UNIVERSITY OF LEEDS

This is a repository copy of Risks to Effective Knowledge Sharing in Agile Software Teams:
A Model for Assessing and Mitigating RIskKs.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/144697/

Version: Accepted Version

Article:

Ghobadi, S and Mathiassen, L (2017) Risks to Effective Knowledge Sharing in Agile
Software Teams: A Model for Assessing and Mitigating Risks. Information Systems
Journal, 27 (6). pp. 699-731. ISSN 1350-1917

https://doi.org/10.1111/is}.12117

© 2016 John Wiley & Sons Ltd. This is the peer reviewed version of the following article:
Ghobadi, S., and Mathiassen, L. (2017) Risks to Effective Knowledge Sharing in Agile
Software Teams: A Model for Assessing and Mitigating Risks. Info Systems J, 27: 699—
731, which has been published in final form at https://doi.org/10.1111/isj.12117. This article
may be used for non-commercial purposes in accordance with Wiley Terms and
Conditions for Self-Archiving. Uploaded in accordance with the publisher's self-archiving

policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

| university consortium eprints@whiterose.ac.uk
WA Universities of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

A Model for Assessing and Mitigating
Knowledge Sharing Risksin Agile Software Development

Shahla Ghobadi, The University of Manchester
Lars Mathiassen, Georgia State University

What happens is not as important as how you react to what happens. Ellen Glasgow
Abstract

We present an empirically-grounded and theoretically-informed model for therasaessd mitigation of
risks to effective knowledge sharing in agile development. The model is anah@mgirical insights from
four agile projects across two software companies and in extant research -etratesffy analysis and
knowledge sharing in software development. We develop the model as part of the lomgstandion of
presenting risk management models dedicated to specific issues in safevatepment and confirm its
practical usefulness in one of the software companies studied. The model offersscandeptocesses to
assess groject’s knowledge sharing risk profile and articulate an overall resolution strategy plan to mitigate
the risks. The results highlight how different knowledge sharing risk managerdiles can lead to
different project performance outcomes. We conclude with a discussion afctesgpportunities that the

results offer software development scholarship.

Keywords: Agile, software development, knowledge sharing, knowledge managemembanagement,

qualitative research, grounded theory

I ntroduction

The use of agile practices such as eXtreme programming and scrum improves ligaanddielps address

process inefficiencies common in plan-driven software development (HoImstrdir,rQ@OﬁlMcAvoy et al.,

2012 Highsmith, 200J9)A fundamental concept in agile development is effective sharing of high-quality

information, know-how, ideas, suggestions, skills, and expertise amadivgduals {Ghobadi & D'Ambra,

2013). For example, scrum requires user representatives, product owners, developers and managers to

engage in iterative cycles, address development challenges, and explore product opportEnities (Nlerur &

Balijepally, 2007}, Carmel et al., 20110, Chakraborty & Sarker, RB&Jeral barriers may, however, pose

risks to effective knowledge sharing in agile development (Ghobadi & Mathiassen, 30i.examples

include diverse working and discipline-related backgrounds among team mgmbeswxrgCoinaraf et all,

Pagel of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

2012), different time zones and physical distance between team members (Conbd0&0aDorairaj ef

al., 2012|Gupta & Bajwa, 201R)and insufficient planning and documentatfon (Karlsen et al.,[p011, Conboy

& Morgan, 2011) Inevitable knowledge sharing barriers prompt calls to pay closer attention to

understanding the risks they pose to software practices and in turn to developestthtgghelp mitigate

those risks. Although the extant literature recognizes these bdfhigrsadi & Mathiassen, 2015), there is

limited knowledge and no comprehensive approach on how agile development teams can managlesthese ri
This lack of research can be attributed to existing views that link ‘formalized managementpproaches’ to

going against the agile philosophy gfeople over processeand to stifling the positive benefits of risk

taking behaviors| (Dalcher, 2002). More recently, however, research has proclaen@dportance of

seeking a balanced view in which the strengths of both agile and plan-driven approachesragedev

Boehm & Turner, 20083). A well-respected plan-driven approach is to adopt risk enagradtgto assess and

mitigate risks related to software development (Boehm & Turner, {2003, Boehnr, R&Klnanagement is

also helpful for creating shared mental models across stakeholders and for sumodidciye decision

making |(Lyytinen et al., 1998). Hence, based on a risk management approach thi®soesyrates on the

following research question: how can agile development teams systemadissdlss and mitigate risks to
effective knowledge sharing?

We use the ternugile development teams’ to refer to contemporary software teams that actively use agile
practices in their development effortse\ien define ‘risks to effective knowledge sharing’ as barriers that

(with some likelihood) may adversely affect (with some loss) effectivewlgdge sharing in agile

development. In addressing the research question, we rely on a grounded theory approach EBkases

1977). Specifically, we complement empirical data collected from four agijeabs with (i) key findings

within the agile literaturg (Conboy et al., 20J10, Vidgen & Wang, HOOQ, McAvoy et(dl3|Ramesh et alj,
2014, Conboy & Morgan, 201ll, Ghobadi & Mathiassen, R015), and (ii) insights from aisigement

research (Davis, 19§Persson et al., 20f9, Iversen et al., 2004). The result is an empirically-groudded an

theoretically-informed model for assessing and mitigating risks to effe&tmowledge sharing in agile

development. This study presents three theoretical contributions.

First, our risk management model synthesizes a generic list of 37 risk items srsbl8lion actions. This

list covers an extensive set of knowledge sharing risks and resolutionsehaitantegrated in existing

software risk management frameworks (Persson et al.||2009, Davis, 1982). The motteltesrdategories,

concepts, and processes that are helpful to both qualitative and quentiteearch studying
communication-related issues in software contexts. Second, our model offers a systppraach to risk

management in agile software development. Specifically, it contributes to thestéomng tradition of

developing risk management models in software development (Boehnﬂ, 1991, Badxr,kl@@:ﬂ, Baskervillg

& Stage, 199b) with heuristics to assess risks to effective knowledge shariigntify and prioritize

Page2 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

resolution actions to mitigate them, and to articulate an overall resolutaiagst plan. Third, our results
suggest the high performing projects, more than the low performing ones, tended to asksessre

effectively by taking bolder initiatives and applying more resolutiotions relative to existing risks. This
finding concurs with prior software development research (Barki eR@D]l) suggesting that different

project risk management profiles can lead to different project performance outcomes

The remainder of the article is organized as follow® Mggin by detailing theoretical background and
research methodology, including data collection and analysis procedures. We explgathriisdings for
each development project followed by complementing the cross-case analysis withatiteliexature.
Next, we present the proposed model and the results of its practical evaluation. Weecbpdistussing

implications for theory and practice and outlining avenues for future research.

Theoretical Background

Researchers have long studied the intensive, collaborative, and knowledge-intensive pthomsgbs

which software emerges (Ghobadi, 2p15). We, therefore, know several barrdrsassuaiverse social

identities, cross-functionality of team members, coordination challenges acstgbutiid sites and

motivational factors that may complicate knowledge sharing in software teagms.sbftware trends

revolving around agile development have generated renewed interest in this aregRghaefl Dingsgyr

2008). Specifically, agile practices are based on principles that focus on welconginge, working

software, and continuous introspectipn (Williams, 2012). Agile practices are isgbrove communication

and knowledge sharing in software contexts. For example, postmortem reviews encouragetbans toe

share and learn from good and bad project experignces (Dingsgyr & Hanssen, 2088r Axample is

pair programming that helps foster sharing of embedded knowlledge (Bellini 20@H, Ghobadi et all,

2015). Implementing agile practices may, however, pose unintended risks to knowladgg, gbutting

agile teams at the risk of losing requisite capabilittes example, frequent releases are recommended to

facilitate knowledge sharing across stakeholqers (Lippert et al.,| 2003). Hovesreercommunication

between the team and customers exposes software teams to the risk of losing\addey & Wang,

2009). Also, including customer representatives at sprint planning sessipsstiemline communication

with the client and facilitate organic chanpe (Karlsen et al., [201dyeMer, this practice can reduce the

available time for sharing ideas outside the tepm (Conboy & Morgan,| 201Bddition, customer

representatives may generate major reworks for software teams and méiauit ti commit enough time

to knowledge sharing at later stages of development (Batraj 2009).

In summary, agile development teams should pay special attention to identify barriers isceddfextledge
sharing and to mitigate the risks they pose to development contexts. Themgegehdimited knowledge

and no comprehensive approach on how agile development teams can manage knowledge s&isaring ri

Page3 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

Ghobadi & Mathiassen, 2015). Traditionally, risk management approaches are used to identify and assess

software development risks (Lyytinen et al., 1998, Mcfarlan, 1981). These approachesilatedpe key

elements of risks (risky incidents), resolution actions (possibly releetiohs), and heuristics (guidelines
for assessing risks and linking them to appropriate resolution actionah é&sample, risk-strategy analysis

models offer a stepwise process that linketailed analysis of risksto ‘an overall risk management

H

strategy (Persson et al., 2019, Iversen et al., 2D04, Davis,|1982); The underlying ideaeofmibaels is

consistent with auinterest in developing detailed approach to identifying knowledge sharing barriers and

mitigating the risks they may pose to development practices.

Extant literature has developed risk management models targeting several dspaftigace development
such as implementation risks (Lyytinen, 1887), project portfolio rlisks (Earl| 188j0irement management

risks [(Ramesh et al., 20[L0, Davis, 1P82), distributed development{ risks (Perakp@19), and prototype

development riskg (Baskerville & Stage, 1P96). Despite their diversity, the tpajbrihese studies only

offer ad-hoc assessment of risks and possible resolution actions. There eeeeseanples that offer

systematically-developed list of risks and resolution actlons (lversen et al), 20@4dition, there arao

models for managingknowledge sharing risksin software projects. Addressing these gaps, our study
develops an intellectual tool and theoretical implications that tadprstand and manage the complex

knowledge sharing risks in agile development contexts.

Research Method

The grounded theory approach is well-suited to building theoretical insighas iarea where limited

understanding exists and where we can respond flexibly to new empirical discfzesdedhardt, 1949We

use this approach in the following manner. First, we conduct a multisite case study taniewdksights for

the assessment and mitigation of risks to effective knowledge shariagileh development (Glaser &

Strauss, 197"7, Eisenhardt, 1989). Secord;omplement the grounded understanding with insights from the

extant literature. Third, we refine the resulting model by examining its practical usefulness in one software

company. The following sections describe data collection and analysis processes.

Data Collection

This study is part of a larger research project on knowledge sharing in agile development {Ghobadi &

Mathiassen, 2015 herefore, we rely on an overlapping yet expanded set of data compared to our earlier

study on knowledge sharing in agile teams. We collected empirical data threeghl sessions of iterative
and semi-structured interviews over twelve months across two mediumnsesiaare companies. The
companies, referred to as Alpha and Beta, are based in AugtHli@ employees each). They are leading

companies in building software for financial companies, climate change centerspmedibal institutions.

Paged of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

The key theme of their work is developing software that allows captutimigs sharing, and analyzing
data. Alpha and Beta characterize their developmeptoagh by advocating ‘user stories’, ‘product
backlog’, ‘working software’, and ‘responsiveness to change’. In their website and contracts’ documents,
they highlightagile practices such as ‘sprint planning’, ‘stand-up meetings’, and ‘pair programming’. In fact,
the companies emphasize using agile practices to remain relevant in the softwarg amtlistr increase
agility in their work. Besides, they take priderot being ‘textbook’ agile, but rather having expertisa

adapting agile practices to remain flexible and agile in practice. Diffesehetween documented agile

practices and their practical use are quite common (Vidgen & Wangj| 2009, Fitzgerald(ﬂ(w FitzgeraltP

et al., 2002). For example, if the client cannot provide on-site customer reptiessnas required in pure

agile contexts, the companies find a way to establish an effective distributedridamork closely with

customers.

We consulted the development manager of each company to provide entry for conthecfieldwork. The
development managers helped recruit eight interviewees from two recerpragiets that were completed
within the last three months. We sought advice from development managers feasonsFirst, they hold
a comprehensive overview of projects, their performance, and the individualegvorkthem. Second, this
approach enables immediate legitimacy and credibility to the research, elfipefdl significantly during the
interview sessions. We interviewed individuals holding the four roleproject manageér ‘developet,

‘testef, and‘user representatiVveWe based the selection of these roles on prior research on key roles in

software development (Newman & Robey, 1992, Barki & Hartwick, R001) as well aslksyin medium to

large agile teams (Sutherland, 2p05). In additibe four roles are fundamental in Alpha and Beta’s agile

practices. Specifically, (i) project owners take ownership of the product (they are labele@esnpanagers
in this study), (ii) developers produce code, (iii) quality assurance engii@&)y $est the product, (iv) client
representatives serve as end user representatives, and at times usee iotanfr experience designers
conduct user experience design. Further information on the key roles idegrda our earlier study
Ghobadi & Mathiassen, 20[L5).

We asked the development manager of each company to select one high performing ewdoerferiming

project. The polar sampling approagh (Eisenhardt & Graebner| 2007) helpedtgeauitional insights

related to different patterns of risks, resolution actions, and project outcomeng Diata collection,
developers, project managers, tester and user representatives expressedeaivailan the performance of
the selected projects. Table 1 presents the demographics of the four projeotBcidinemail from each
development manager introduced the research project to the relevant staff. The officiahigyhlighted the
academic focus of the research, and the interviewees were ensured confidenhialigixteen in-depth
interview sessions, lasting between 45 minutes and an hour, were taped and transcrilveda$ked about

barriers that pose risks to effective knowledge sharing practices. Appendix 1 provides the interview

Pageb of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

questions for identifying risks and further explanations are provided in our earlier work (Ghobadi &

Mathiassen, 2015). We then adoptefleaible and open style of conversation to identify resolution actions

The researcher askdek initial questions of ‘please elaborate how this barrier inhibitg@ctive knowledge
sharing’ and ‘which steps were taken to deal with it?’ The following questionsraried depending on the
interviewees’ responses and their ability to elaborate on the subject. For example, the researcher asked: ‘how
effective was this action’ and ‘why did the team not take an action?’ As a final check, questions pointing into
specific risks and resolution actions afforded interviewees a closing opppttundéport any item that might
have been missed or required further explanation. When interviewees revealed opposinduktiesys,
investigation such as informal follow-up interviews helped explore diffgpergpectives and arrive at a
richer understanding. Following an initial data analysis, follow-up interviews resalwdaguities and
validated interpretive accuracy and credibility (Guba & Lincoln, 1986).instance, there were cases in
which a risk and a related resolution actionwere mentioned, yet we needed to confirm the use of that specific
resolution action for addressing the related risk. A total of 36 interviews helped develop a detailed

understanding of the ‘risks’ and ‘implemented resolution actions’ in the four studied agile projects.

Table 1. Project Characteristics

Item Alpha One Alpha Two Beta One Beta Two
Project Duration 4 months 6 months 9.5 months 2 months
Team Size 7 members 10 members 10 members 12 members
Team Members Age 33.8 years 35.2 years 36.3 years 40.1 years
Team Members Education Undergraduate: 50% Un(:jergraduate: Unodergraduate: Undergraduate: 75%
Postgraduate: 50% 75% 5% Postgraduate: 25%
' Postgraduate: 25% Postgraduate: 25% ’
Team Members Software Experience 5.8 years 8.6 years 10.5 years 9.0 years
Team Members Company Experience | 4.5 years 3.5 years 4.5 years 5.0 years

Agile practices Design meetings, stand ups, retrospectives, pagramming, burn down charts.

Sprints Length Varied between 2-3 weeks

Data Analysis

Data analysis progressed in four steps. The first two steps involved wétb@and cross-case analyses of
the risks and resolution actions in each of the four projects. The nextapsistiuded development of a

risk management model and evaluating its practical usefulness. Each step is explained below.

1. Within-case Analyses. One researcher read all the interview transcripts, grouped frequentlyonaehti
words together, and generated a list of codes that correspond to (i) riskidteeffective knowledge
sharing and (ii) resolution actions to mitigate those risks. Another researetified face validity,

parsimony, and coverage of the coding scheme. We also conducted collaborative codeheaveen

Pageb of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

us to minimize coding biases by the researcher. Next, we coded all transcigastify and link risk
items and resolution actions. For identifyifgsk items and ‘resolution actions we systematically
looked for ‘barriers that may have adversely affected knowledge sharing practices’ and ‘actions that
were implemented to mitigate the risks that the barriers posenl example, a user representative
argued that developers tried to be flexible with thient’s situation to resolve their initial lack of
communication regarding time requirements. Thbang flexible with client’s situation’ was noted as a
resolution action for mitigating the risk thdick of communication of time requirements to the client’
posed to effective knowledge sharing. In another example, a user representative expdaitrathing
workshops helped them understand how agile teams work, the role of prototypeswantportant it is
to communicate end user requirements particularly in the absence of a good prototgéuining
workshops to improve clientnderstanding of agile processes’ was noted as a resolution action for
mitigating the risk that ‘lack of a good prototype for communicating requirements’ posed to effective
knowledge sharing. Sample codes are provided in Appendix 2. To categorize risk itenskiareas
we utilized the existing conceptualization of knowledge sharing barriers, inclu@ingam diversity,
(i) team perceptions, (iii) team capabilities, (iv) project commurdoat{v) project organization, (vi)

project technology, and (vii) project setting (Ghobadi & Mathiassen,|20hb&)final coding progressed

as follows. One researcher coded the first eight transcripts. The other resehedked the validity of

the codes. We calculat&dott’s pi at an acceptable level of 0.86 (Scott, 1955). The researcher finalized

the process by coding the next eight transcripts. Summaries of within-cassisaaedydiscussed in the

Results section and summarized in Appendix 3

2. Cross-case Analysis:. We removed redundant items in within-case analysis tables, mergear sinels,

and took initial steps away from company specific jargon to generate more gémdirajsf|{(Lee &

Baskerville, 200B). For example, we consistently adopted an imperative forne$enping resolutions

to emphasize their action orientation (e.g., delegate, emphasize, create, or rélecategxample, we
used the term ‘recruit developers with a combination of IT and business knowledge’ to refer to the
resolution actionmake experienced developers available for translating business needs into technical
terms’. This resulted in identifying a total of 31 risk items and 20 resolutidionsc We then
complemented the empirical results with extant literature on knowledge sharing in agitgpd®rdl As
an example, we included the recommendation to ‘routinize exploration in development teams’ 10

highlight the importance of allocating resources to encourage team membenskofgeand share new

ideas|(Vidgen & Wang, 2009). In total, six risk items and eleven resolutimmsiavere added. This

expanded the findings to 37 risk items and 31 resolution acflreseesults are detailed in the Cross-

case Analysis section.

Page7 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

3. Mode Development: We began by categorizing the identified 31 resolution actidfescarefully went
through each resolution action and the related quotes to cluster together #wionsrrespond to
similar issues. For example, all the following four actions concentratengmoving working
relationships within team and with client: (i) Leverage team diversiugir cross-team observation
and close team member collaboration, (i) Promote positive relationships aefatsotders, (iii) Build
collaborative relationship with IT team in client organization, and l(eyerage positive relationships
between client representatives and client manageMénttherefore, grouped them under the resolution
strategy of Leverage Relationshipg8inally, we relied on the vocabulary of risk-strategy analysis
approaches to organize the key findings into a risk management model. The key vocabulary items
include risk items, risk areas, resolution actions, resolution strategies, heuristics, and stepwise process.

The result is detailed in the Model Development section.

4. Model Evaluation: We examined and refined the risk management model from the last step based on its
practical application in Alpha as well as useful comments from academic colleagues. The researcher
presented the model to a number of practitioners and asked them to apply it to an ongoing agile
development project. The researcher was prepared to answer any questions they had. Observing
practitioners and interacting with them generated useful ideas to improve the presentation, wordings, and
structure of the model. For example, we found it is easier for participants to put selection boxes beside

the risk items and not in another column. The results are detailed in the Model Evaluation section.

Results

Alpha One

Project One in Company Alpha (Alpha One) spent 4 months to develop a system thgeés data and
metadata associated with textual artifacts from ancient civilizations. fdjecpteam included seven
members, including project manager, three developers (one had the role of sasterm),nester, user
interface designer, and user representative, with an average age of 32\gearding to the development
manager, Alpha One proved to be a high performing project becéstséeholders got the results they
wanted and they are happy with how they worked with the team. Alsokltb@rstakeholders were realistic

and worked with us collaboratively rather than in an adversarial relaifpdnsh

Knowledge was shared through face to face channels such as design meetings anddlajhg stanvell as
technology mediated channels such as Skype and Enterprise-hosted collaborativEh&oatserviewees
referred to a total of eight risk items in Alpha One. These risk ismgategorized into four risk areas. For
example, lack of communication of time requirements to the client wasideoed a risk to effective

knowledge sharing. According to the user representative, he was not prepanerfsive knowledge

PageB of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

sharing that is crucial in agile development. This was because time requireraentsotvcommunicated to
him right at the beginning (insufficient communication of time requiremestated to the category of
project communication risks)“Most of the people in [my business] have heavy workloads and
administrative loadd. didn’t understand how much time would be required of me at the start. Ultimately it
worked well, but it is important that the people that work with atgiégens understand how much time they
must commit to the project and get prepared for future corresporidénser representative). The
development team responded to this risk by trying to be flexible and understaBdiidgthe user
representative: “It seemed to me there was a clear awareness of the kinds of pressupEoatin my
business] have. So when | had difficulty making myself available,[theyelopment team] were very quick

to adapt (user representative).

Another rek item was unfamiliarity of the development team with the built-in cod@ufprtology in the
legacy system (related to the category of team capabilities risks). Spiggifihe development team was
committed to provide demonstrations at the end of each two-week sprint. Hpodevelopers had to spend
considerable time on learning the new coding language. Thus, it was difficuttefotd commit enough
time on knowledge sharing regarding several other aspects of the projeeissnoovative coding solutions
and new functionalities. The development team addressed this risk by leveraging clipetsities of the
experienced team members as well as positive relationships among the team mémbeisveloper
explained “It was Ruby on Railapplication, and I didn’t know the language. But [developer A] had a lot of
knowledge in this area. So he shared his knowledge witHexsias very helpful (developer).

Alpha Two

Project Two in Company Alpha (Alpha Two) spent 6 months to develop a veelidastem that assists data
collection processes of a collaborative neonatal network. The project teateth¢én members, including
project manager, four developers (one had the role of scrum master), tester, tintetfaee designers, and

two user representatg, with an average age of 34 years. According to the development manager, Alpha
Two was considered a low performing project becatise failed to manage their expectations up front. So,
we couldn’t possibly have delivered what they wanted with the budget we had. | think they were working
with us in more of a ‘you are service provider, you do everything and tell us when you are done’, rather than

‘we collaborate together to complete the project.””

Not surprisingly, Alpha Two faced a broad range of risks to effective leuige sharing, and knowledge
sharing proved to be challenging. The interviewees referred to nineteen risksriSkesee categorized
into seven risk areas. For example, the user representative referred to lacgootl grototype for

communicating requirements with users as a risk to effective knowledge sharategd(tel the category of

project technology risks}‘People can comment on tangible things. If you show a blank page and ask what

Paged of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

you want for yur interface they can’t say [share knowledge]. They give you very vague answers. You should
show at the beginning which functionalities you can Buildser representative). The development team
attempted to reduce this risk indirectly by running workshops to improve client wrabngt of agile
processes and characteristics. Said the user representative: “It was good that our team attended five meetings
at [Company Alpha] to understand more of what is happening in theaseftkevelopment and agile world
(user representative). She argued that this understanding encouraged them to communiegtéragsents

in a more detailed, robust, and active manner, mitigating the risk that lacgoafd prototype poses to their

project’s knowledge sharing practices.

Despite these actions, most of the risks were left unaddressed. For exarngdter aeferred to risks
associated with long split sprints that were not carefully addressededratatthe category of project
organization risks)“Developers thought three weeks sprint to be better for their focus, becausingrot
shifts with an alternative project. But it was recognized that difficult for developers moving between
projects. As a tester, I'd be asking questions about a project [from developers] that they were not working on
currently. [User representatives] would see a lot of activitytaed suddenly nothing would happen for
three weekd. (tester). In addition, the category of team perceptions risks was langatidressed. On the
one hand, the project manager argued representatives’ inappropriate assumptions about project scope
did now allow discussingritical aspects of the project upfront: “They had certain expectations about what
they could get with the very small budget they had. It turned out theyt[olipresentatives] were not telling
us these. Because we are agile and flexible they assumed we are jusb goirtigatt (project manager). On
the other hand, the user representative arguedithalopers’ unrealistic and low estimations masked the
complexity of the project. Thus, team members did not discuss various passiailiearly stages of the
project. In addition, the user representatives and majority of the end usersararaenon-English speaking
backgroundA developer pointed to different spoken languages as a risk to effective knowledge Staring.
interviewees, however, did not refer to any action for mitigating this risk.s@hee developer further
explained that Alpha did not discuss this issue during the course of the projedtuaitidety did not take

effective steps to mitigate the risk.

Beta One

Project One in Company Beta (Beta One) spent 9.5 months to develop aafisgatdm that creates maps

of stocks and equities based on different types of financial informatiom.pfoject team included ten
members including project manager, business analyst, six developers (one had the colenah&ster)

tester, and user representative, with an average age of 35 years. According to the development manager, Beta

One was a high performing project becaugéthough the team lost momentum as people moved countries

Pagel0 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

and jobs, we still delivered what we were asked to do. Everyone involved, wafiedatith the process,

and they haven’t been burned out”

The interviewees referred tototal of fifteen risks that are categorized into seven risk areas. Fopkxam
time difference between the development team and the client introduced a risk oelagedategory of team
diversity risks “The client was based in [Country A], so there was only 2 hours a dayetwiNg actually
communicate directly. And, for email communication there was always ldgh wiade certain decisions
very slow for an agile projett narrated a developer (developer). The development team responded by
applying informal decision making whenever requiré@sen we wanted to get things done, we started to
bypass formal decisions about what we put in. Bypassing was thehmgthat let sprints move forward.
[Formally], if we wanted to change a single word in one of the acocepteriteria, we needed to raise a
changing requirement for that and wait for [client] to approve it. We gbetpaint where we simply made
that change and hoped for the best. It is not something to be proud of, bat pbint we needed that
because it was slowing us dotexplained the tester (tester).

Tight sprint schedule with little time for interaction was also noted askaaieffective knowledge sharing
(related to the category of project organization risB&ing a domain-specific project was argued to slow
down communication and effective knowledge sharing (related to the categomyjeadt [getting risks). In
response to this risk, the business analyst wrote and communicated clear btlpe®sy developers
understand storiesell. According to a developer: “Understanding the data we were dealing with required a
lot of domain knowledge that takes tin®uz, I don’t think that was too much of an actual communication
barrier. | guess when the business analyst wrote a story she worked wilditahexpert to explain what
needs to be done. As developers we took the stories and we knew what to do, but we didn’t necessarily

understand the data. And, that actually worked dkdgveloper).

Beta Two

Project Two in Company Beta (Beta Two) spent 2 months to develop a system that autwariategration

of data from the stock exchange market. The project team included twelvbemsernmcluding project
manager, nine developers (one had the role of scrum masgtey, and user representative, with an average
age of 34 years. Beta Two was considered a low performing project bet@ugect stakeholders didn’t

see results fast enough. The team faced major challenges because theylestgretantly and business

priorities changed constanthtommented the development manager in Beta.

The interviewees referred to a total of fourteen risks to effective kdgel sharing categorized into seven
risk areas as well as different ways in which the team responded é&ribles For instanceécomplex
business ruléswas raised as a risk to effective knowledge sharing (related to the gatégooject setting

risks). According to the user representative, understanding complex rulesngasing evelopers’ limited

Pagell of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

time, and so they had much less time to discuss important aspectspobjdw with themselves and the
client: “They [developers] knew what the algorithm was and what the codev@sijtbut understanding
what the code’s ultimate goal was and spotting errors in the output was hard and time consuusgy
representative). The management team responded to this risk by making the dewslupensre
experienced in the specific domaivailable for the project.” We had [a senior developer] who has the most
experience of these products. We asked him how things work. If he hadn’t been available it would have been

much more difficult, argued a developer (developer).

The onsite user representative referred to the risk of developenetit lack of motivation (related to the
category of team perceptions riskSJhis team was sort of plundered of people, so the team that remained
seemed to be less experienced. I think they may have been less motivated, because they didn’t feel that their

work was as important as what some of the other teams were doing. rfaislgaid affect the attitudes of

the team in sharing knowledg€user representative). Management agreed and responded to this risk by
emphasizing the importance of the project and organizing demos of the workingreadis a measure of
success*We tried to put forth that these sorts of projects are basicalktuffehat have been put off for so
long, because no one wanted to do it, but once they got through that work they wouldibg aonkew
products that all the other people may have wanted to work on. And.eweyeng to basically let them be
aware that they are in a position that is highly visible in thepammy and can grow very rapidlyproject

manager).

Data analysis showed that the most frequently mentioned action to address risksqmeaotion) was to
make sure developers who are experienced in the specific domain are assigned tedhéprejfinancial
software). This resolution action helped the team members significantly. Téreynat anymore frustrated
in the process of understanding the complex domain in their tight schedule. Thegmendidtime on other
aspects of the development such as coding and designing new solutions. Yet, accordingragedhe p
manager, over time, they realized this resolution acti@sm not an optimal solution: “Because we have
[expert] people who have been here for such a long time we are ahsdkpendent on them nd\project
manager). In addition, some key risks were left unaddressed with adverse consegbenaxample
different working backgrounds and personalities of team members were not addfesmedly. This later
proved to be challenging. Said the project manager: “We had a huge amount of discrepancy in terms of
people’s knowledge. We had someone who knows the [domain knowledge] over five years. We had people

who had never worked on [this area]. That makes it very difficulip&ople to swap work and explain

concepts daily (project manager).

Cross-case Analysis

Pagel2 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

This section integrates within-case empirical findings with insighdtm extant literature (within-case
analyses are provided in Appendix 3). This integration results in a total of 3ferisk and 31 resolution
actions. The result of cross-case analysis is summarized in Table 2. Frsabthi shows the sources for
each risk item and resolution actidior example, the risk of ‘different speaking languages among members’
was raised in Alpha Two and Beta One, or the risk of ‘lack of familiarity with agile values and principles’

was raised in the extant literature that we integrated into our crosswealsis (the detailed process is

provided in the Data Analysis sectign) (Conboy et al., 2010). Second, this tablegatdtessolution action
to the risk items it may help address. Third, this table highlights 14teisls in bold. These 14 risk items

refer to those risks that are tightly linked to agile development contextm Agsamplethe risk of ‘lack of
familiarity with agile values and principlesand the risk of ‘lack of communication of agile time

requirements with client up frohare inherently related to agile development.

Table 2. Identification of Risk Items and Resolution Actions

Knowledge Sharing Risks Knowledge Sharing Resolutions

Team Diversity

1. Different speaking languages among members Create and share goals within team (Beta One)
(Alpha Two, Beta One)

2. Different working and disciple-related backgrounds | Communicate importance of project to team members for key stakeholders and
among members (Beta One, Beta Two) career opportunities (Beta One)

Create and share goals within team (Beta One)

Discuss expectations and requirements with client and within team (Beta Two)
Delegate project responsibilities within team (Beta One)

Relocate developers to spend more time with each other (Beta Two)

3. Different time zones and physical distance between Support participation and flexibility in project’s decision making (Beta One)
members (Beta One)

4. Lack of prior joint working experience in Communicate importance of project to team members for key stakeholders and
development team (Beta One, Beta Two) career opportunities (Beta One)

Create and share goals within team (Beta One)

Discuss expectations and requirements with client and within team (Beta Two)
Delegate project responsibilities within team (Beta One)

Team Capabilities

5. Insufficient understanding of business domain and Recruit experienced and motivated developers (Beta Two)
context (Alpha Two, Beta One, Beta Two) Recruit developers with a combination of IT and business knowledge
al., 2010

Share historic and current systems documentation across team (4/pha Two)
Increase developers’ business knowledge through client-organized training
sessions (Alpha Two)

6. Unfamiliarity with development and collaboration Use pair programming to facilitate learning across development team (4/pha
technologies (4lpha One, Beta Two) One)
Relocate developers to spend more time with each other (4lpha One)
7. Insufficient and ambiguous requirements (Beta Improve team’s agile and social skills through training [Conboy et al., 2010
Two)
8. Inadequate social skills (4lpha Two) Improve team’s agile and social skills through training [Conboy et al., 2010
9. Lack of familiarity with agile values and Support requisite exploration of alternative options [Vidgen & Wang, 2009
principles [Conboy et al., 2010} Engage team in evaluating agile opportunities and challenges

Pagel3 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation

Systems Jour nal (Accepted: May 2016)

12010 McAvoy et al., 2012)

10. Lack of IT resources and working experience with
software companies in client company (4/pha One,
Alpha Two)

Provide client with knowledge about agile projects through workshop (4lpha
Two)

Discuss expectations and requirements with client and within team (4lpha One,
Alpha Two)

Analyze client organization dynamics and be open to adapt to changing
conditions (4lpha One, Alpha Two)

Leverage team diversity through cross team observation and close team member
collaboration (4/pha One)

Promote positive relationships across stakeholders (4lpha One)

Team Perceptions

11. Lack of motivation, focus and adaptability in
development team (4/pha Two, Beta One, Beta Two)

Communicate importance of project to team members for key stakeholders and
career opportunities (Beta One)

Create and share goals within team (Beta One)

Collect and share successful project stories with team

Relocate developers to spend more time with each other (Beta One, Beta Two)

Provide each individual member with 360° feedback [Conboy et al., 2010}

12. Inappropriate assumptions about project scope
made by client (due to the development team’s
flexible agile-related approach) (4lpha Two)

Discuss expectations and requirements with client and within team (4lpha Two)

13. Fear of self-exposure to technical and agile
skills deficiencies in development team
al., 2010

Help new team members integrate through mentors and incremental
responsibilities
Support requisite exploration of alternative options [Vidgen & Wang, 2009)
Provide opportunities to raise any concern for discussion in open forums
[Conboy & Morgan, 2011)

14. Performance evaluation based on technical
achievements (related to working software

principle) (Conboy et al., 2010,

Put high value on mentoring and voluntary contributions in performance
evaluations [Conboy et al., 2010

15. Stakeholder neglect of nonfunctional
requirement (related to working software
principle) [Ramesh et al., 2010}

Engage team in evaluating agile opportunities and challenges
12010 McAvoy et al., 2012)

Project Communication

16. Inadequate client availability and participation
(Alpha Two)

Change the length of split sprints to improve interactions (4lpha Two)
Analyze client organization dynamics and be open to adapt to changing
conditions (4/pha Two)

17. Lack of communication of agile time
requirements with client up front (4lpha One,
Alpha Two)

Analyze client organization dynamics and be open to adapt to changing
conditions (4lpha One, Alpha Two)

Support client and team communication with collaboration technologies (4lpha
One)

Share key project information with client representatives using nontechnical
language (Alpha One)

Discuss expectations and requirements with client and within team (4/pha One)

18. Lack of concurrence within client team (4/pha
Two)

Recruit developers with a combination of IT and business knowledge

al., 2010]
Improve team’s agile and social skills through training [Conboy et al., 2010

19. Product owner lack of sharing client feedback with
development team (Beta One)

Discuss expectations and requirements with client and within team (Beta One)

Project Organization

20.Tight sprints schedule with little time for
interaction (4lpha Two, Beta One, Beta Two)

Create and share goals within team (Beta One)

Communicate importance of project to team members for key stakeholders and
career opportunities (Beta One)

Recruit experienced and motivated developers (Beta Two)

21. Inadequate planning and organization in agile

Document experiences to support planning of future projects (Beta Two)

Pagel4 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation

Systems Jour nal (Accepted: May 2016)

practices (Alpha Two, Beta One, Beta Two)

22. Multitasking and lack of continuity in
development team (4lpha One, Alpha Two, Beta One)

Assign team full time to project (4ipha One)
Leverage team diversity through cross team observation and close team member
collaboration (Alpha One)

23. Inadequate planning and insufficient
documentation (related to communicate face-to-
face principle) (Alpha Two, Beta Two)

Support requisite exploration of alternative options [Vidgen & Wang, 2009)
Provide opportunities to raise any concern for discussion in open forums
[Conboy & Morgan, 2011)

24. Making decisions in development without
consulting client (due to tight sprints schedules)
(Alpha Two)

Engage team in evaluating agile opportunities and challenges
12010)McAvoy et al., 2012)

25. Frequent change of IT representatives in client
company (Alpha One)

Increase developers’ business knowledge through client-organized training
sessions (4lpha One)
Build collaborative relationship with IT team in client organization (Alpha One)

26. Centralized decision making [Vidgen & Wang

Expand project manager’s role to include coaching and facilitation

(2009

lal. 2010}

Project Technology

27. Lack of using high quality collaboration
technologies and processes in development team
(Alpha Two, Beta One, Beta Two)

Relocate developers to spend more time with each other (Beta One, Beta Two)

28. Lack of a good prototype to communicate
requirements between stakeholders (4lpha Two)

Provide client with knowledge about agile projects through workshop (4lpha
Two)

29. Employing agile methodology without planning
up front (Alpha Two, Beta Two)

Discuss expectations and requirements with client and within team (Beta Two)

30. Prioritization of requirements based on one-
dimensional thinking (related to working software

principle) {Augustine et al., 2005}

Engage team in evaluating agile opportunities and challenges
12010) McAvoy et al., 2012)

Project Setting

31. Complex and domain specific project (4/lpha Two,
Beta One, Beta Two)

Discuss expectations and requirements with client and within team (4/pha Two,
Beta One)

Recruit experienced and motivated developers (Beta Two)

Communicate importance of project to team members for key stakeholders and
career opportunities (Beta One)

Create and share goals within team (Beta One)

32. Small budget agile project with limited room
for interaction (4lpha Two)

Engage team in evaluating agile opportunities and challenges
12010)McAvoy et al., 2012)
Improve team’s agile and social skills through training [Conboy et al., 2010}

33. Dependence on existing or legacy technology
(Alpha One, Beta Two)

Recruit experienced and motivated developers (Beta Two)
Discuss expectations and requirements with client and within team (4/pha One)

34. Inability to choose development team members
(Beta Two)

Help new team members integrate through mentors and incremental
responsibilities [Conboy et al., 2010

35. Different approaches to agility between
development and client company (4lpha One)

Analyze client organization dynamics and be open to adapt to changing
conditions (4lpha One)

36. Profit focused culture in development company
(Alpha Two)

Put high value on mentoring and voluntary contributions in performance
evaluations [Conboy et al., 2010

37. Bureaucratic and centralized organizations (4/pha
One)

Leverage positive relationships between client representatives and client
management (4lpha One)

Table 2 affords a comparison between the high-performing and low-perfopnaijegts in terms of the risks

they faced and the resolution actions they implemented. Table 3 summarizes the numbeiskd el

Pagel5 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

resolution actions in each project. As shown, the high performing projects (BipiaBeta One) did not
necessarily experience fewer risks compared to low performing projects (AlphaB&m@oTwo) (column
#2.Risk Items, Table 3). For example, Beta One faced 15 risks, which is moriskisahat Beta Two faced
(14 risks). Yet, high performing projects implermaghimore unique resolution actions compared to the risks
they faced (column #3.Unique Resolution Actions-Risk Items, Table 3).

Table 3. Risk Items, Resolution Actions across Projects

#3.Unique #4.Total # 5.Total

1.Risk #2.Unique Resolution Resolution Resolution
Items Resolution Actions Actions -Risk . Actions - Risk
—_— Actions —_—
ltems ltems

Cases

High-Performing Projects

Alpha One 8 12 4 17 2

Beta One 15 7 8 18 3

Low-Performing Projects

Alpha Two 19 8 A1 13 =6

Beta Two 14 4 -10 11 3

Table 2 (grounded understanding) indicates that all the four projects, e, tised the same resolution
action to address more than one risk item. For example, Beta One applied ‘Create and share goals within
team’ to address six different risk items. The comparison between high performing and low performing
projects, in terms of implementing more unique resolution actions compateslriesks they faced, remains
consistent when we pay attention to this repeated use. Specifically, Table 3 shtodlghl One and Beta
One (high-performing projects) applied 9 and 3 resolution actions more thasks they faced, but Alpha
Two and Beta Two (low-performing projects) implemented 6 and 3 resolutions aletgenthan the risks

they faced (column #5.Total Resolution Actions - Risk Items, Table 3).

In addition, high performing projects, as compared to low performing onésyéd a bolder and more
influential approach to risk resolutionofFexample, Beta One’s repeated use of ‘Communicate importance

of project to team members’ and ‘Create and share goals within team’ was broadcasted to the team by the

CEO and development manager at various formal and informal gatheBietgsTwo’s repeated use of
‘Recruit experienced and motivated developers’ as a dominant resolution action, however, mainly targeted
resolving short-term project requirements. This created a sense of dependéecgxjoert members and an
overall dissatisfaction“Because we have [expert] people who have been here for such a long time we a

absolutely dependent on them now.

Risk Management Model

Pagel6 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

Model Development

The section complements the findings of cross-case analysis (Table 2) wittc#tlary of risk-strategy
analysis approaches (lversen et al., 2004). The result is a risk managemenFigodell) along with the

categories of risk areas and resolution strategies (Table 4), and the adsoks and resolutions
assessment frameworks (Tables 5-6).

4, Risk areas

Team diversity (4 items) 5. Resolution strategies
Team perceptions (6 items) Strengthen resources (3 actions)
Team capabilities |5 items) Reinforce directions (6 acticns)

Project communication (4 items) Leverage relationships(4 actions)
Project organization (7 items) Restructure project (6 actions)
Projecttechnology (4 items) Improve processes |6 actions)

Projectsetting (7 items)

|

Heuristics
Risk fssessment Framework (Tabie 5)
Resolution Assessment Framework (Table 6)

/\ /\\
WV 3. Resolution

Risk 2. Stepwise Processes Strategy

X 1. Analyze Risks Plan
Profile 2. Prioritize Resolutions

3. Develop Strategy

1. Project

A

.~ Figure 1. Risk Management Model =

Table 4. Conceptualization of Knowledge Sharing Risks and Resolutions

7 Risk Areas and 37 Risk ltems ‘ 5 Resolution Strategies and 31 Resolution Actions

1. Team Diversity—refers to conceptual, geographical and time 1. Strengthen Resources—refers to strategies that aim at
differences between team members that may pose risks to effective developing supportive capabilities, experiences, and technologies
knowledge sharing 1.1. Recruit developers with a combination of IT and business

1.1. Different speaking languages among members knowledge

1.2. Different working and discipline-related backgrounds among 1.2. Recruit experienced and motivated developers

members 1.3. Improve team’s agile and social skills through training

1.3. Different time zones and physical distance between members 1.4. Share historic and current systems documentation across team
1.4. Lack of prior joint working experience in development team 1.5. Support client and team communication with collaborative

Pagel7 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation

Systems Jour nal (Accepted: May 2016)

2. Team Capabilities—refers to knowledge and skill related issues
amongst team members that may pose risks to effective knowledge
sharing

2.1. Insufficient understanding of business domain and context

2.2. Unfamiliarity with development and collaboration technologies
2.3. Insufficient and ambiguous requirements

2.4. Inadequate social skills

2.5. Lack of familiarity with agile values and principles

2.6. Lack of IT resources and working experience with software
companies in client company

3. Team Perceptions—refers to attitudes and values of tram
members that may pose risks to effective knowledge sharing

3.1. Lack of motivation, focus and adaptability in development team
3.2. Inappropriate assumptions about project scope made by client
3.3. Fear of self-exposure to technical and agile skills deficiencies in
development team

3.4. Performance evaluation based on technical achievements

3.5. Stakeholder neglect of nonfunctional requirement

4. Project Communication—refers to communication-related issues
within the project that may pose risks to effective knowledge
sharing

4.1. Inadequate client availability and participation

4.2 Lack of communication of agile time requirements with client up
front

4.3. Lack of concurrence within client team

4.4. Product owner lack of sharing client feedback with development
team

5. Project Organization—refers to aspects of organization and
conduct of the project that may pose risks to effective knowledge
sharing

5.1. Tight sprints schedule with little time for interaction

5.2. Inadequate planning and organization in agile practices

5.3. Multitasking and lack of continuity in development team

5.4. Inadequate planning and insufficient documentation

5.5. Making decisions in development without consulting client

5.6. Frequent change of IT representatives in client company

5.7. Centralized decision making

6. Project Technology—refers to technological issues that may pose
risks to effective knowledge sharing

6.1. Lack of using high quality collaboration technologies and
processes in development team

6.2. Lack of a good prototype to communicate requirements between
stakeholders

6.3. Employing agile methodology without planning up front

6.4. Prioritization of requirements based on one-dimensional thinking

7. Project Setting—refers to task and context related issues that
may pose risks to effective knowledge sharing

7.1. Complex and domain specific project

7.2. Small budget agile project with limited room for interaction
7.3. Dependence on existing or legacy technology

7.4. Inability to choose development team members

7.5. Different approaches to agility between development and client
company

7.6. Profit focused culture in development company

7.7. Bureaucratic and centralized organizations

technologies

1.6. Document experiences to support planning of future projects

1.7. Increase developers’ business knowledge through client-organized
training sessions

1.8. Provide client with knowledge about agile projects through
workshops

1.9. Use pair programming to facilitate learning across development
team

2. Reinforce Directions—refers to strategies that aim at improving
shared understanding of project goals and requirements within
team and with client

2.1. Communicate importance of project to team members for key
stakeholders and career opportunities

2.2. Create and share goals within team

2.3. Discuss expectations and requirements with client and within team
2.4. Analyze client organization dynamics and be open to adapt to
changing conditions

2.5. Collect and share successful project stories with team

2.6. Share key project information with client representatives using
non-technical language

3. Leverage Relationships—refers to strategies that aim at
improving working relationships within team and with client

3.1. Leverage team diversity through cross-team observation and close
team member collaboration

3.2. Promote positive relationships across stakeholders

3.3. Build collaborative relationship with IT team in client organization
3.4. Leverage positive relationships between client representatives and
client management

4. Restructure Project—refers to strategies that aim at
restructuring resources to improve development team organization
4.1. Delegate project responsibilities within team

4.2. Relocate developers to spend more time with each other

4.3. Help new team members integrate through mentors and
incremental responsibilities

4.4. Change length of sprints to accommodate project’s constraints

4.5. Assign team full-time to project

4.6. Expand project manager’s role to include coaching and facilitation

5. Improve Processes—refers to strategies that aim at improving
development, communication, and evaluation processes

5.1. Support participation and flexibility in project’s decision making
5.2. Support requisite exploration of alternative options

5.3. Engage team in evaluating agile opportunities and challenges
5.4. Put high value on mentoring and voluntary contributions in
performance evaluations

5.5. Provide opportunities to raise any concern inappropriate for
discussion in open forums

5.6. Provide each individual member with 360° feedback

Figure 1 demonstrates five components: (1) the project risk profile, (2) gveisteprocess with heuristics,
(3) the resolution strategy plan, (4) the risk areas and items, and (5) theioassitategies and actions. The
risk management model helps a software team move from a project risk forafifesolution strategy plan.

The project risk profile refers to existing or potential risks to &ffedknowledge sharing in the project. The

Pagel8 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

resolution strategy plan refers to a plan of action with specified resolutategses and their related
resolution actions to mitigate the identified risks. The risk management prfiotiesvs a stepwise process
(1) analyze risks, (2) prioritize resolutions, and (3) develop strategy Planprocess is supported by
heuristics that link specific risks to appropriate resolutidtesuristics help develop an overall resolution
strategy plan for the project. The heuristics include the risk assessmeptvindkm(Table 5) and the

resolution assessment framework (Table 6).

Application of the model begins with analyzing the project’s risk profile (step 1, Figure 1) using the risk
assessment framework (Table 5). The participants such as project managers, developeser and
representatives scan the 37 risk items. They circle relevant risk itelamf Risk Area and ltems, Tablg 5

and all the associated resolution actions (column Resolution Actions, Table 5)ingtdizvariety of

techniques such as debating and voting across team members (Dav|s, 1982), they cqodlitztiae

assessment (High/Medium/Low level of importance) of each risk item and eakTéey record the results
of the assessment in the column Assess Risks (H/M/L), Table 5. For this assetsamentembers should
consider the probability and consequence of each risk item.

Table 5. Risk Assessment Framework

Assess
Risk Areaand Items Risks Resolution Actions
(H/M/L)

1. Team Diversity
QO Different speaking languages among members 11
(O Different working and disciple-related backgrounds among members 10, 11, 12, 20, 21
(O Different time zones and physical distance between members 26
(O Lack of prior joint working experience in development team 10, 11, 12, 20

2. Team Capabilities

O Insufficient understanding of business domain aottext 1,2,4,7
(O Unfamiliarity with development and collaboratiorcheologies 9,21
O Insufficient and ambiguous requirements 3
O Inadequate social skills 3
O Lack of familiarity with agile values and princigle 27,28
O Lack of IT resources and working experience witliveare companies in client company 8,12, 13, 16, 17

3. Team Perceptions
O Lack of motivation, focus and adaptability in demhent team 10, 11, 14, 21, 31
O Inappropriate assumptions about project scope fpdéent 12
O Fear of self-exposure to technical and agile skificiencies in development team 22,27, 30
QO Performance evaluation based on technical achievisme 29

Pagel9 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation

Systems Jour nal (Accepted: May 2016)

O stakeholder neglect of nonfunctional requirement 28
4. Project Communication
O Inadequate client availability and participation 13,23
O Lack of communication of agile time requirementshwdlient up front 5,12, 13,15
O Lack of concurrence within client team 1,3
O Product owner lack of sharing client feedback wiglvelopment team 12
5. Project Organization
(O Tight sprints schedule with little time for intetam 2,10,11
O Inadequate planning and organization in agile jrest 6
O Multitasking and lack of continuity in developmeaain 16, 24
O Inadequate planning and insufficient documentation 27,30
(O Making decisions in development without consultitigrt 28
(O Frequent change of IT representatives in clientgamy 7,18
(O Centralized decision making 20,25
6. Project Technology
QO Lack of using high quality collaboration technolegjiand processes in development team 21
QO Lack of a good prototype to communicate requiresieetween stakeholders 8
(O Employing agile methodology without planning upriro 12
QO Prioritization of requirements based on one-dimami thinking 28
7. Project Setting
(O Complex and domain specific project 2,10, 11,12
(O Small budget agile project with limited room fotéraction 3,28
(O Dependence on existing or legacy technology 2,12
O Inability to choose development team members 22
QO Different approaches to agility between developnaemnt client company 13
QO Profit focused culture in development company 29
(O Bureaucratic and centralized organizations 19

Second, the team prioritizes the identified resolutions (step 2, Figure 1). Tesgphegins by looking at the
column Resolution Actions, Table 5. Team members count how many times eachaesaltitin is circled

for addressing risk items with (i) High, (i) Medium, and (iii) Low levef importance. They add these

numbers to the column Add the Number of Targeted Risk Items, Table 6.

Table 6. Resolution Assessment Framework

Add the
Number of
Resolution)) Targeted Risk
Resolution Action Items
Strategy
H M L

Assess
Resolutio
n Action
(H/M/L)

Assess
Resolution
Strategy
(H/M/L)

Page20 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

1. Strengthen
Resour ces

1. Recruit developers with a combination of IT &diness
knowledge

2. Recruit experienced and motivated developers

3. Improve team’s agile and social skills through training

4. Share historic and current systems documentatiooss team

5. Support client and team communication with dmtation
technologies

6. Document experiences to support planning ofréuguwojects

7. Increase developers’ business knowledge through client-organized
training sessions

8. Provide client with knowledge about agile projects through
workshop

9. Use pair programming to facilitate learning across development
team

2. Reinforce
directions

10. Communicate importance of project to team mesnfue key
stakeholders and career opportunities

11. Create and share goals within team

12. Discuss expectations and requirements witmtcéiad within team

13. Analyze client organization dynamics and bendpeadapt to
changing conditions

14. Collect and share successful project storiéls iwam

15. Share key project information with client regmetatives using
nontechnical language

3. Leverage
relationships

16. Leverage team diversity through cross teamreagen and close
team member collaboration

17. Promote positive relationships across stakensld

18. Build collaborative relationship with IT teamdlient organization

19. Leverage positive relationships between clieptesentatives and
client management

4. Restructure
project

20. Delegate project responsibilities within team

21. Relocate developers to spend more time with etiter

22. Help new team members integrate through meatats
incremental responsibilities

23. Change the length of split sprints to improveractions

24. Assign team full time to project

25. Expand project manager’s role to include coaching and facilitation

5. Improve
processes

26. Support participation arftbxibility in project’s decision making

27. Support requisite exploration of alternativéias

28. Engage team in evaluating agile opportunitreschallenges

29. Put high value on mentoring and voluntary dbations in
performance evaluations

30. Provide opportunities to raise any concerrdfecussion in open
forums

Page?l of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

31. Provide each individual member with 360° feat#ba

Based on these numbers, the team qualitatively assesses each resolution actionAssdssiiResolution
Action (H/M/L), Table 6). Some guiding criteria could be the number of teskg that the resolution action
can address, the number of highly-impottaisk items that the resolution action can address, and the
feasibility of the resolution action. For example, it is possible that &utEsoaction can address important
risks, yet it may not be a feasible action in that project. Final decision on witesheuld be given high,
medium, or low importance may include considering stakeholder interests and avekdlrces, and it
should involve techniques such as debating and voting. For example, the risk managementnmapces
suggest recruiting new developers as a highly important resolution action. Hodiedo project finances
the team may decide to mitigarisks by increasing developers’ business knowledge through client-
organized training sessions (related to the category of Strengthen Resoures).athis process helps
participants engage in mindfully understanding risks, potential resolution actions, amaliengxecuting
them and alternative resolutions. The result of the assessment is recoftted¢afutnn Assess Resolution
Action (H/M/L), Table 6.

Third, attention turns to development of an overall strategy to pritiie five resolution strategies (step 3,
Figure 1). For this, the team qualitatively assesses each of the &tegis (column Assess Resolution
Strategy (H/M/L), Table 6). The team crafts a resolution strategy plan that inqge®ritized resolution
categories along with a list of their identifieesolution actions, (ii) some notes on ‘who, where and when’
with regard to the resolution actions, and (iii) some notes on the role of key stakehwldestential
challenges in implementing the resolution actions. The main objective is t@ biedteye’s vision for the
development team and to give them a head start on keeping the risk managemeon diraple and
memorablg (Olsen, 1988).

As a final note, identifying and mitigating risks should occur as early as possitdés plarticularly the case
in agile development. More specifically, the flexible characteristic ok adglvelopment adds additional
change and customer-related concerns compared to traditional risk management framewexempier;

the customer may express reluctance to continue with releases in small incremietsniddle of the

project [(Lippert et al., 2003). Such characteristics suggest that agile degstogam particularly benefit

from the risk management model. By engaging stakehoidemsderstanding the nature, consequences and
management of risks, the team can constantly look for improvement opportulsgiks practices such as
sprint retrospective meetings can be leveraged for these purposes. At tifeeandd meeting, the team can
quickly fill the forms (Tables 5-6). The team can keep the requitiifure use. For example, the forms can
be scanned and stor@dthe company’s knowledge management system. If this process was undertaken in

prior meetings, the teacandiscuss: (i) the risks identified in previous meetings, (ii) the rasalaictions

Page22 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

that were implemented since then, and (iii) consequences of their implemergatioany particular

challenge or important issues that occurred in their implementation
Model Evaluation

We conducted four one-hour evaluation sessions of the risk management model with egbmerjagers,
two developers, one tester and one user representative in one of the software canmiadksAt the end
of each session, the researcher asked the participgnts/ide additional feedback on the model’s strengths

and areas for improvement.

The participants agreed that the model is easy to use and it helps in the manajepnejeicts. The
interviewees, especially project managers, expressed that the model offeectiv@rapproach to assess
knowledge sharing risk items during projects and to identify resolutionnactd mitigate the risks or
prevent them from adversely affecting knowledge sharing practices. Notablyaskey for permission to
keep the forms and apply the model within their company. For example, a project nrearagtexd that the
model is not only useful in creating a shared vision and a prioritized plan, &dsbihelps reduce agile-
related stress. He explained that he would like to include the risk mamaigenocess model in regular
retrospective action items:Scrum meetings can sometimes be stressful ... The needs of the customers are
unclear or changing. There is a lot of work to be done, and team members have sometinadtiedfi
doing their work. This [model] creates a shared vision of prioré@®ss the team. The [risk management]
process is also fun. It hadifferent style that helps reduce work stress. | would put it on afaspective
action item.” In another session, one of the senior developers arhatethe model ensures stakeholders’
concerns are considered thoroughly, planned for,mamdtored: “The model gives the people who worry
about the project a space to come in the meeting and put those worriesowsan plan for risks and
monitor the results. A tester expressed thiatwould be promising to build an application that automates and
facilitates the risk management process. In contrast, project managers aajuine informal process of

applying the model and its forms during retrospective meeis@s effective solution for their projects.
Discussion

Theoretical Contributions

This study was motivated based on a pressing theoretical and practictd geedrate new insights on how

agile teams may prevent communication-related and knowledge sharing barriesdfrersely affecting

agile development practicés (Ramesh et al., PGhdbadi & Mathiassen, 2015). &dddresedthe research

questior—how can agile development teams systematically assess and mitigate gf&stive knowledge

sharing—by developing a risk management model. In an inductive, grounded fashion, we coimialapth

Page23 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

data collected from four software projects with theoretical insifdoim the agile literaturg (Conboy et a

2014| Vidgen & Wang, 20("9, McAvoy et al., 2("12, Ramesh et al.,|R010, Conboy & Morgafy, 2011, Ghobadi
& Mathiassen, 2015) and research on risk management approaches (Dav|$, 1982, Paiss@ﬁ)(g,

Iversen et al., 200Q4). Our research presents three theoretical contributions.

First, the risk management model (Figure 1, Tables 4-6) adds substantive content to ostandiey of
communication-related and knowledge sharing issues in contemporary software teatthviigtuse agile
practices. Specifically, the model contributes new concepts and detailed praoedsesliop a resolution
strategy plan in response to a project’s knowledge sharing risk profilé&Such an empirically-grounded and

theoretically-informed understanding has been absent from existing researchactimk mliscourses. For

example, software development research has identified risks and resolutios fmtimitigating thenm (Kelil

et al., 1998, Ropponen & Lyytinen, 2Q{Boehm, 199]L)but there are scarce efforts that go beyond this

foundational stepgo develop comprehensive risk management plans (lversen et al|, 2004). In contrast,

proposed approach provides heuristics that facilitate analyzing riskstizirig resolutions, and linking
them into an overall plan. Our proposed risk management process also engages teéans ineseveral
informal, mutual knowledge sharing exercises. These exercises help teams overcisine deaking
challenges that are common in agile contexts. Specifically, research suggestbc®llenges, such as lack

of shared understanding and developers’ lack of enthusiasm to communicate, may inhibit effective shared

decision-making in agile teanjs (Moe et al., 2012). In response, a risk mamageoress provides team

members with an engaging opportunity to confront each other, discuss wi¢esipecially conflicting
ones), and understand project complexitiés use of formalized methods may seem controversial in agile

development research. Yet, rhetoric on agile and plan-driven approaches have become less confrontational in

the past few year$ (Boehm & Turner, 2D03). More recently, scholars have toegbserve real-world

projects more closely, echoing the existence and importance of leveraging aeriiidéxtagile teams

Ramesh et al., 20"2, Ramesh et al., 2006). Our results and model evaluation findingsitbribig view

and addo it by showing that the risk management model is useful in many ways. Spbgifielshowed
that the model can easily be used during agile practices such as light-aegyinformal scrum and
retrospective review meetings, helping software teams achieve better performancelividual-related

outcomes.

Second, our model defines and presents seven categories of risk areas andldivenrst@ategies. These
conceptual categoriese useful in studying and measuring several aspects of knowledge sharing in software
development. For example, Table 4 outlines 4-9 ‘concepts’ associated with each ‘category’. Tables 5-6 offer
heuristics for linking risks and resolutions. Thus, they refer to ‘links’ between concepts (risks and
resolutions) and the link between conceptual categories (risk areas and resolution strategies). These

conceptual categories, their associated concapts heuristics for linking concepts and categories lay the

Page?4 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

foundation for significant qualitative and quantitative investigatiots communication-related challenges

confronting agile teams.

Third, the empirical data reveals that the high performing projects did wayslexperience fewer risks
compared to low performing projects, but they did implement more unique resoluiimmsaimpared to
the risks they faced. Furthermore, although all projects used certain resolutmms dor addressing
different risks, high performing projects applied those actions in a bolder arel throughtful manner
compared to low performing ones. For example, high performing projects highlightedgtrézational

importance of the project and the managerial support in various occasions. Thdge awigur with prip

software development research (Barki et al., 2001), suggesting that diffeggect risk management

profiles can lead to different project performance outcomes.

Practical Contributions

The risk management model meets the criteria of practical applicgitpposed by| (Glaser & Strauss,

1977) First, the model fits the substantive area of knowledge sharing in softwalemeent. Specifically,

software teams constantly invest in better communication and knowledge s¥féoitg) ((Gupta & Bajwa

2012). They increasingly need intellectual tools that help identify arm$sagmnowledge sharing risks and

prevent them from adversely affecting development practices. In response tattisapneed, we have

offeredadetailed risk management model (Figure 1, Tables 4-6).

Second, the model is sufficiently general to be relevant to a range of soffergtdopment contexts.
Specifically, it is grounded in empirical findings based on data collectedffronprojectsin two software

companies. In addition, its practical usefulness is strengthened using insights withiamiditerature

Third, our evaluation suggests the model is readily understandable by gmacsitand provides useful
guidance in the management of knowledge sharing practices in agile developmenodihetmerefore,
serves as a basis on which software practitioners can iteratively assess eféhstitee knowledge sharing
and take important steps for mitigating them at different stages of develogmesummary, the risk

management model offers several practical advantages.

First, close and committed participation from stakeholders support colledhidéuiness and team learning

in agile developmer‘1t (McAvoy et al., 2@ IIJﬂoda et al., 2018, Keil et al., 2002). We recommend software

teams involve different stakeholders in the risk management process. For exampt@antltanduct the
process during project retrospectives. Second, the risk management procesgaliowsembers to discuss
which actions did work or did not work over the project life-cycle. For exammeptocess may suggest
‘providing each individual member with 360° feedback’ to mitigate the risk that ‘lack of motivation, focus

and adaptability in development team’ poses to effective knowledge sharing (Table 5-6). Project

Page25 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

retrospectives may, however, suggest the following: This action proved tdebtvefat early stages, but
providing feedback consumed the time of experienced developers, and slowed down theirwageat

later stages of development. Third, research suggests that reluctance it tbaas news concerning a

software project and its status can increase project Igsses (Tyngila 2009f Smith & Keil, 2003)Iin

contrast, accumulated knowledge and lessons learned from regular risk managemdatedacil
organizational learning, forms an open culture for transmitting both poaitivehallenging outcomes, and
creates possibility of changing project direction for betteurth, regular risk management efforts help

create and maintaia risk management registry for each specific project, enabling expeniense and

cross-project learning (Newell, 2(1‘)4, Petter & Vaishnavi, 2008).

Concluding Remarks

We acknowledge a number of limitations that present opportunities for fheweytdevelopment. First, the
findings are limited to four agile projects across two software companiesre¥denmend large-scale
empirical studies to validate, modify, or extend the presented model. Secondjodatl suggests a
straightforward approach involving high, medium, low scores for assessisganskresolutions. Shared-
decision making for assessing risks can be challenging particularly in lasgetprthat involve many
stakeholders. Future research may develop and implement more systematic approachesifuy askes

Examples include measuring the probability of risk multiplied by the loss atswavith it, and measuring

the magnitude of potential loss associated with project fjilure (Barki et al{. 1993)

Third, we have evaluated the practical utility of the model in one softwar@aoyn Research may provide

additional insights by evaluating the model in different companies, arefiff stages of development

Tasharofi & Ramsin, 2007), and during different types of software project®,(largdium, small size).

Scholars may apply design science techniques to develop web-based tools that sugsonreaissef the

model|(Persson et al., 2J09). Fourth, we recommend longitudinal research to extend the model by identifying

the risks that may occur as the result of implementing certain resolutionsadtor example, the resolution

action‘analyze client organization dynamics and be open to adapt to changing conditions’ can lead to major

reworks when the architecture does not scalg up (Batra| 2009). Thus, implementiegpihison action can

make it difficult for developers to commit enough titeeknowledge sharing activities at later stages of
development. Fifth, longitudinal studies are encouraged to link resolution actionsjést pohases,
advancing our understanding of different stages of development in which eachiogesattion is best
implemented. For example, researchers may explore which resolution actions are best implaioented

the project initiation. Sith, our results suggest that the high performing projects, more than the low

performing ones, tend to address risks more effectively by applying moreti@salctions compared to the

Page26 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

risks they face. Future research should further investigate differencesebehigh performing and low
performing projects in terms aheir project’s risk profile and their approach to the assessment and

mitigation of knowledge sharing risks. Finally, we suggest sharing mental medaseantial for successful

team work|(Ghobadi & Mathiassen, 2(015). Yet, teaas also be subject to groupthink cognitive biases

Janis, 198p) that fiuence team members’ understanding of risks and potential resolution actions. We

recommend scholars study groupthink biases and their consequences in future risk management gramework
Acknowledgement

The authors thank the development teams who participated in this study as well as the seniassmtitate

editor, and the three reviewers for their valuable guidance during the revision process.

References

Augustine, S., Payne, B., Sencindiver, F. & Woodcock, S. (2005) Agile project managsteemntg from
the edges. Communications of the ACM, 85-89.

Barki, H. & Hartwick, J. (2001) Interpersonal conflict and its managemeninformation system
development. MIS Quarterl2b, 195-228.

Barki, H., Rivard, S. & Talbot, J. (1993) Toward an assessment of software degetopsk. Journal of
Management Information Systend$), 203-225.

Baskerville, R. L. & Stage, J. (1996) Controlling prototype development throisl analysis. MIS
Quarterly,20, 481-504.

Batra, D. (2009) Modified agile practices for outsourced software projects. Commursaaitibe ACM,52,
143-148.

Bellini, E., Canfora, G., Garcia, F., Piattini, M. & Visaggio, C. A. (2005) Pair dewjgas practice for
enforcing and diffusing design knowledge. Journal of Software Maintenance ahatidev
Research and Practick/, 401-423.

Boehm, B. & Turner, R. (2003) Balancing agility and discipline: A guide for the gxexgh| Addison-Wesley
Professional.

Boehm, B. W. (1991) Software risk management: principles and practices. |IEEE S&ft@2a4l.

Carmel, E., Espinosa, J. A. & Dubinsky, Y. (2010) "Follow the Sun" Workflow in Gl&udtware
Development. Journal of Management Information Syst2imd,7-38.

Chakraborty, S. & Sarker, S. (2010) An exploration into the process of requiseefieitation: a grounded
approach. Journal of the Association for Information Systéing12-249.

Conboy, K., Coyle, S., Wang, X. & Pikkarainen, M. (2010) People over process: key people challenges
agile development. IEEE Softwar®9, 47-57.

Conboy, K. & Morgan, L. (2011) Beyond the customer: Opening the agile systems development process.
Information and Software Technolo@d®s, 535-542.

Corvera Charaf, M., Rosenkranz, C. & Holten, R. (2012) The emergence of sharedanddeysapplying
functional pragmatics to study the requirements development process. InformatemsSyournal,
23, 115-135.

Dalcher, D. (2002) Safety, risk, and danger: A new dynamic perspective. Cutter IT JbbrBaai27.

Davis, G. B. (1982) Strategies for information requirements determination. IBM Sydtermal?21, 4-30.

Dingsayr, T. & Hanssen, G. (2003) Extending agile methods: postmortem reviews as extefiubark fekh
International Workshop on Learning Software Organizations, Chicago, IL, USA: Springer Verlag, 4
12.

Page27 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

Dorairaj, S., Noble, J. & Malik, P. (2012) Knowledge Management in Distributed Afplitware
Development, Agile Conference (AGILE), Dellas, Texas, US: IEEE, 64-73.

Dyba, T. & Dingsayr, T. (2008) Empirical studies of agile software developmestistematic review.
Information and Software Technolody), 833-859.

Earl, M. 1987. Information Management Strategy. Englewood-Cliffs, NJ: Prentice-Hall.

Eisenhardt, K. M. (1989) Building theories from case study research. Agaddfianagement Revievi4,
532-550.

Eisenhardt, K. M. & Graebner, M. E. (2007) Theory building from cases: opportunitieshatienges.
Academy of Management Journ&Q, 25-32.
Fitzgerald, B., Russo, N. L. & O'Kane, T. (2000) An Empirical Study of System Develapkhethod
Tailoring in Practice, European Conference on Information Systems: Citeseer, 187-194.
Fitzgerald, B., Russo, N. L. & Stolterman, E. (2002) Information systems development: Methodsnn acti
Ghobadi, S. (2015) What drives knowledge sharing in software team: a review and atassifiamework.
Information and Managemerti2, 82-97.

Ghobadi, S., Campbell, J. & Clegg, S. (2015) Pair programming teams and high-kn@hledge sharing:
A comparative study of coopetitive reward structures. Information Systems Frontiers.

Ghobadi, S. & D'ambra, J. (2013) Modeling High-Quality Knowledge SharingasscFunctional Software
Development Teams Information Processing & Manageméni,38-157.

Ghobadi, S. & Mathiassen, L. (2015) Perceived Barriers to Effective Knowtgiulyeng in Agile Software
Teams. Information Systems Journal.

Glaser, B. G. & Strauss, A. L. (1977) The discovery of grounded theorye@eatfor qualitative research,
Aldine Publishing, Chicago.

Gupta, N. & Bajwa, J. K. (2012) Analysis of Knowledge Sharing Practices istriidited Agile
Environment. International Journal of Computer & Communication Techndpdyl1.

Highsmith, J. (2009) Agile project management: creating innovative products, PearsonoBdivAatius.

Hoda, R., Babb, J. & Norbjerg, J. (2013) Toward Learning Teams. IEEE So8@,c9%8-98.

Holmstrém, H., Fitzgerald, B., Agerfalk, P. J. & Conchuir, E. O. (2006) Agile practeckge distance in
global software development. Information Systems Manage2∋18.

Iversen, J. H., Mathiassen, L. & Nielsen, P. A. (2004) Managing risk in softwacegsrimprovement: an
action research approach. MIS Quarte28;,395-433.

Jans, |. L. (1982) Groupthink: Psychological studies of policy decisions and &as¢toughton Mifflin,
Boston.

Karlsen, J. T., Hagman, L. & Pedersen, T. (2011) Intra-project transfer of knevitedgormation systems
development firms. Journal of Systems and Information Technd8g§6-80.

Keil, M., Cule, P. E., Lyytinen, K. & Schmidt, R. C. (1998) A framework for identifyindveafe project
risks. Communications of the ACM], 76-83.

Keil, M., Tiwana, A. & Bush, A. (2002) Reconciling user and project manager pencgati IT project risk:
a Delphi study. Information Systems Jourria, 103-119.

Lee, A. S. & Baskerville, R. L. (2003) Generalizing generalizability riformation systems research.
Information Systems Researdd, 221-243.

Lippert, M., Becker-Pechau, P., Breitling, H., Roock, S., Schmolitzky, A., Wolf, H. & H&n{2003)
Developing complex projects using XP with extensions. Comp8ée6,7-73.

Lyytinen, K. (1987) Different perspectives on information systems: problems amtiossl ACM
Computing Surveys (CSUR)9, 5-46.

Lyytinen, K., Mathiassen, L. & Ropponen, J. (1998) Attention Shaping and Software-Ri€lategorical
Analysis of Four Classical Risk Management Approaches. Information Systems ReSe233%,
255.

Mcavoy, J., Nagle, T. & Sammon, D. (2012) Using mindfulness to examine ISD agilityn&tfon Systems
Journal,23, 155-172.

Mcfarlan, F. W. (1981) Portfolio approach to information systems. Harvard Business Fsyi@d2-150.

Page28 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

Moe, N. B., Aurum, A. & Dyb3, T. (2012) Challenges of shared decision-making: #ptautase study of
agile software development. Information and Software Technobeg$53-865.

Nerur, S. & Balijepally, V. G. (2007) Theoretical reflections on agile developmmthodologies.
Communications of the ACNJ0, 79-83.

Newell, S. (2004) Enhancing cross-project learning. Engineering Management Jbéir hai20.

Newman, M. & Robey, D. (1992) A social process model of user-analyst relationsh$pQudrterly,16,
249-266.

Olsen, R. J. (1988) Niche shock: And how to survive it. Planning Rel&;13.

Persson, J. S., Mathiassen, L., Boeg, J., Madsen, T. S. & Steinson, F. (2009) Managinglisskbuted
software projects: an integrative framework. IEEE Transactions on Engineeainggément56,
508-532.

Petter, S. & Vaishnavi, V. (2008) Facilitating experience reuse among softwgest pnoanagers.
Information Scienced,78, 1783-1802.

Ramesh, B., Cao, L. & Baskerville, R. (2010) Agile requirements engineeringcpgaatd challenges: an
empirical study. Information Systems Jourr8l, 449-480.

Ramesh, B., Cao, L., Mohan, K. & Xu, P. (2006) Can distributed software development be agile?
Communications of the ACM!9, 41-46.

Ramesh, B., Mohan, K. & Cao, L. (2012) Ambidexterity in Agile Distributed Development: Apirieat
Investigation. Information System Resear23,323-339.

Ropponen, J. & Lyytinen, K. (2000) Components of software development risk: How to athére8sA
project manager survey. IEEE Transactions on Software Engine2@irdg-112.

Scott, W. A. (1955) Reliability of content analysis: The case of nominal scalegcdeublic Opinion
Quarterly,19, 321-325.

Smith, H. J. & Keil, M. (2003) The reluctance to report bad news on troubled softwaretgirajtheoretical
model. Information Systems Journa3, 69-95.

Sutherland, J. (2005) Future of scrum: Parallel pipelining of sprints in complextprajgile Conference:
IEEE, 90-99.

Tasharofi, S. & Ramsin, R. 2007. Process patterns for agile methodologies. In: Situbethad
Engineering: Fundamentals and Experiences, pp. 222-237. Boston, Springer.

Tynjala, P., Pirhonen, M., Vartiainen, T. & Helle, L. (2009) Educating IT project mantmgetgh project-
based learning: A working-life perspective. Communications of the Asgntifdr Information
Systems24, 269-288.

Vidgen, R. & Wang, X. (2009) Coevolving systems and the organization of agileasoftlevelopment.
Information Systems Researdf), 355-376.

Williams, L. (2012) What agile teams think of agile principles. Communications of the 3&M]-76.

Page?29 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

Appendix 1: Interview Guide

In this project, how important was ‘effective knowledge sharing” among team members?

In what ways was knowledge sharing practiced?

During the project, how satisfied were you by the knowledge gharactices among team members?
In what ways did knowledge sharing help the project achieve its goals?

Which problems did you notice in achieving effective knowledgershamong team members?
What were the key enablers of effective knowledge sharing?

What were the key barriers to effective knowledge sharing?

Now, | have noted a number of barriers to effective knowledge sharthis project. Can you please have a look and
sort them for me based on their level of importance.

Is there anything else that you would like to mention that we did not cover?

Ghobadi & Mathiassen, 2015)

Appendix 2: Sample Coding

Codes | \ Sample Quote
High-performing project “Stakeholders got the results they wanted and they are happy with how they worked with the team.”
Low-performing project “Project stakeholders didn 't see results fast enough.”
Complex business rules “They [developers] knew what the algorithm was and what the code for it was, but understanding

what the code’s ultimate goal was and spotting errors in the output was hard and time consuming”
(user representative).

Making experienced and motivated “We had [a senior developer] who has the most experience of these products. We asked him how

developers available things work. If he hadn’t been available it would have been much more difficult”

Lack of motivation in the team “I think they may have been less motivated, because they didn’t feel that their work was as important
as what some of the other teams were doing”

Emphasizing the organizational “And, we are trying to basically let them be aware that they are in a position that is highly visible in

importance of the project the company and can grow very rapidly”

Employing agile methodology without “I didn’t understand how much time would be required of me at the start.”

planning up front
Understanding client and'being open and “It seemed to me there was a clear awareness of the kinds of pressures that people in [my business]
flexible to adapt to changing conditions | have. So when I had difficulty making myself available, they [development team] were very quick to

adapt”
Inadequate client availability and “Most of the people in [my business] have heavy workloads and administrative loads”
participation
Different working and discipline-related | “We had a huge amount of discrepancy in terms of people’s knowledge. We had someone who knows
backgrounds among members the [domain knowledge] over five years. We had people who had never worked on [this area].”
Decreasing the length of sprints “Developers thought three weeks sprint to be better for their focus, because of rotating shifts with an
alternative project.”

Appendix 3: Project Summaries (Within-Case Analyses)

Project Alpha One Summary

Risk Area Risksltem Resolutions Actions

Unfamiliarity with development and collaboration | Use pair programming to facilitate learning across development team

technologies Relocate developers to spend more time with each other
Lack of IT resources and working experience with Discuss expectations and requirements with client aridnititam
Team e i Al : P . :
- software companies in client company Analyze client organization dynamics and be open to adaptataging
Capabilities conditions
Leverage team diversity through cross team observation and close team
member collaboration
Promote positive relationships across stakeholders
Lack of communication of agile time requirementg Analyze client organization dynamics and be opesd@apt to changing
Project with client up front conditions
Communication Support client and team communication with collaboration &ogies

Share key project information with client representatives usamgechnical

Page30 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation

Systems Jour nal (Accepted: May 2016)

language
Discuss expectations and requirements with client atiihvteam

Multitasking and lack of continuity in developmen
team

Project

Leverage team diversity through cross team observatidrclose team
member collaboration
Assign team full time to project

Organization Frequent change of IT representatives in client

company

Increase developers’ business knowledge through client-organized training
sessions
Build collaborative relationship with IT team in client orgaation

Dependence on existing or legacy technology

Discuss expectations and requirements with client atmihvieam

Project
Setting

Different approaches to agility between
development and client company

Analyze client organization dynamics and be opesd@pt to changing
conditions

Bureaucratic and centralized organizations

Leverage positive relationships between client representatidesiant
management

Project Alpha Two Summary

Risk Area Risks Item Resolutions Actions
Team Different speaking languages among members -
Diversity
Lack of motivation, focus and adaptability in -
Team development team

Perceptions Inappropriate assumptions about project scope m|

by client

Discuss expectations and requirements with client aridniitam

Insufficient understanding of business domain an
context

Share historic and current systems documentation across team
Increase developers’ business knowledge through client-organized training
sessions

Communication | Lack of communication of agile time requirementg

with client up front

Team Inadequate social skills -
Capabilities
Lack of IT resources and working experience with Provide client with knowledge about agile projects through srasf
software companies in client company Discuss expectations and requirements with client atimiivteam
Analyze client organization dynamics and be open to adapiziaging
conditions
Inadequate client availability and participation Change the length of split sprints to improve interactions
Analyze client organization dynamics and be opesd@pt to changing
conditions
Project

Analyze client organization dynamics and be opesd@pt to changing
conditions

Lack of concurrence within client team

Tight sprints schedule with little time for interactio

Inadequate planning and organization in agile

Project practices

Organization Multitasking and lack of continuity in developmen

team

Inadequate planning and insufficient documentati
(communicate facés-face principle)

Making decisions in development without
consulting client

Project
Technology

Lack of a good prototype to communicate
requirements between stakeholders

Provide client with knowledge about agile projects tigfoworkshop

Employing agile methodology without planning up
front

Page3l of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

Project
Setting

Complex and domain specific project

Discuss expectations and requirements with client atmihvieam

Recruit experienced and motivated developers

Communicate importance of project to team members for key stakeholde|
and career opportunities

Small budget agile project with limited room for
interaction

Profit focused culture in development company

Project Beta One Summary

Perceptions

Risk Area Risk Item Resolutions Actions
Different speaking languages among members Create and share goals within team
Different working and disciple-related background Communicate importance of project to team members for key stakeholde|
among members and career opportunities
Create and share goals within team
Delegate project responsibilities within team
Team Different time zones and physical distance betwe¢ Support participation and flexibility in project’s decision making
Diversity members
Lack of prior joint working experience in Communicate importance of project to team members fostlégholders
development team and career opportunities
Create and share goals within team
Delegate project responsibilities within team
Different speaking languages among members -
Lack of motivation, focus and adaptability in Communicate importance of project to team members fostlégholders
Team development team and career opportunities

Create and share goals within team

Fear of low estimates in development team

Communication

Team Insufficient understanding of business domain an{ -
Capabilities context
Project Product owner lack of sharing client feedback witl

development team

Discuss expectations and requirements with client aridnaitam

Project
Organization

Tight sprints schedule with little time for interactio

Create and share goals within team

Communicate importance of project to team members fostlégholders
and career opportunities

Recruit experienced and motivated developers

Inadequate planning and organization in agile
practices

Multitasking and lack of continuity in developmen
team

Project Lack of using high quality collaboration Relocate developers to spend more time with each other
Technology technologies and processes in development team
Complex and domain specific project Discuss expectations and requirements with client atmihvieam
Communicate importance of project to team members fostkdgholders
Project and career opportunities
Setting Create and share goals within team

Multidimensional project involving both applicatior
and infrastructure development

Project Beta Two Summary

Risk Area RisksItem Resolutions Actions
T Different working and disciple-related background Discuss expectations and requirements with client aridnititam
D?\jieTsity among members Relocate developers to spend more time with each other

Lack of prior joint working experience in

Discuss expectations and requirements with client atmihvieam

Page32 of 33

Ghobadi, S., Mathiassen, L. 2016, A Model for AssesaimMitigating Knowledge Sharing Risks in Agile Saite Development,nformation
Systems Jour nal (Accepted: May 2016)

development team

Team
Perceptions

Lack of motivation, focus and adaptability in
development team

Relocate developers to spend more time with each other

Insufficient understanding of business domain an
context

Recruit experienced and motivated developers

Team . Unfamiliarity with development and collaboration | -
Capabilities A
technologies
Insufficient and ambiguous requirements -
Tight sprints schedule with little time for interactio| Recruit experienced and motivated developers
Inadequate planning and organization in agile Document experiences to support planning of future projects
practices
Project

Organization

Inadequate planning and insufficient documentati
(communicate facés-face principle)

Lack of using high quality collaboration
technologies and processes in development team

Relocate developers to spend more time with each other

Project

Technology Employing agile methodology without planning ug Discuss expectations and requirements with client atmihvieam
front
Complex and domain specific project Recruit experienced and motivated developers

Zggﬁ% Dependence on existing or legacy technology Recruit experienced and motivated developers

Inability to choose development team members

Page33 of 33

https://www.researchgate.net/publication/303566033

