equation (3). The quantities τ d

and β are given in seconds, while the amplitudes (a0 and Ad) are given in

µHz. Note that Ad is not a fitting parameter, as it is derived from the other

parameters using equation (10).

Model τ̄d φ0 a0/2π Ad/2π β △d

Z1 718.0 2.588 1.634 2.834 142.5 0.604

Z2 724.8 2.525 1.671 2.862 141.9 0.599

Z 3l 729.9 1.950 2.500 3.251 146.0 0.484

Z3 730.4 1.951 2.380 3.140 144.7 0.490

Z 3h 730.4 1.951 2.314 3.066 144.3 0.491

Z4 739.9 1.859 2.353 3.151 143.3 0.495

Z 5l 737.7 1.874 2.429 3.241 143.7 0.494

Z5 737.8 1.876 2.342 3.145 143.1 0.496

Z 5h 737.5 1.880 2.278 3.072 142.7 0.498

Z 5v 736.8 1.890 2.205 3.002 141.7 0.502

Z6 746.4 1.790 2.280 3.141 141.3 0.507

The changes in the upper structure of the envelope are expected to

have a direct effect on the turning point of the modes. Consequently,

we need to look at the parameters that may be affected by the upper

reflecting boundary – in particular φ0.

Finally, the area of the bump in Ŵ1 in the ionization zone should

reflect the local abundance of helium, if the location is well defined.

Therefore we will look at a0 and β in order to identify how the

helium abundance Y defines the characteristics of the signal in the

frequencies.

4.1 The location of the ionization zone

The most easily identifiable characteristic of the signal is its period.

This quantity depends strongly on τ d, but, as discussed when de-

riving equation (6), the period also contains a contribution from the

upper turning point of the modes (where there is a phase shift of the

eigenfunction). This means that the period, or, more precisely, τ̄d,

that we measure is not necessarily a good estimate of the location

τ d of the ionization zone.

Fig. 6(a) shows the value of τ̄d, as found from fitting the signal

in the frequencies, versus the value of τ d as determined from the

location of the local minimum of Ŵ1 in the model. There is a differ-

ence of up to about 140 s between τ̄d and τ d, and one is not simply

a function of the other. The difference between the two comes from

aφ , which measures the leading-order frequency dependence of the

phase transition that the eigenfunctions undergo at the upper turning

point. This will be strongly affected by the aspects of the physics

that change the structure of the surface, namely convection, EoS, the

low-temperature opacities, and the structure of the atmosphere. Con-

sequently, we have to use some caution when taking the parameter

τ̄d from the fit to estimate the location of the ionization region.

As an alternative, it is possible to consider one of the other pa-

rameters that depend on the position of the ionization zone, namely

△d. This parameter is given in Table 3 for all models and shown in

Fig. 6(b) as a function of the actual acoustic location of the ioniza-

tion region. The value of △d, defined in equation (9), is not sensitive

to the layers near the photosphere, as its value is determined ex-

clusively by the sound speed at the ionization zone. However, the

determination of this term is associated with a small correction in

the amplitude, which makes it more sensitive to the observational

errors when fitting the frequencies.

Both panels in Fig. 6 show the solar values of τ̄d and △d with 3σ

uncertainties. The values of △d indicate that all models calculated
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Second ionization region of helium in the Sun 1193

Figure 6. Plot of (a) the fitted acoustic depth τ̄d and (b) the correction

term △d versus the acoustic depth τ d as determined from the models and

corresponding to the local minimum in Ŵ1 (see Fig. 1). Filled symbols are

for models using the CEFF equation of state, while crosses are for models

calculated using a simple Saha equation of state. The filled circles are for

models having the same simple opacity (power law) but different theories of

convection, while the filled diamonds are for models in which the opacity at

low temperatures is from Kurucz. The values found for the solar data are also

shown in both panels, with 3σ error bars (dashed horizontal lines) resulting

from the observational uncertainties.

with the CEFF equation of state give, even if only marginally, a

location for the ionization zone consistent with the Sun.

Finally, the structure at the top of the envelope is also expected

to be reflected in the value of φ0. The value of this parameter for all

models is represented in Fig. 7 as a function of the envelope helium

abundance. The largest difference is found when changing the EoS

(about 0.06). Changes in the opacities change φ0, by as much as

0.01, while the theory of convection changes this by about 0.01. It

is interesting to confirm that the fitted value of φ0 is independent

of the helium abundance, as one would expect from the analysis

leading to the expression for the signal. Consequently, φ0 may allow

a separation between the helium abundance and the physics relevant

to the outer layers of the Sun, because it is insensitive to Y whilst

being indicative of some near-surface change that may be required

in the physics.

The solar value for φ0 is also shown in Fig. 7. Adjustments in

the near-surface layers seem to be necessary in order to produce

models that have a value of φ0 consistent with the Sun. Changes in

the superadiabatic layer or in the surface opacities may be some of

the options available for reconciling the models with the solar data.

4.2 The equation of state

From the analysis of the results listed in Table 3, and as discussed

in the previous section, the EoS is the most important factor in

Figure 7. Plot of the phase φ0 of the signal versus the envelope helium

abundance Y for all models. The symbols are the same as in Fig. 6. The

dotted lines illustrate the correlation among models with the same physics

but different values of the surface helium abundance Y . The value found for

the solar data is also shown, with 3σ error bars (dashed horizontal lines)

resulting from the observational uncertainties.

Figure 8. Plot of the estimated width of the bump, as given by β, versus the

value of △d, providing an indication of the location of the ionization zone.

The symbols are the same as in Fig. 6. The dashed line indicates a linear fit

to the models with the same EoS. The values found for the solar data are also

shown, with 3σ error bars resulting from the observational uncertainties.

defining the characteristics of the signal. In Fig. 8 we show the

width parameter β as a function of △d (a proxy for the location).

Models that have the same EoS (CEFF) lie on a common locus in

this diagram, as indicated by the dotted line. The position along this

line of models built with the CEFF varies according to changes in

the convection or the surface opacities. Models Z1 and Z2, built with

a different EoS, lie in a different region of the diagram. Thus we

claim that, with the location of the ionization zone fixed, the width

of the bump in Ŵ1 is mainly a function of the EoS, as expected.

Consequently, after using φ0 to test the surface physics, it is

possible to combine the constraints provided by △d and β to ob-

tain a direct test on the EoS and the location of the ionization

zone.

Fig. 8 also includes the parameters found for the solar data. These

are marginally consistent with the expected behaviour found using

models calculated with the CEFF equation of state. Other options

for the EoS must be considered in order to make the models more

consistent with the Sun.
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1194 M. J. P .F. G. Monteiro and M. J. Thompson

4.3 The helium abundance in the envelope

From the discussion in the previous sections it follows that any de-

termination of the helium abundance requires a careful tuning of the

models to the correct structure of the envelope. Such a fine tuning

can be performed based on the sensitivity of the eigenfrequencies

to the behaviour of the adiabatic exponent in the region where he-

lium undergoes its second ionization. Note, as discussed above, the

following points.

(i) △d provides a process to place the ionization zone in the model

at the same acoustic depth as for the Sun. This corresponds to adapt-

ing mainly the surface layers of the model (atmosphere and/or con-

vection) in order to place the ionization zone at the same acoustic

location as measured in the Sun by the solar value of △d.

(ii) β can then be used to adjust the EoS (or more probably to

select it from a few candidates) to match the observed behaviour.

This corresponds to verifying that the behaviour of β as a function

of the location (△d) in the models includes the observed solar values

for these two parameters.

(iii) Finally, the parameters τ̄d and φ0 can be combined to adjust

the surface physics in the model, in order to recover the observed

solar values. This corresponds to adjusting the convection (supera-

diabatic region, mainly), opacities (low-temperature range), photo-

sphere, etc., in a complementary way to that which is carried out in

point (i), until the solar values can be recovered with the models.

Note that both parameters are strongly dependent on these aspects

of the physics, but quite insensitive to the actual helium abundance.

Consequently, we are left with one last parameter, connected to

the shape of the bump through δd, which is the amplitude of the

signal a0, or Ad. If the model has been adjusted to the observed data

using the remaining parameters, the amplitude will depend mainly

on the helium abundance in the model, which can now be compared

with the solar abundance. Such a relation provides a measurement of

the helium abundance, which complements the boundary condition

used in the evolution to fit the model to the present-day Sun.

Fig. 9 illustrates how such a dependence of Ad, as defined in

equation (10), could be constructed after the other aspects of the

physics have been adjusted. It is worth noting that, as expected from

Fig. 5, the amplitude decreases with increasing Y , since the changes

in Ŵ1 resulting from changes in the hydrogen abundance dominate

the variations of the bump. This regime for the inverse dependence of

Figure 9. Plot of the reference amplitude (see equation 10) versus the

envelope helium abundance Y . The symbols are the same as in Fig. 6. The

dotted line illustrates the correlation between the helium abundance Y and

the amplitude.

the amplitude of the signal on the abundance of helium is relevant for

stars of low effective temperature. This follows from the overlapping

of the three ionization zones (H I, He I, He II). For stars in which these

are fully separated in temperature it is expected that the amplitude

will increase with the abundance of helium.

As shown above (see Figs 7 and 8), the models used here are not

fully consistent with the physics of the Sun, and seem to be only

marginally consistent regarding the equation of state that has been

used. Consequently, the amplitude Ad, as found for the solar data,

cannot yet be used as an indicator of the helium abundance in the

solar envelope. A more adequate calibration of the surface layers in

the models must be developed before an estimation for Y is inferred

from this parameter.

The simplified models that we are using here to illustrate the

applicability of the method have been calculated by scaling a chem-

ical profile determined without including diffusion and the settling

of helium. This is one of the aspects that needs to be considered in

order to adjust the parameters of the signal for the models to the

solar values. With such a tuning, based on other seismic constraints

and on the parameters of the signal discussed here, we have an in-

dependent procedure to adjust our models to the Sun in this region

near the surface, where the uncertainties in the physics dominate the

structure of the models.

5 C O N C L U S I O N

In this work we have developed a method to constrain the properties

of the helium second ionization region near the surface of the Sun

using high-degree mode frequencies. The method is complementary

to other inversion methods already available and can independently

test properties of this region, and provides a possible direct mea-

surement of the helium abundance in the envelope.

We have shown that some of the parameters characterizing the

signature in the frequencies arising from this region in the Sun are

very sensitive to the EoS used in the calculation of the models, and

so can be used to test and constrain the EoS. Other parameters can

also provide an important test on the physics affecting the surface

regions of the models, namely convection and the low-temperature

opacities. By combining the diagnostic potential of the five param-

eters determined from the data with very high precision, the helium

abundance can be effectively constrained.

Here our main concern was to establish the method and demon-

strate how it can be used to study the He II ionization zone in the

Sun, and the physics that affect the structure of the Sun in that re-

gion. In spite of having used simplified models to represent the Sun

we have illustrated the sensitivity of each parameter to the physics,

establishing an approach that can be followed when adequate up-

to-date evolved solar models are used. In addition to the physical

ingredients addressed here, aspects such as diffusion and settling

and improved opacities have to be implemented in order to provide

a physically consistent value of the helium abundance. A calibra-

tion of the actual solar helium abundance using models with the

best up-to-date physics will be the subject of the second paper in

this series.
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A P P E N D I X A : A VA R I AT I O NA L P R I N C I P L E

F O R T H E H E I I I O N I Z AT I O N Z O N E

We consider here a variational principle, following the procedure

of Monteiro (1996), for describing how the modes are affected by

the presence of the region of the second ionization of helium. We

start by using a variational principle, for small changes of the eigen-

frequencies (ω) arising from small changes of the structure. It can

be written (see Christensen-Dalsgaard et al. 1995, and references

therein) in the form

δω2 =
δ I

I1

, with I1 ∼
1

2
τt E

2
o . (A1)

Here, τ t is the acoustic size of the Sun, and

δ I∼

∫ τt

0

[(

δB1 +
dδB0

dτ

)

E2
r +δB2

dE2
r

dτ
+ δB3

d2E2
r

dτ 2

]

dτ , (A2)

where Er is the normalized radial component of the eigenfunction

(with constant amplitude E0). The acoustic depth τ is defined in

equation (2).

From asymptotic analysis (see MCDT) we also have that, well

inside the turning points and for moderate-degree modes,

d2 Er

dτ 2
∼ −ω2 (1 − △) Er , (A3)

or

Er ∼ E0 cos

[

ω

∫ τ

0

(1 − △)1/2 dτ + φ

]

. (A4)

The changes in the structure relative to the reference (‘smooth’)

model are described with the functions δBi, as given by

δB0

g/c
= −

δρ

ρ
, (A5)

δB1

ω2
=

[

−
1

1 − △
+ 2△ρ − 2

1 − 3△/2

(1 − △)2
(△ρ − △c)

−
1

(1 − △)2

(△ρ − △c)2

4△g

+ 2△g

△(1 − 3△/2)

(1 − △)2

]

δ(Ŵ1P)

(Ŵ1P)

+

[

1

1 − △
− △ρ +

1 − 2△

(1 − △)2
(△ρ − △c)

+
△

(1 − △)2

(△ρ − △c)2

4△g

− △g

△(1 − 2△)

(1 − △)2

]

δρ

ρ
, (A6)

δB2

g/c
=

[

− 2
1 − 3△/2

(1 − △)2
+

1 − △

2(1 − △)2

△ρ − △c

2△g

]

δ(Ŵ1P)

(Ŵ1P)

+

[

1 − 2△

(1 − △)2
+

△

(1 − △)2

△ρ − △c

2△g

]

δρ

ρ
, (A7)

and

δB3 =
1

2

1

1 − △

δ(Ŵ1P)

(Ŵ1P)
+

1

2

△

(1 − △)2

δρ

ρ
. (A8)

where r , ρ, c and g are the distance from the centre, density, adiabatic

sound speed and gravitational acceleration, respectively. We have

also introduced the following quantities:

△ =
l(l + 1)c2

r 2ω2
, (A9)

where l is the mode degree, and

△ρ =
g

ω2c

d

dτ
log

(

g

ρc

)

, (A10)

△c =
g

ω2c

d

dτ
log

(

g

r 2

)

, (A11)

△g =

(

g

ωc

)2

. (A12)
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These are all first-order quantities, compared with unity, because

well inside the resonance cavity of the modes the local wavelength

is significantly smaller than the scale of variations of the equilibrium

quantities.

In order to use the expression for δ I from equation (A2), it is

necessary to replace the term in (dδB 0/dτ ) by integrating by parts

to obtain the following expression:

δ I =

∫ τb

τa

[

δB1 E2
r + (δB2 + δB0)

dE2
r

dτ
+ δB3

d2 E2
r

dτ 2

]

dτ. (A13)

The integration is done only for the region of the ionization zone,

starting at τ a and ending at τ b. Because we are restricting our anal-

ysis to localized variations, it is assumed that the model differences

are zero everywhere else. This does not affect our result since we

will only take those changes in the frequencies that are not affected

by model differences spreading over regions of size of the order of

(or larger than) the local wavelength of the modes.

We recall, from asymptotic analysis, that

E2
r ∼

E2
o

2
cos(	),

dE2
r

dτ
∼ −

E2
0

2
2ω(1 − △)1/2 sin(	),

d2 E2
r

dτ 2
∼ −

E2
0

2
4ω2(1 − △) cos(	).

(A14)

The argument of the trigonometric functions is

	(τ ) ≡ 2

[

ω

∫ τ

0

(1 − △)1/2 dτ + φ

]

. (A15)

After replacing these expressions in the equation for δ I , we find that

2

ω2 E2
o

δ I ∼

∫ τb

τa

{

[

δB1

ω2
− 4(1 − △)δB3

]

cos 	

− 2(1 − △)1/2 δB2 + δB0

ω
sin 	

}

dτ. (A16)

This expression gives the variational principle for perturbations in

the frequencies arising from small changes in the structure, as de-

scribed by δBi.

The next step is to establish the effect on the structure of the ion-

ization zone for helium, relative to a model in which such a localized

effect is not present. In particular, we need to estimate how Ŵ1, P

and ρ are changed from being slowly varying functions of depth to

the actual values they have when the second ionization of helium

occurs. The difference will produce the δ(Ŵ1 P) and δρ responsible

for changing the frequencies, as given in equations (A5–A8). This

will allow us to calculate an expression for the characteristic signal

we want to isolate in the frequencies.

In order to find an expression for the signal we will first consider

that the changes are dominated by Ŵ1. In doing so, we adopt here

a different approach from that in Monteiro (1996), who consider

that the dominant contribution could be isolated in the derivative

of the sound speed. We do so because the effect of the ionization

is better represented as a ‘bump’ in Ŵ1 (see Figs 1 and 2), extend-

ing over a localized region of the Sun. Therefore we retain the

terms for δŴ1, and neglect, as a first approximation, the contribu-

tions from δρ and δP . In doing so we assume that the changes in

the sound speed are mainly a result of the changes in the adiabatic

exponent.

Now, relating δ I to the change in the eigenvalue δω (and using

equation A1) it follows that

[δω]Ŵ1
≡

[δ I ]Ŵ1

ωτt E2
o

∼
ω

2τt

∫ τb

τa

( fc cos 	 + fs sin 	)
δŴ1

Ŵ1

dτ, (A17)

where fs and fc are functions obtained from adding the coefficients

of δŴ1 in the expressions for δB 0, δB 1, δB 2 and δB 3 (see equation

A16 and equations A5–A8).

At this point we introduce an approximate description of the ef-

fect of the second ionization of helium on the adiabatic exponent.

As represented in Fig. 2(b), we adopt a prescription in which the

‘bump’ is approximately described by its half-width β and height

δd ≡ (δŴ1/Ŵ1)τd
, with the maximum located at τ d. This corresponds

to considering the following approximating simple expression for

δŴ1:

δŴ1

Ŵ1

≡ δd



































(

1 +
τ − τd

β

)

, τd − (1 − α)β � τ � τd

(

1 −
τ − τd

β

)

, τd � τ � τd + (1 + α)β

0 , elsewhere.

(A18)

The region of the ionization zone starts at τ a = τ d − (1 − α)β and

finishes at τ b = τ d + (1 + α)β, giving that τ b − τ a = 2β is the

width. The parameter α represents the asymmetry of the bump, and,

for a first-order analysis, it does not affect the result.

We further consider that the functions fs and fc are slowly vary-

ing functions of the structure when compared with the size of the

ionization zone (∼ 2β), and so their derivatives can be ignored in

the integration. Using this approximation we can integrate equation

(A17), finding that

[δω]Ŵ1
∼

ω

2τt

βδd

{

sin
[

ωβ(1 − △)1/2
]

ωβ(1 − △)1/2

}2

×( fc cos 	d + fs sin 	d). (A19)

All quantities are now evaluated at τ = τ d.

Taking the dominant contributions (in terms of powers of ω and

derivatives of the reference structure – see CDMT for details) of the

functions fc and fs (equation A16), we can finally write the signal

as

[δω]Ŵ1
∼

3δd

2τt

1 − 2△/3

1 − △

sin2
[

ωβ(1 − △)1/2
]

ωβ(1 − △)
cos 	d. (A20)

This is the expression that describes the ‘additional’ contribution

to the frequencies of oscillation ωnl if the region of the second

ionization of helium is present. By assuming that we have

ωnl ≡ [ωnl ]smooth + [δωnl ]Ŵ1
, (A21)

it is now possible to try removing the smooth component, [ωnl]smooth,

by adjusting the frequencies to the expression we have found for the

‘periodic’ component [δωnl ]Ŵ1
. In doing so the parameters describ-

ing the structure of the Sun at the location τ d are determined.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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