
This is a repository copy of Risks to Effective Knowledge Sharing in Agile Software Teams:
A Model for Assessing and Mitigating Risks.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/144697/

Version: Accepted Version

Article:

Ghobadi, S and Mathiassen, L (2017) Risks to Effective Knowledge Sharing in Agile
Software Teams: A Model for Assessing and Mitigating Risks. Information Systems
Journal, 27 (6). pp. 699-731. ISSN 1350-1917

https://doi.org/10.1111/isj.12117

© 2016 John Wiley & Sons Ltd. This is the peer reviewed version of the following article:
Ghobadi, S., and Mathiassen, L. (2017) Risks to Effective Knowledge Sharing in Agile
Software Teams: A Model for Assessing and Mitigating Risks. Info Systems J, 27: 699–
731, which has been published in final form at https://doi.org/10.1111/isj.12117. This article
may be used for non-commercial purposes in accordance with Wiley Terms and
Conditions for Self-Archiving. Uploaded in accordance with the publisher's self-archiving
policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 1 of 33

A Model for Assessing and Mitigating

Knowledge Sharing Risks in Agile Software Development

Shahla Ghobadi, The University of Manchester
Lars Mathiassen, Georgia State University

What happens is not as important as how you react to what happens. Ellen Glasgow

Abstract

We present an empirically-grounded and theoretically-informed model for the assessment and mitigation of

risks to effective knowledge sharing in agile development. The model is anchored in empirical insights from

four agile projects across two software companies and in extant research on risk-strategy analysis and

knowledge sharing in software development. We develop the model as part of the long-standing tradition of

presenting risk management models dedicated to specific issues in software development and confirm its

practical usefulness in one of the software companies studied. The model offers concepts and processes to

assess a project’s knowledge sharing risk profile and articulate an overall resolution strategy plan to mitigate

the risks. The results highlight how different knowledge sharing risk management profiles can lead to

different project performance outcomes. We conclude with a discussion of research opportunities that the

results offer software development scholarship.

Keywords: Agile, software development, knowledge sharing, knowledge management, risk management,

qualitative research, grounded theory

Introduction

The use of agile practices such as eXtreme programming and scrum improves team agility and helps address

process inefficiencies common in plan-driven software development (Holmström et al., 2006, McAvoy et al.,

2012, Highsmith, 2009). A fundamental concept in agile development is effective sharing of high-quality

information, know-how, ideas, suggestions, skills, and expertise among individuals (Ghobadi & D'Ambra,

2013). For example, scrum requires user representatives, product owners, developers and managers to

engage in iterative cycles, address development challenges, and explore product opportunities (Nerur &

Balijepally, 2007, Carmel et al., 2010, Chakraborty & Sarker, 2010). Several barriers may, however, pose

risks to effective knowledge sharing in agile development (Ghobadi & Mathiassen, 2015). Some examples

include diverse working and discipline-related backgrounds among team members (Corvera Charaf et al.,

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 2 of 33

2012), different time zones and physical distance between team members (Conboy et al., 2010, Dorairaj et

al., 2012, Gupta & Bajwa, 2012), and insufficient planning and documentation (Karlsen et al., 2011, Conboy

& Morgan, 2011). Inevitable knowledge sharing barriers prompt calls to pay closer attention to

understanding the risks they pose to software practices and in turn to develop strategies that help mitigate

those risks. Although the extant literature recognizes these barriers (Ghobadi & Mathiassen, 2015), there is

limited knowledge and no comprehensive approach on how agile development teams can manage these risks.

This lack of research can be attributed to existing views that link ‘formalized management approaches’ to

going against the agile philosophy of ‘people over processes’ and to stifling the positive benefits of risk

taking behaviors (Dalcher, 2002). More recently, however, research has proclaimed the importance of

seeking a balanced view in which the strengths of both agile and plan-driven approaches are leveraged

(Boehm & Turner, 2003). A well-respected plan-driven approach is to adopt risk management to assess and

mitigate risks related to software development (Boehm & Turner, 2003, Boehm, 1991). Risk management is

also helpful for creating shared mental models across stakeholders and for supporting collective decision

making (Lyytinen et al., 1998). Hence, based on a risk management approach this study concentrates on the

following research question: how can agile development teams systematically assess and mitigate risks to

effective knowledge sharing?

We use the term ‘agile development teams’ to refer to contemporary software teams that actively use agile

practices in their development efforts. We then define ‘risks to effective knowledge sharing’ as barriers that

(with some likelihood) may adversely affect (with some loss) effective knowledge sharing in agile

development. In addressing the research question, we rely on a grounded theory approach (Glaser & Strauss,

1977). Specifically, we complement empirical data collected from four agile projects with (i) key findings

within the agile literature (Conboy et al., 2010, Vidgen & Wang, 2009, McAvoy et al., 2012, Ramesh et al.,

2010, Conboy & Morgan, 2011, Ghobadi & Mathiassen, 2015), and (ii) insights from risk management

research (Davis, 1982, Persson et al., 2009, Iversen et al., 2004). The result is an empirically-grounded and

theoretically-informed model for assessing and mitigating risks to effective knowledge sharing in agile

development. This study presents three theoretical contributions.

First, our risk management model synthesizes a generic list of 37 risk items and 31 resolution actions. This

list covers an extensive set of knowledge sharing risks and resolutions that are not integrated in existing

software risk management frameworks (Persson et al., 2009, Davis, 1982). The model contributes categories,

concepts, and processes that are helpful to both qualitative and quantitative research studying

communication-related issues in software contexts. Second, our model offers a systematic approach to risk

management in agile software development. Specifically, it contributes to the long-standing tradition of

developing risk management models in software development (Boehm, 1991, Barki et al., 1993, Baskerville

& Stage, 1996) with heuristics to assess risks to effective knowledge sharing, to identify and prioritize

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 3 of 33

resolution actions to mitigate them, and to articulate an overall resolution strategy plan. Third, our results

suggest the high performing projects, more than the low performing ones, tended to address risks more

effectively by taking bolder initiatives and applying more resolution actions relative to existing risks. This

finding concurs with prior software development research (Barki et al., 2001), suggesting that different

project risk management profiles can lead to different project performance outcomes.

The remainder of the article is organized as follows. We begin by detailing theoretical background and

research methodology, including data collection and analysis procedures. We explicate research findings for

each development project followed by complementing the cross-case analysis with the extant literature.

Next, we present the proposed model and the results of its practical evaluation. We conclude by discussing

implications for theory and practice and outlining avenues for future research.

Theoretical Background

Researchers have long studied the intensive, collaborative, and knowledge-intensive processes through

which software emerges (Ghobadi, 2015). We, therefore, know several barriers, such as diverse social

identities, cross-functionality of team members, coordination challenges across distributed sites and

motivational factors that may complicate knowledge sharing in software teams. New software trends

revolving around agile development have generated renewed interest in this area as well (Dybå & Dingsøyr,

2008). Specifically, agile practices are based on principles that focus on welcoming change, working

software, and continuous introspection (Williams, 2012). Agile practices are set to improve communication

and knowledge sharing in software contexts. For example, postmortem reviews encourage team members to

share and learn from good and bad project experiences (Dingsøyr & Hanssen, 2003). Another example is

pair programming that helps foster sharing of embedded knowledge (Bellini et al., 2005, Ghobadi et al.,

2015). Implementing agile practices may, however, pose unintended risks to knowledge sharing, putting

agile teams at the risk of losing requisite capabilities. For example, frequent releases are recommended to

facilitate knowledge sharing across stakeholders (Lippert et al., 2003). However, over-communication

between the team and customers exposes software teams to the risk of losing agility (Vidgen & Wang,

2009). Also, including customer representatives at sprint planning sessions helps streamline communication

with the client and facilitate organic change (Karlsen et al., 2011). However, this practice can reduce the

available time for sharing ideas outside the team (Conboy & Morgan, 2011). In addition, customer

representatives may generate major reworks for software teams and make it difficult to commit enough time

to knowledge sharing at later stages of development (Batra, 2009).

In summary, agile development teams should pay special attention to identify barriers to effective knowledge

sharing and to mitigate the risks they pose to development contexts. There is, however, limited knowledge

and no comprehensive approach on how agile development teams can manage knowledge sharing risks

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 4 of 33

(Ghobadi & Mathiassen, 2015). Traditionally, risk management approaches are used to identify and assess

software development risks (Lyytinen et al., 1998, Mcfarlan, 1981). These approaches encapsulate the key

elements of risks (risky incidents), resolution actions (possibly relevant actions), and heuristics (guidelines

for assessing risks and linking them to appropriate resolution actions). As an example, risk-strategy analysis

models offer a stepwise process that links ‘detailed analysis of risks’ to ‘an overall risk management

strategy’ (Persson et al., 2009, Iversen et al., 2004, Davis, 1982); The underlying idea of these models is

consistent with our interest in developing a detailed approach to identifying knowledge sharing barriers and

mitigating the risks they may pose to development practices.

Extant literature has developed risk management models targeting several aspects of software development

such as implementation risks (Lyytinen, 1987), project portfolio risks (Earl, 1987), requirement management

risks (Ramesh et al., 2010, Davis, 1982), distributed development risks (Persson et al., 2009), and prototype

development risks (Baskerville & Stage, 1996). Despite their diversity, the majority of these studies only

offer ad-hoc assessment of risks and possible resolution actions. There are scarce examples that offer

systematically-developed list of risks and resolution actions (Iversen et al., 2004). In addition, there are no

models for managing ‘knowledge sharing risks’ in software projects. Addressing these gaps, our study

develops an intellectual tool and theoretical implications that help understand and manage the complex

knowledge sharing risks in agile development contexts.

Research Method

The grounded theory approach is well-suited to building theoretical insights in an area where limited

understanding exists and where we can respond flexibly to new empirical discoveries (Eisenhardt, 1989). We

use this approach in the following manner. First, we conduct a multisite case study to invoke new insights for

the assessment and mitigation of risks to effective knowledge sharing in agile development (Glaser &

Strauss, 1977, Eisenhardt, 1989). Second, we complement the grounded understanding with insights from the

extant literature. Third, we refine the resulting model by examining its practical usefulness in one software

company. The following sections describe data collection and analysis processes.

Data Collection

This study is part of a larger research project on knowledge sharing in agile development (Ghobadi &

Mathiassen, 2015). Therefore, we rely on an overlapping yet expanded set of data compared to our earlier

study on knowledge sharing in agile teams. We collected empirical data through several sessions of iterative

and semi-structured interviews over twelve months across two medium-size software companies. The

companies, referred to as Alpha and Beta, are based in Australia (~100 employees each). They are leading

companies in building software for financial companies, climate change centers, and biomedical institutions.

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 5 of 33

The key theme of their work is developing software that allows capturing, storing, sharing, and analyzing

data. Alpha and Beta characterize their development approach by advocating ‘user stories’, ‘product

backlog’, ‘working software’, and ‘responsiveness to change’. In their website and contracts’ documents,

they highlight agile practices such as ‘sprint planning’, ‘stand-up meetings’, and ‘pair programming’. In fact,

the companies emphasize using agile practices to remain relevant in the software industry and to increase

agility in their work. Besides, they take pride in not being ‘textbook’ agile, but rather having expertise in

adapting agile practices to remain flexible and agile in practice. Differences between documented agile

practices and their practical use are quite common (Vidgen & Wang, 2009, Fitzgerald et al., 2000, Fitzgerald

et al., 2002). For example, if the client cannot provide on-site customer representatives as required in pure

agile contexts, the companies find a way to establish an effective distributed team and work closely with

customers.

We consulted the development manager of each company to provide entry for conducting the fieldwork. The

development managers helped recruit eight interviewees from two recent agile projects that were completed

within the last three months. We sought advice from development managers for two reasons. First, they hold

a comprehensive overview of projects, their performance, and the individuals working on them. Second, this

approach enables immediate legitimacy and credibility to the research, which helped significantly during the

interview sessions. We interviewed individuals holding the four roles of ‘project manager’, ‘developer’,

‘tester’, and ‘user representative’. We based the selection of these roles on prior research on key roles in

software development (Newman & Robey, 1992, Barki & Hartwick, 2001) as well as key roles in medium to

large agile teams (Sutherland, 2005). In addition, the four roles are fundamental in Alpha and Beta’s agile

practices. Specifically, (i) project owners take ownership of the product (they are labeled as project managers

in this study), (ii) developers produce code, (iii) quality assurance engineers (QA) test the product, (iv) client

representatives serve as end user representatives, and at times user interface or user experience designers

conduct user experience design. Further information on the key roles is provided in our earlier study

(Ghobadi & Mathiassen, 2015).

We asked the development manager of each company to select one high performing and one low performing

project. The polar sampling approach (Eisenhardt & Graebner, 2007) helped generate additional insights

related to different patterns of risks, resolution actions, and project outcomes. During data collection,

developers, project managers, tester and user representatives expressed similar views on the performance of

the selected projects. Table 1 presents the demographics of the four projects. An official email from each

development manager introduced the research project to the relevant staff. The official emails highlighted the

academic focus of the research, and the interviewees were ensured confidentiality. The sixteen in-depth

interview sessions, lasting between 45 minutes and an hour, were taped and transcribed. We first asked about

barriers that pose risks to effective knowledge sharing practices. Appendix 1 provides the interview

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 6 of 33

questions for identifying risks and further explanations are provided in our earlier work (Ghobadi &

Mathiassen, 2015). We then adopted a flexible and open style of conversation to identify resolution actions.

The researcher asked the initial questions of ‘please elaborate how this barrier inhibited effective knowledge

sharing’ and ‘which steps were taken to deal with it?’ The following questions varied depending on the

interviewees’ responses and their ability to elaborate on the subject. For example, the researcher asked: ‘how

effective was this action’ and ‘why did the team not take an action?’ As a final check, questions pointing into

specific risks and resolution actions afforded interviewees a closing opportunity to report any item that might

have been missed or required further explanation. When interviewees revealed opposing views, further

investigation such as informal follow-up interviews helped explore differing perspectives and arrive at a

richer understanding. Following an initial data analysis, follow-up interviews resolved ambiguities and

validated interpretive accuracy and credibility (Guba & Lincoln, 1985). For instance, there were cases in

which a risk and a related resolution action were mentioned, yet we needed to confirm the use of that specific

resolution action for addressing the related risk. A total of 36 interviews helped develop a detailed

understanding of the ‘risks’ and ‘implemented resolution actions’ in the four studied agile projects.

Table 1. Project Characteristics

Item Alpha One Alpha Two Beta One Beta Two

Project Duration 4 months 6 months 9.5 months 2 months

Team Size 7 members 10 members 10 members 12 members

Team Members Age 33.8 years 35.2 years 36.3 years 40.1 years

Team Members Education

Undergraduate: 50%
Postgraduate: 50%

Undergraduate:
75%
Postgraduate: 25%

Undergraduate:
75%
Postgraduate: 25%

Undergraduate: 75%
Postgraduate: 25%

Team Members Software Experience 5.8 years 8.6 years 10.5 years 9.0 years

Team Members Company Experience 4.5 years 3.5 years 4.5 years 5.0 years

Agile practices Design meetings, stand ups, retrospectives, pair programming, burn down charts.

Sprints Length Varied between 2-3 weeks

Data Analysis

Data analysis progressed in four steps. The first two steps involved within-case and cross-case analyses of

the risks and resolution actions in each of the four projects. The next two steps included development of a

risk management model and evaluating its practical usefulness. Each step is explained below.

1. Within-case Analyses: One researcher read all the interview transcripts, grouped frequently mentioned

words together, and generated a list of codes that correspond to (i) risk items to effective knowledge

sharing and (ii) resolution actions to mitigate those risks. Another researcher verified face validity,

parsimony, and coverage of the coding scheme. We also conducted collaborative code training between

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 7 of 33

us to minimize coding biases by the researcher. Next, we coded all transcripts to identify and link risk

items and resolution actions. For identifying ‘risk items’ and ‘resolution actions’, we systematically

looked for ‘barriers that may have adversely affected knowledge sharing practices’ and ‘actions that

were implemented to mitigate the risks that the barriers posed’. For example, a user representative

argued that developers tried to be flexible with the client’s situation to resolve their initial lack of

communication regarding time requirements. Thus, ‘being flexible with client’s situation’ was noted as a

resolution action for mitigating the risk that ‘lack of communication of time requirements to the client’

posed to effective knowledge sharing. In another example, a user representative explained that training

workshops helped them understand how agile teams work, the role of prototypes, and how important it is

to communicate end user requirements particularly in the absence of a good prototype. Thus, ‘running

workshops to improve client understanding of agile processes’ was noted as a resolution action for

mitigating the risk that ‘lack of a good prototype for communicating requirements’ posed to effective

knowledge sharing. Sample codes are provided in Appendix 2. To categorize risk items into risk areas,

we utilized the existing conceptualization of knowledge sharing barriers, including: (i) team diversity,

(ii) team perceptions, (iii) team capabilities, (iv) project communication, (v) project organization, (vi)

project technology, and (vii) project setting (Ghobadi & Mathiassen, 2015). The final coding progressed

as follows. One researcher coded the first eight transcripts. The other researcher checked the validity of

the codes. We calculated Scott’s pi at an acceptable level of 0.86 (Scott, 1955). The researcher finalized

the process by coding the next eight transcripts. Summaries of within-case analysis are discussed in the

Results section and summarized in Appendix 3.

2. Cross-case Analysis: We removed redundant items in within-case analysis tables, merged similar ones,

and took initial steps away from company specific jargon to generate more general findings (Lee &

Baskerville, 2003). For example, we consistently adopted an imperative form for presenting resolutions

to emphasize their action orientation (e.g., delegate, emphasize, create, or relocate). As an example, we

used the term ‘recruit developers with a combination of IT and business knowledge’ to refer to the

resolution action ‘make experienced developers available for translating business needs into technical

terms’. This resulted in identifying a total of 31 risk items and 20 resolution actions. We then

complemented the empirical results with extant literature on knowledge sharing in agile development. As

an example, we included the recommendation to ‘routinize exploration in development teams’ to

highlight the importance of allocating resources to encourage team members to search for and share new

ideas (Vidgen & Wang, 2009). In total, six risk items and eleven resolution actions were added. This

expanded the findings to 37 risk items and 31 resolution actions. The results are detailed in the Cross-

case Analysis section.

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 8 of 33

3. Model Development: We began by categorizing the identified 31 resolution actions. We carefully went

through each resolution action and the related quotes to cluster together actions that correspond to

similar issues. For example, all the following four actions concentrate on improving working

relationships within team and with client: (i) Leverage team diversity through cross-team observation

and close team member collaboration, (ii) Promote positive relationships across stakeholders, (iii) Build

collaborative relationship with IT team in client organization, and (iv) Leverage positive relationships

between client representatives and client management. We, therefore, grouped them under the resolution

strategy of Leverage Relationships. Finally, we relied on the vocabulary of risk-strategy analysis

approaches to organize the key findings into a risk management model. The key vocabulary items

include risk items, risk areas, resolution actions, resolution strategies, heuristics, and stepwise process.

The result is detailed in the Model Development section.

4. Model Evaluation: We examined and refined the risk management model from the last step based on its

practical application in Alpha as well as useful comments from academic colleagues. The researcher

presented the model to a number of practitioners and asked them to apply it to an ongoing agile

development project. The researcher was prepared to answer any questions they had. Observing

practitioners and interacting with them generated useful ideas to improve the presentation, wordings, and

structure of the model. For example, we found it is easier for participants to put selection boxes beside

the risk items and not in another column. The results are detailed in the Model Evaluation section.

Results

Alpha One

Project One in Company Alpha (Alpha One) spent 4 months to develop a system that manages data and

metadata associated with textual artifacts from ancient civilizations. The project team included seven

members, including project manager, three developers (one had the role of scrum master), tester, user

interface designer, and user representative, with an average age of 32 years. According to the development

manager, Alpha One proved to be a high performing project because: “Stakeholders got the results they

wanted and they are happy with how they worked with the team. Also, I think the stakeholders were realistic

and worked with us collaboratively rather than in an adversarial relationship”.

Knowledge was shared through face to face channels such as design meetings and daily stand ups as well as

technology mediated channels such as Skype and Enterprise-hosted collaborative tools. The interviewees

referred to a total of eight risk items in Alpha One. These risk items are categorized into four risk areas. For

example, lack of communication of time requirements to the client was considered a risk to effective

knowledge sharing. According to the user representative, he was not prepared for intensive knowledge

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 9 of 33

sharing that is crucial in agile development. This was because time requirements were not communicated to

him right at the beginning (insufficient communication of time requirements; related to the category of

project communication risks): “Most of the people in [my business] have heavy workloads and

administrative loads. I didn’t understand how much time would be required of me at the start. Ultimately it

worked well, but it is important that the people that work with agile teams understand how much time they

must commit to the project and get prepared for future correspondence” (user representative). The

development team responded to this risk by trying to be flexible and understanding. Said the user

representative: “It seemed to me there was a clear awareness of the kinds of pressures that people in [my

business] have. So when I had difficulty making myself available, they [development team] were very quick

to adapt” (user representative).

Another risk item was unfamiliarity of the development team with the built-in coding technology in the

legacy system (related to the category of team capabilities risks). Specifically, the development team was

committed to provide demonstrations at the end of each two-week sprint. However, developers had to spend

considerable time on learning the new coding language. Thus, it was difficult for them to commit enough

time on knowledge sharing regarding several other aspects of the project such as innovative coding solutions

and new functionalities. The development team addressed this risk by leveraging diverse capabilities of the

experienced team members as well as positive relationships among the team members. One developer

explained: “It was Ruby on Rails application, and I didn’t know the language. But [developer A] had a lot of

knowledge in this area. So he shared his knowledge with us. He was very helpful” (developer).

Alpha Two

Project Two in Company Alpha (Alpha Two) spent 6 months to develop a web-based system that assists data

collection processes of a collaborative neonatal network. The project team included ten members, including

project manager, four developers (one had the role of scrum master), tester, two user interface designers, and

two user representatives, with an average age of 34 years. According to the development manager, Alpha

Two was considered a low performing project because: “We failed to manage their expectations up front. So,

we couldn’t possibly have delivered what they wanted with the budget we had. I think they were working

with us in more of a ‘you are service provider, you do everything and tell us when you are done’, rather than

‘we collaborate together to complete the project.’”

Not surprisingly, Alpha Two faced a broad range of risks to effective knowledge sharing, and knowledge

sharing proved to be challenging. The interviewees referred to nineteen risks. These risks are categorized

into seven risk areas. For example, the user representative referred to lack of a good prototype for

communicating requirements with users as a risk to effective knowledge sharing (related to the category of

project technology risks): “People can comment on tangible things. If you show a blank page and ask what

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 10 of 33

you want for your interface they can’t say [share knowledge]. They give you very vague answers. You should

show at the beginning which functionalities you can build” (user representative). The development team

attempted to reduce this risk indirectly by running workshops to improve client understanding of agile

processes and characteristics. Said the user representative: “It was good that our team attended five meetings

at [Company Alpha] to understand more of what is happening in the software development and agile world”

(user representative). She argued that this understanding encouraged them to communicate user requirements

in a more detailed, robust, and active manner, mitigating the risk that lack of a good prototype poses to their

project’s knowledge sharing practices.

Despite these actions, most of the risks were left unaddressed. For example, a tester referred to risks

associated with long split sprints that were not carefully addressed (related to the category of project

organization risks): “Developers thought three weeks sprint to be better for their focus, because of rotating

shifts with an alternative project. But it was recognized that it was difficult for developers moving between

projects. As a tester, I’d be asking questions about a project [from developers] that they were not working on

currently. [User representatives] would see a lot of activity and then suddenly nothing would happen for

three weeks.” (tester). In addition, the category of team perceptions risks was largely unaddressed. On the

one hand, the project manager argued user representatives’ inappropriate assumptions about project scope

did now allow discussing critical aspects of the project upfront: “They had certain expectations about what

they could get with the very small budget they had. It turned out they [client representatives] were not telling

us these. Because we are agile and flexible they assumed we are just going to do that” (project manager). On

the other hand, the user representative argued that developers’ unrealistic and low estimations masked the

complexity of the project. Thus, team members did not discuss various possibilities at early stages of the

project. In addition, the user representatives and majority of the end users came from a non-English speaking

background. A developer pointed to different spoken languages as a risk to effective knowledge sharing. The

interviewees, however, did not refer to any action for mitigating this risk. The same developer further

explained that Alpha did not discuss this issue during the course of the project, and thus they did not take

effective steps to mitigate the risk.

Beta One

Project One in Company Beta (Beta One) spent 9.5 months to develop a financial system that creates maps

of stocks and equities based on different types of financial information. The project team included ten

members including project manager, business analyst, six developers (one had the role of Scrum master),

tester, and user representative, with an average age of 35 years. According to the development manager, Beta

One was a high performing project because: “Although the team lost momentum as people moved countries

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 11 of 33

and jobs, we still delivered what we were asked to do. Everyone involved, were satisfied with the process,

and they haven’t been burned out.”

The interviewees referred to a total of fifteen risks that are categorized into seven risk areas. For example,

time difference between the development team and the client introduced a risk related to the category of team

diversity risks: “The client was based in [Country A], so there was only 2 hours a day that we could actually

communicate directly. And, for email communication there was always lag, which made certain decisions

very slow for an agile project”, narrated a developer (developer). The development team responded by

applying informal decision making whenever required: “When we wanted to get things done, we started to

bypass formal decisions about what we put in. Bypassing was the only thing that let sprints move forward.

[Formally], if we wanted to change a single word in one of the acceptance criteria, we needed to raise a

changing requirement for that and wait for [client] to approve it. We got to the point where we simply made

that change and hoped for the best. It is not something to be proud of, but at that point we needed that

because it was slowing us down“, explained the tester (tester).

Tight sprint schedule with little time for interaction was also noted as a risk to effective knowledge sharing

(related to the category of project organization risks). Being a domain-specific project was argued to slow

down communication and effective knowledge sharing (related to the category of project setting risks). In

response to this risk, the business analyst wrote and communicated clear stories, helping developers

understand stories well. According to a developer: “Understanding the data we were dealing with required a

lot of domain knowledge that takes time. But, I don’t think that was too much of an actual communication

barrier. I guess when the business analyst wrote a story she worked with the data expert to explain what

needs to be done. As developers we took the stories and we knew what to do, but we didn’t necessarily

understand the data. And, that actually worked okay” (developer).

Beta Two

Project Two in Company Beta (Beta Two) spent 2 months to develop a system that automates the integration

of data from the stock exchange market. The project team included twelve members, including project

manager, nine developers (one had the role of scrum master), tester, and user representative, with an average

age of 34 years. Beta Two was considered a low performing project because: “Project stakeholders didn’t

see results fast enough. The team faced major challenges because they lost people constantly and business

priorities changed constantly,” commented the development manager in Beta.

The interviewees referred to a total of fourteen risks to effective knowledge sharing categorized into seven

risk areas as well as different ways in which the team responded to these risks. For instance, ‘complex

business rules’ was raised as a risk to effective knowledge sharing (related to the category of project setting

risks). According to the user representative, understanding complex rules was consuming developers’ limited

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 12 of 33

time, and so they had much less time to discuss important aspects of the project with themselves and the

client: “They [developers] knew what the algorithm was and what the code for it was, but understanding

what the code’s ultimate goal was and spotting errors in the output was hard and time consuming” (user

representative). The management team responded to this risk by making the developers who were

experienced in the specific domain available for the project.” We had [a senior developer] who has the most

experience of these products. We asked him how things work. If he hadn’t been available it would have been

much more difficult”, argued a developer (developer).

The onsite user representative referred to the risk of development team’s lack of motivation (related to the

category of team perceptions risks): “This team was sort of plundered of people, so the team that remained

seemed to be less experienced. I think they may have been less motivated, because they didn’t feel that the ir

work was as important as what some of the other teams were doing. This certainly did affect the attitudes of

the team in sharing knowledge” (user representative). Management agreed and responded to this risk by

emphasizing the importance of the project and organizing demos of the working software as a measure of

success: “We tried to put forth that these sorts of projects are basically the stuff that have been put off for so

long, because no one wanted to do it, but once they got through that work they would be working on new

products that all the other people may have wanted to work on. And, we are trying to basically let them be

aware that they are in a position that is highly visible in the company and can grow very rapidly” (project

manager).

Data analysis showed that the most frequently mentioned action to address risks (resolution action) was to

make sure developers who are experienced in the specific domain are assigned to the project (here financial

software). This resolution action helped the team members significantly. They were not anymore frustrated

in the process of understanding the complex domain in their tight schedule. They could spend time on other

aspects of the development such as coding and designing new solutions. Yet, according to the project

manager, over time, they realized this resolution action was not an optimal solution: “Because we have

[expert] people who have been here for such a long time we are absolutely dependent on them now” (project

manager). In addition, some key risks were left unaddressed with adverse consequences. For example,

different working backgrounds and personalities of team members were not addressed efficiently. This later

proved to be challenging. Said the project manager: “We had a huge amount of discrepancy in terms of

people’s knowledge. We had someone who knows the [domain knowledge] over five years. We had people

who had never worked on [this area]. That makes it very difficult for people to swap work and explain

concepts daily” (project manager).

Cross-case Analysis

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 13 of 33

This section integrates within-case empirical findings with insights from extant literature (within-case

analyses are provided in Appendix 3). This integration results in a total of 37 risk items and 31 resolution

actions. The result of cross-case analysis is summarized in Table 2. First, this table shows the sources for

each risk item and resolution action. For example, the risk of ‘different speaking languages among members’

was raised in Alpha Two and Beta One, or the risk of ‘lack of familiarity with agile values and principles’

was raised in the extant literature that we integrated into our cross-case analysis (the detailed process is

provided in the Data Analysis section) (Conboy et al., 2010). Second, this table relates each resolution action

to the risk items it may help address. Third, this table highlights 14 risk items in bold. These 14 risk items

refer to those risks that are tightly linked to agile development contexts. As an example, the risk of ‘lack of

familiarity with agile values and principles’ and the risk of ‘lack of communication of agile time

requirements with client up front’ are inherently related to agile development.

Table 2. Identification of Risk Items and Resolution Actions

Knowledge Sharing Risks Knowledge Sharing Resolutions

Team Diversity

1. Different speaking languages among members

(Alpha Two, Beta One)

Create and share goals within team (Beta One)

2. Different working and disciple-related backgrounds

among members (Beta One, Beta Two)

Communicate importance of project to team members for key stakeholders and

career opportunities (Beta One)

Create and share goals within team (Beta One)

Discuss expectations and requirements with client and within team (Beta Two)

Delegate project responsibilities within team (Beta One)

Relocate developers to spend more time with each other (Beta Two)

3. Different time zones and physical distance between

members (Beta One)

Support participation and flexibility in project’s decision making (Beta One)

4. Lack of prior joint working experience in

development team (Beta One, Beta Two)

Communicate importance of project to team members for key stakeholders and

career opportunities (Beta One)

Create and share goals within team (Beta One)

Discuss expectations and requirements with client and within team (Beta Two)

Delegate project responsibilities within team (Beta One)

Team Capabilities

5. Insufficient understanding of business domain and

context (Alpha Two, Beta One, Beta Two)

Recruit experienced and motivated developers (Beta Two)

Recruit developers with a combination of IT and business knowledge (Conboy et

al., 2010)

Share historic and current systems documentation across team (Alpha Two)

Increase developers’ business knowledge through client-organized training

sessions (Alpha Two)

6. Unfamiliarity with development and collaboration

technologies (Alpha One, Beta Two)

Use pair programming to facilitate learning across development team (Alpha

One)

Relocate developers to spend more time with each other (Alpha One)

7. Insufficient and ambiguous requirements (Beta

Two)

Improve team’s agile and social skills through training (Conboy et al., 2010)

8. Inadequate social skills (Alpha Two) Improve team’s agile and social skills through training (Conboy et al., 2010)

9. Lack of familiarity with agile values and

principles (Conboy et al., 2010)

Support requisite exploration of alternative options (Vidgen & Wang, 2009)

Engage team in evaluating agile opportunities and challenges (Ramesh et al.,

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 14 of 33

2010, McAvoy et al., 2012)

10. Lack of IT resources and working experience with

software companies in client company (Alpha One,

Alpha Two)

Provide client with knowledge about agile projects through workshop (Alpha

Two)

Discuss expectations and requirements with client and within team (Alpha One,

Alpha Two)

Analyze client organization dynamics and be open to adapt to changing

conditions (Alpha One, Alpha Two)

Leverage team diversity through cross team observation and close team member

collaboration (Alpha One)

Promote positive relationships across stakeholders (Alpha One)

Team Perceptions

11. Lack of motivation, focus and adaptability in

development team (Alpha Two, Beta One, Beta Two)

Communicate importance of project to team members for key stakeholders and

career opportunities (Beta One)

Create and share goals within team (Beta One)

Collect and share successful project stories with team (Conboy et al., 2010)

Relocate developers to spend more time with each other (Beta One, Beta Two)

Provide each individual member with 360° feedback (Conboy et al., 2010)

12. Inappropriate assumptions about project scope

made by client (due to the development team’s
flexible agile-related approach) (Alpha Two)

Discuss expectations and requirements with client and within team (Alpha Two)

13. Fear of self-exposure to technical and agile

skills deficiencies in development team (Conboy et

al., 2010)

Help new team members integrate through mentors and incremental

responsibilities (Conboy et al., 2010)

Support requisite exploration of alternative options (Vidgen & Wang, 2009)

Provide opportunities to raise any concern for discussion in open forums

(Conboy & Morgan, 2011)

14. Performance evaluation based on technical

achievements (related to working software

principle) (Conboy et al., 2010)

Put high value on mentoring and voluntary contributions in performance

evaluations (Conboy et al., 2010)

15. Stakeholder neglect of nonfunctional

requirement (related to working software

principle) (Ramesh et al., 2010)

Engage team in evaluating agile opportunities and challenges (Ramesh et al.,

2010, McAvoy et al., 2012)

Project Communication

16. Inadequate client availability and participation

(Alpha Two)

Change the length of split sprints to improve interactions (Alpha Two)

Analyze client organization dynamics and be open to adapt to changing

conditions (Alpha Two)

17. Lack of communication of agile time

requirements with client up front (Alpha One,

Alpha Two)

Analyze client organization dynamics and be open to adapt to changing

conditions (Alpha One, Alpha Two)

Support client and team communication with collaboration technologies (Alpha

One)

Share key project information with client representatives using nontechnical

language (Alpha One)

Discuss expectations and requirements with client and within team (Alpha One)

18. Lack of concurrence within client team (Alpha

Two)

Recruit developers with a combination of IT and business knowledge (Conboy et

al., 2010)

Improve team’s agile and social skills through training (Conboy et al., 2010)

19. Product owner lack of sharing client feedback with

development team (Beta One)

Discuss expectations and requirements with client and within team (Beta One)

Project Organization

20.Tight sprints schedule with little time for

interaction (Alpha Two, Beta One, Beta Two)

Create and share goals within team (Beta One)

Communicate importance of project to team members for key stakeholders and

career opportunities (Beta One)

Recruit experienced and motivated developers (Beta Two)

21. Inadequate planning and organization in agile Document experiences to support planning of future projects (Beta Two)

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 15 of 33

practices (Alpha Two, Beta One, Beta Two)

22. Multitasking and lack of continuity in

development team (Alpha One, Alpha Two, Beta One)

Assign team full time to project (Alpha One)

Leverage team diversity through cross team observation and close team member

collaboration (Alpha One)

23. Inadequate planning and insufficient

documentation (related to communicate face-to-

face principle) (Alpha Two, Beta Two)

Support requisite exploration of alternative options (Vidgen & Wang, 2009)

Provide opportunities to raise any concern for discussion in open forums

(Conboy & Morgan, 2011)

24. Making decisions in development without

consulting client (due to tight sprints schedules)

(Alpha Two)

Engage team in evaluating agile opportunities and challenges (Ramesh et al.,

2010, McAvoy et al., 2012)

25. Frequent change of IT representatives in client

company (Alpha One)

Increase developers’ business knowledge through client-organized training

sessions (Alpha One)

Build collaborative relationship with IT team in client organization (Alpha One)

26. Centralized decision making (Vidgen & Wang,

2009)

Expand project manager’s role to include coaching and facilitation (Conboy et

al., 2010)

Project Technology

27. Lack of using high quality collaboration

technologies and processes in development team

(Alpha Two, Beta One, Beta Two)

Relocate developers to spend more time with each other (Beta One, Beta Two)

28. Lack of a good prototype to communicate

requirements between stakeholders (Alpha Two)

Provide client with knowledge about agile projects through workshop (Alpha

Two)

29. Employing agile methodology without planning

up front (Alpha Two, Beta Two)

Discuss expectations and requirements with client and within team (Beta Two)

30. Prioritization of requirements based on one-

dimensional thinking (related to working software

principle) (Augustine et al., 2005)

Engage team in evaluating agile opportunities and challenges (Ramesh et al.,

2010, McAvoy et al., 2012)

Project Setting

31. Complex and domain specific project (Alpha Two,

Beta One, Beta Two)

Discuss expectations and requirements with client and within team (Alpha Two,

Beta One)

Recruit experienced and motivated developers (Beta Two)

Communicate importance of project to team members for key stakeholders and

career opportunities (Beta One)

Create and share goals within team (Beta One)

32. Small budget agile project with limited room

for interaction (Alpha Two)

Engage team in evaluating agile opportunities and challenges (Ramesh et al.,

2010, McAvoy et al., 2012)

Improve team’s agile and social skills through training (Conboy et al., 2010)

33. Dependence on existing or legacy technology

(Alpha One, Beta Two)

Recruit experienced and motivated developers (Beta Two)

Discuss expectations and requirements with client and within team (Alpha One)

34. Inability to choose development team members

(Beta Two)

Help new team members integrate through mentors and incremental

responsibilities (Conboy et al., 2010)

35. Different approaches to agility between

development and client company (Alpha One)

Analyze client organization dynamics and be open to adapt to changing

conditions (Alpha One)

36. Profit focused culture in development company

(Alpha Two)

Put high value on mentoring and voluntary contributions in performance

evaluations (Conboy et al., 2010)

37. Bureaucratic and centralized organizations (Alpha

One)

Leverage positive relationships between client representatives and client

management (Alpha One)

Table 2 affords a comparison between the high-performing and low-performing projects in terms of the risks

they faced and the resolution actions they implemented. Table 3 summarizes the number of the risks and

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 16 of 33

resolution actions in each project. As shown, the high performing projects (Alpha One, Beta One) did not

necessarily experience fewer risks compared to low performing projects (Alpha Two, Beta Two) (column

#2.Risk Items, Table 3). For example, Beta One faced 15 risks, which is more than risks that Beta Two faced

(14 risks). Yet, high performing projects implemented more unique resolution actions compared to the risks

they faced (column #3.Unique Resolution Actions-Risk Items, Table 3).

Table 3. Risk Items, Resolution Actions across Projects

Cases
1.Risk

Items
#2.Unique

Resolution Actions

#3.Unique
Resolution

Actions -Risk
Items

#4.Total
Resolution

Actions

5.Total
Resolution

Actions - Risk
Items

High-Performing Projects

Alpha One 8 12 4 17 9

Beta One 15 7 -8 18 3

Low-Performing Projects

Alpha Two 19 8 -11 13 -6

Beta Two 14 4 -10 11 -3

Table 2 (grounded understanding) indicates that all the four projects, at times, used the same resolution

action to address more than one risk item. For example, Beta One applied ‘Create and share goals within

team’ to address six different risk items. The comparison between high performing and low performing

projects, in terms of implementing more unique resolution actions compared to the risks they faced, remains

consistent when we pay attention to this repeated use. Specifically, Table 3 shows that Alpha One and Beta

One (high-performing projects) applied 9 and 3 resolution actions more than the risks they faced, but Alpha

Two and Beta Two (low-performing projects) implemented 6 and 3 resolutions actions less than the risks

they faced (column #5.Total Resolution Actions - Risk Items, Table 3).

In addition, high performing projects, as compared to low performing ones, followed a bolder and more

influential approach to risk resolution. For example, Beta One’s repeated use of ‘Communicate importance

of project to team members’ and ‘Create and share goals within team’ was broadcasted to the team by the

CEO and development manager at various formal and informal gatherings. Beta Two’s repeated use of

‘Recruit experienced and motivated developers’ as a dominant resolution action, however, mainly targeted

resolving short-term project requirements. This created a sense of dependency to the expert members and an

overall dissatisfaction (“Because we have [expert] people who have been here for such a long time we are

absolutely dependent on them now.”)

Risk Management Model

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 17 of 33

Model Development

The section complements the findings of cross-case analysis (Table 2) with the vocabulary of risk-strategy

analysis approaches (Iversen et al., 2004). The result is a risk management model (Figure 1) along with the

categories of risk areas and resolution strategies (Table 4), and the associated risks and resolutions

assessment frameworks (Tables 5-6).

Figure 1. Risk Management Model

Table 4. Conceptualization of Knowledge Sharing Risks and Resolutions

7 Risk Areas and 37 Risk Items 5 Resolution Strategies and 31 Resolution Actions

1. Team Diversity—refers to conceptual, geographical and time

differences between team members that may pose risks to effective

knowledge sharing

1.1. Different speaking languages among members

1.2. Different working and discipline-related backgrounds among
members

1.3. Different time zones and physical distance between members

1.4. Lack of prior joint working experience in development team

1. Strengthen Resources—refers to strategies that aim at

developing supportive capabilities, experiences, and technologies

1.1. Recruit developers with a combination of IT and business

knowledge

1.2. Recruit experienced and motivated developers
1.3. Improve team’s agile and social skills through training
1.4. Share historic and current systems documentation across team

1.5. Support client and team communication with collaborative

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 18 of 33

2. Team Capabilities—refers to knowledge and skill related issues

amongst team members that may pose risks to effective knowledge

sharing

2.1. Insufficient understanding of business domain and context

2.2. Unfamiliarity with development and collaboration technologies
2.3. Insufficient and ambiguous requirements

2.4. Inadequate social skills

2.5. Lack of familiarity with agile values and principles
2.6. Lack of IT resources and working experience with software

companies in client company

3. Team Perceptions—refers to attitudes and values of tram

members that may pose risks to effective knowledge sharing

3.1. Lack of motivation, focus and adaptability in development team
3.2. Inappropriate assumptions about project scope made by client

3.3. Fear of self-exposure to technical and agile skills deficiencies in

development team

3.4. Performance evaluation based on technical achievements

3.5. Stakeholder neglect of nonfunctional requirement

4. Project Communication—refers to communication-related issues

within the project that may pose risks to effective knowledge

sharing

4.1. Inadequate client availability and participation

4.2 Lack of communication of agile time requirements with client up

front
4.3. Lack of concurrence within client team

4.4. Product owner lack of sharing client feedback with development

team

5. Project Organization—refers to aspects of organization and

conduct of the project that may pose risks to effective knowledge

sharing

5.1. Tight sprints schedule with little time for interaction

5.2. Inadequate planning and organization in agile practices
5.3. Multitasking and lack of continuity in development team

5.4. Inadequate planning and insufficient documentation

5.5. Making decisions in development without consulting client
5.6. Frequent change of IT representatives in client company

5.7. Centralized decision making

6. Project Technology—refers to technological issues that may pose

risks to effective knowledge sharing

6.1. Lack of using high quality collaboration technologies and
processes in development team

6.2. Lack of a good prototype to communicate requirements between

stakeholders
6.3. Employing agile methodology without planning up front

6.4. Prioritization of requirements based on one-dimensional thinking

7. Project Setting—refers to task and context related issues that

may pose risks to effective knowledge sharing

7.1. Complex and domain specific project

7.2. Small budget agile project with limited room for interaction

7.3. Dependence on existing or legacy technology
7.4. Inability to choose development team members

7.5. Different approaches to agility between development and client

company
7.6. Profit focused culture in development company

7.7. Bureaucratic and centralized organizations

technologies

1.6. Document experiences to support planning of future projects

1.7. Increase developers’ business knowledge through client-organized
training sessions

1.8. Provide client with knowledge about agile projects through

workshops
1.9. Use pair programming to facilitate learning across development

team

2. Reinforce Directions—refers to strategies that aim at improving

shared understanding of project goals and requirements within

team and with client

2.1. Communicate importance of project to team members for key

stakeholders and career opportunities

2.2. Create and share goals within team
2.3. Discuss expectations and requirements with client and within team

2.4. Analyze client organization dynamics and be open to adapt to

changing conditions

2.5. Collect and share successful project stories with team

2.6. Share key project information with client representatives using

non-technical language

3. Leverage Relationships—refers to strategies that aim at

improving working relationships within team and with client

3.1. Leverage team diversity through cross-team observation and close

team member collaboration

3.2. Promote positive relationships across stakeholders
3.3. Build collaborative relationship with IT team in client organization

3.4. Leverage positive relationships between client representatives and

client management

4. Restructure Project—refers to strategies that aim at

restructuring resources to improve development team organization

4.1. Delegate project responsibilities within team

4.2. Relocate developers to spend more time with each other

4.3. Help new team members integrate through mentors and
incremental responsibilities

4.4. Change length of sprints to accommodate project’s constraints

4.5. Assign team full-time to project
4.6. Expand project manager’s role to include coaching and facilitation

5. Improve Processes—refers to strategies that aim at improving

development, communication, and evaluation processes

5.1. Support participation and flexibility in project’s decision making

5.2. Support requisite exploration of alternative options
5.3. Engage team in evaluating agile opportunities and challenges

5.4. Put high value on mentoring and voluntary contributions in

performance evaluations
5.5. Provide opportunities to raise any concern inappropriate for

discussion in open forums

5.6. Provide each individual member with 360° feedback

Figure 1 demonstrates five components: (1) the project risk profile, (2) the stepwise process with heuristics,

(3) the resolution strategy plan, (4) the risk areas and items, and (5) the resolution strategies and actions. The

risk management model helps a software team move from a project risk profile to a resolution strategy plan.

The project risk profile refers to existing or potential risks to effective knowledge sharing in the project. The

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 19 of 33

resolution strategy plan refers to a plan of action with specified resolution strategies and their related

resolution actions to mitigate the identified risks. The risk management process follows a stepwise process:

(1) analyze risks, (2) prioritize resolutions, and (3) develop strategy plan. The process is supported by

heuristics that link specific risks to appropriate resolutions. Heuristics help develop an overall resolution

strategy plan for the project. The heuristics include the risk assessment framework (Table 5) and the

resolution assessment framework (Table 6).

Application of the model begins with analyzing the project’s risk profile (step 1, Figure 1) using the risk

assessment framework (Table 5). The participants such as project managers, developers, and user

representatives scan the 37 risk items. They circle relevant risk items (column Risk Area and Items, Table 5)

and all the associated resolution actions (column Resolution Actions, Table 5). Utilizing a variety of

techniques such as debating and voting across team members (Davis, 1982), they conduct a qualitative

assessment (High/Medium/Low level of importance) of each risk item and risk area. They record the results

of the assessment in the column Assess Risks (H/M/L), Table 5. For this assessment, team members should

consider the probability and consequence of each risk item.

Table 5. Risk Assessment Framework

Risk Area and Items
Assess
Risks

(H/M/L)
Resolution Actions

1. Team Diversity

 ഼ Different speaking languages among members 11

 ഼ Different working and disciple-related backgrounds among members 10, 11, 12, 20, 21

 ഼ Different time zones and physical distance between members 26

 ഼ Lack of prior joint working experience in development team 10, 11, 12, 20

2. Team Capabilities

 ഼ Insufficient understanding of business domain and context 1, 2, 4, 7

 ഼ Unfamiliarity with development and collaboration technologies 9, 21

 ഼ Insufficient and ambiguous requirements 3

 ഼ Inadequate social skills 3

 ഼ Lack of familiarity with agile values and principles 27, 28

 ഼ Lack of IT resources and working experience with software companies in client company 8, 12, 13, 16, 17

3. Team Perceptions

 ഼ Lack of motivation, focus and adaptability in development team 10, 11, 14, 21, 31

 ഼ Inappropriate assumptions about project scope made by client 12

 ഼ Fear of self-exposure to technical and agile skills deficiencies in development team 22, 27, 30

 ഼ Performance evaluation based on technical achievements 29

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 20 of 33

 ഼ Stakeholder neglect of nonfunctional requirement 28

4. Project Communication

 ഼ Inadequate client availability and participation 13, 23

 ഼ Lack of communication of agile time requirements with client up front 5, 12, 13, 15

 ഼ Lack of concurrence within client team 1, 3

 ഼ Product owner lack of sharing client feedback with development team 12

5. Project Organization

 ഼ Tight sprints schedule with little time for interaction 2, 10, 11

 ഼ Inadequate planning and organization in agile practices 6

 ഼ Multitasking and lack of continuity in development team 16, 24

 ഼ Inadequate planning and insufficient documentation 27, 30

 ഼ Making decisions in development without consulting client 28

 ഼ Frequent change of IT representatives in client company 7, 18

 ഼ Centralized decision making 20, 25

6. Project Technology

 ഼ Lack of using high quality collaboration technologies and processes in development team 21

 ഼ Lack of a good prototype to communicate requirements between stakeholders 8

 ഼ Employing agile methodology without planning up front 12

 ഼ Prioritization of requirements based on one-dimensional thinking 28

7. Project Setting

 ഼ Complex and domain specific project 2, 10, 11, 12

 ഼ Small budget agile project with limited room for interaction 3, 28

 ഼ Dependence on existing or legacy technology 2, 12

 ഼ Inability to choose development team members 22

 ഼ Different approaches to agility between development and client company 13

 ഼ Profit focused culture in development company 29

 ഼ Bureaucratic and centralized organizations 19

Second, the team prioritizes the identified resolutions (step 2, Figure 1). The process begins by looking at the

column Resolution Actions, Table 5. Team members count how many times each resolution action is circled

for addressing risk items with (i) High, (ii) Medium, and (iii) Low levels of importance. They add these

numbers to the column Add the Number of Targeted Risk Items, Table 6.

Table 6. Resolution Assessment Framework

Resolution
Strategy Resolution Action

Add the
Number of

Targeted Risk
Items

Assess
Resolutio
n Action
(H/M/L)

Assess
Resolution
Strategy
(H/M/L)

H M L

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 21 of 33

1. Strengthen
Resources

1. Recruit developers with a combination of IT and business
knowledge

2. Recruit experienced and motivated developers

3. Improve team’s agile and social skills through training

4. Share historic and current systems documentation across team

5. Support client and team communication with collaboration
technologies

6. Document experiences to support planning of future projects

7. Increase developers’ business knowledge through client-organized

training sessions

 8. Provide client with knowledge about agile projects through

workshop

9. Use pair programming to facilitate learning across development

team

2. Reinforce
directions

10. Communicate importance of project to team members for key
stakeholders and career opportunities

11. Create and share goals within team

12. Discuss expectations and requirements with client and within team

13. Analyze client organization dynamics and be open to adapt to
changing conditions

14. Collect and share successful project stories with team

15. Share key project information with client representatives using
nontechnical language

3. Leverage
relationships

16. Leverage team diversity through cross team observation and close
team member collaboration

17. Promote positive relationships across stakeholders

18. Build collaborative relationship with IT team in client organization

19. Leverage positive relationships between client representatives and
client management

4. Restructure
project

20. Delegate project responsibilities within team

21. Relocate developers to spend more time with each other

22. Help new team members integrate through mentors and
incremental responsibilities

23. Change the length of split sprints to improve interactions

24. Assign team full time to project

25. Expand project manager’s role to include coaching and facilitation

5. Improve
processes

26. Support participation and flexibility in project’s decision making

27. Support requisite exploration of alternative options

28. Engage team in evaluating agile opportunities and challenges

29. Put high value on mentoring and voluntary contributions in
performance evaluations

30. Provide opportunities to raise any concern for discussion in open
forums

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 22 of 33

31. Provide each individual member with 360° feedback

Based on these numbers, the team qualitatively assesses each resolution action (column Assess Resolution

Action (H/M/L), Table 6). Some guiding criteria could be the number of risk items that the resolution action

can address, the number of highly-important risk items that the resolution action can address, and the

feasibility of the resolution action. For example, it is possible that a resolution action can address important

risks, yet it may not be a feasible action in that project. Final decision on whether it should be given high,

medium, or low importance may include considering stakeholder interests and available resources, and it

should involve techniques such as debating and voting. For example, the risk management process may

suggest recruiting new developers as a highly important resolution action. However, due to project finances

the team may decide to mitigate risks by increasing developers’ business knowledge through client-

organized training sessions (related to the category of Strengthen Resources actions). This process helps

participants engage in mindfully understanding risks, potential resolution actions, challenges in executing

them and alternative resolutions. The result of the assessment is recorded in the column Assess Resolution

Action (H/M/L), Table 6.

Third, attention turns to development of an overall strategy to prioritize the five resolution strategies (step 3,

Figure 1). For this, the team qualitatively assesses each of the five strategies (column Assess Resolution

Strategy (H/M/L), Table 6). The team crafts a resolution strategy plan that includes: (i) prioritized resolution

categories along with a list of their identified resolution actions, (ii) some notes on ‘who, where and when’

with regard to the resolution actions, and (iii) some notes on the role of key stakeholders or potential

challenges in implementing the resolution actions. The main objective is to craft a bird eye’s vision for the

development team and to give them a head start on keeping the risk management direction simple and

memorable (Olsen, 1988).

As a final note, identifying and mitigating risks should occur as early as possible. This is particularly the case

in agile development. More specifically, the flexible characteristic of agile development adds additional

change and customer-related concerns compared to traditional risk management frameworks. For example,

the customer may express reluctance to continue with releases in small increments in the middle of the

project (Lippert et al., 2003). Such characteristics suggest that agile development can particularly benefit

from the risk management model. By engaging stakeholders in understanding the nature, consequences and

management of risks, the team can constantly look for improvement opportunities. Agile practices such as

sprint retrospective meetings can be leveraged for these purposes. At the end of each meeting, the team can

quickly fill the forms (Tables 5-6). The team can keep the results for future use. For example, the forms can

be scanned and stored in the company’s knowledge management system. If this process was undertaken in

prior meetings, the team can discuss: (i) the risks identified in previous meetings, (ii) the resolution actions

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 23 of 33

that were implemented since then, and (iii) consequences of their implementation and any particular

challenge or important issues that occurred in their implementation.

Model Evaluation

We conducted four one-hour evaluation sessions of the risk management model with two project managers,

two developers, one tester and one user representative in one of the software companies studied. At the end

of each session, the researcher asked the participants to provide additional feedback on the model’s strengths

and areas for improvement.

The participants agreed that the model is easy to use and it helps in the management of projects. The

interviewees, especially project managers, expressed that the model offers a proactive approach to assess

knowledge sharing risk items during projects and to identify resolution actions to mitigate the risks or

prevent them from adversely affecting knowledge sharing practices. Notably, they asked for permission to

keep the forms and apply the model within their company. For example, a project manager narrated that the

model is not only useful in creating a shared vision and a prioritized plan, but it also helps reduce agile-

related stress. He explained that he would like to include the risk management process model in regular

retrospective action items: “Scrum meetings can sometimes be stressful … The needs of the customers are

unclear or changing … There is a lot of work to be done, and team members have sometimes difficulties

doing their work. This [model] creates a shared vision of priorities across the team. The [risk management]

process is also fun. It has a different style that helps reduce work stress. I would put it on as a retrospective

action item.” In another session, one of the senior developers argued that the model ensures stakeholders’

concerns are considered thoroughly, planned for, and monitored: “The model gives the people who worry

about the project a space to come in the meeting and put those worries down. We can plan for risks and

monitor the results.” A tester expressed that it would be promising to build an application that automates and

facilitates the risk management process. In contrast, project managers argued that the informal process of

applying the model and its forms during retrospective meetings is an effective solution for their projects.

Discussion

Theoretical Contributions

This study was motivated based on a pressing theoretical and practical need to generate new insights on how

agile teams may prevent communication-related and knowledge sharing barriers from adversely affecting

agile development practices (Ramesh et al., 2010, Ghobadi & Mathiassen, 2015). We addressed the research

question—how can agile development teams systematically assess and mitigate risks to effective knowledge

sharing—by developing a risk management model. In an inductive, grounded fashion, we combined in-depth

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 24 of 33

data collected from four software projects with theoretical insights from the agile literature (Conboy et al.,

2010, Vidgen & Wang, 2009, McAvoy et al., 2012, Ramesh et al., 2010, Conboy & Morgan, 2011, Ghobadi

& Mathiassen, 2015) and research on risk management approaches (Davis, 1982, Persson et al., 2009,

Iversen et al., 2004). Our research presents three theoretical contributions.

First, the risk management model (Figure 1, Tables 4-6) adds substantive content to our understanding of

communication-related and knowledge sharing issues in contemporary software teams that actively use agile

practices. Specifically, the model contributes new concepts and detailed processes to develop a resolution

strategy plan in response to a project’s knowledge sharing risk profile. Such an empirically-grounded and

theoretically-informed understanding has been absent from existing research and practice discourses. For

example, software development research has identified risks and resolution actions for mitigating them (Keil

et al., 1998, Ropponen & Lyytinen, 2000, Boehm, 1991), but there are scarce efforts that go beyond this

foundational step to develop comprehensive risk management plans (Iversen et al., 2004). In contrast, our

proposed approach provides heuristics that facilitate analyzing risks, prioritizing resolutions, and linking

them into an overall plan. Our proposed risk management process also engages team members in several

informal, mutual knowledge sharing exercises. These exercises help teams overcome decision making

challenges that are common in agile contexts. Specifically, research suggests several challenges, such as lack

of shared understanding and developers’ lack of enthusiasm to communicate, may inhibit effective shared

decision-making in agile teams (Moe et al., 2012). In response, a risk management process provides team

members with an engaging opportunity to confront each other, discuss priorities (especially conflicting

ones), and understand project complexities. The use of formalized methods may seem controversial in agile

development research. Yet, rhetoric on agile and plan-driven approaches have become less confrontational in

the past few years (Boehm & Turner, 2003). More recently, scholars have begun to observe real-world

projects more closely, echoing the existence and importance of leveraging ambidexterity in agile teams

(Ramesh et al., 2012, Ramesh et al., 2006). Our results and model evaluation findings concur with this view

and add to it by showing that the risk management model is useful in many ways. Specifically, we showed

that the model can easily be used during agile practices such as light-weight and informal scrum and

retrospective review meetings, helping software teams achieve better performance and individual-related

outcomes.

Second, our model defines and presents seven categories of risk areas and five resolution strategies. These

conceptual categories are useful in studying and measuring several aspects of knowledge sharing in software

development. For example, Table 4 outlines 4-9 ‘concepts’ associated with each ‘category’. Tables 5-6 offer

heuristics for linking risks and resolutions. Thus, they refer to ‘links’ between concepts (risks and

resolutions) and the link between conceptual categories (risk areas and resolution strategies). These

conceptual categories, their associated concepts, and heuristics for linking concepts and categories lay the

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 25 of 33

foundation for significant qualitative and quantitative investigations into communication-related challenges

confronting agile teams.

Third, the empirical data reveals that the high performing projects did not always experience fewer risks

compared to low performing projects, but they did implement more unique resolution actions compared to

the risks they faced. Furthermore, although all projects used certain resolution actions for addressing

different risks, high performing projects applied those actions in a bolder and more thoughtful manner

compared to low performing ones. For example, high performing projects highlighted the organizational

importance of the project and the managerial support in various occasions. These insights concur with prior

software development research (Barki et al., 2001), suggesting that different project risk management

profiles can lead to different project performance outcomes.

Practical Contributions

The risk management model meets the criteria of practical applicability proposed by (Glaser & Strauss,

1977). First, the model fits the substantive area of knowledge sharing in software development. Specifically,

software teams constantly invest in better communication and knowledge sharing efforts (Gupta & Bajwa,

2012). They increasingly need intellectual tools that help identify and assess knowledge sharing risks and

prevent them from adversely affecting development practices. In response to this practical need, we have

offered a detailed risk management model (Figure 1, Tables 4-6).

Second, the model is sufficiently general to be relevant to a range of software development contexts.

Specifically, it is grounded in empirical findings based on data collected from four projects in two software

companies. In addition, its practical usefulness is strengthened using insights within the extant literature.

Third, our evaluation suggests the model is readily understandable by practitioners and provides useful

guidance in the management of knowledge sharing practices in agile development. The model, therefore,

serves as a basis on which software practitioners can iteratively assess risks to effective knowledge sharing

and take important steps for mitigating them at different stages of development. In summary, the risk

management model offers several practical advantages.

First, close and committed participation from stakeholders support collective mindfulness and team learning

in agile development (McAvoy et al., 2012, Hoda et al., 2013, Keil et al., 2002). We recommend software

teams involve different stakeholders in the risk management process. For example, they can conduct the

process during project retrospectives. Second, the risk management process allows team members to discuss

which actions did work or did not work over the project life-cycle. For example, the process may suggest

‘providing each individual member with 360° feedback’ to mitigate the risk that ‘lack of motivation, focus

and adaptability in development team’ poses to effective knowledge sharing (Table 5-6). Project

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 26 of 33

retrospectives may, however, suggest the following: This action proved to be effective at early stages, but

providing feedback consumed the time of experienced developers, and slowed down their pace of work at

later stages of development. Third, research suggests that reluctance to transmit bad news concerning a

software project and its status can increase project losses (Tynjälä et al., 2009, Smith & Keil, 2003). In

contrast, accumulated knowledge and lessons learned from regular risk management facilitates

organizational learning, forms an open culture for transmitting both positive and challenging outcomes, and

creates possibility of changing project direction for better. Fourth, regular risk management efforts help

create and maintain a risk management registry for each specific project, enabling experience reuse and

cross-project learning (Newell, 2004, Petter & Vaishnavi, 2008).

Concluding Remarks

We acknowledge a number of limitations that present opportunities for future theory development. First, the

findings are limited to four agile projects across two software companies. We recommend large-scale

empirical studies to validate, modify, or extend the presented model. Second, our model suggests a

straightforward approach involving high, medium, low scores for assessing risks and resolutions. Shared-

decision making for assessing risks can be challenging particularly in large projects that involve many

stakeholders. Future research may develop and implement more systematic approaches for assessing risks.

Examples include measuring the probability of risk multiplied by the loss associated with it, and measuring

the magnitude of potential loss associated with project failure (Barki et al., 1993).

Third, we have evaluated the practical utility of the model in one software company. Research may provide

additional insights by evaluating the model in different companies, at different stages of development

(Tasharofi & Ramsin, 2007), and during different types of software projects (large, medium, small size).

Scholars may apply design science techniques to develop web-based tools that support assessments of the

model (Persson et al., 2009). Fourth, we recommend longitudinal research to extend the model by identifying

the risks that may occur as the result of implementing certain resolution actions. For example, the resolution

action ‘analyze client organization dynamics and be open to adapt to changing conditions’ can lead to major

reworks when the architecture does not scale up (Batra, 2009). Thus, implementing this resolution action can

make it difficult for developers to commit enough time to knowledge sharing activities at later stages of

development. Fifth, longitudinal studies are encouraged to link resolution actions to project phases,

advancing our understanding of different stages of development in which each resolution action is best

implemented. For example, researchers may explore which resolution actions are best implemented prior to

the project initiation. Sixth, our results suggest that the high performing projects, more than the low

performing ones, tend to address risks more effectively by applying more resolution actions compared to the

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 27 of 33

risks they face. Future research should further investigate differences between high performing and low

performing projects in terms of their project’s risk profile and their approach to the assessment and

mitigation of knowledge sharing risks. Finally, we suggest sharing mental models is essential for successful

team work (Ghobadi & Mathiassen, 2015). Yet, teams can also be subject to groupthink cognitive biases

(Janis, 1982) that influence team members’ understanding of risks and potential resolution actions. We

recommend scholars study groupthink biases and their consequences in future risk management frameworks.

Acknowledgement

The authors thank the development teams who participated in this study as well as the senior editor, associate

editor, and the three reviewers for their valuable guidance during the revision process.

References

Augustine, S., Payne, B., Sencindiver, F. & Woodcock, S. (2005) Agile project management: steering from
the edges. Communications of the ACM, 48, 85-89.

Barki, H. & Hartwick, J. (2001) Interpersonal conflict and its management in information system
development. MIS Quarterly, 25, 195-228.

Barki, H., Rivard, S. & Talbot, J. (1993) Toward an assessment of software development risk. Journal of
Management Information Systems, 10, 203-225.

Baskerville, R. L. & Stage, J. (1996) Controlling prototype development through risk analysis. MIS
Quarterly, 20, 481-504.

Batra, D. (2009) Modified agile practices for outsourced software projects. Communications of the ACM, 52,
143-148.

Bellini, E., Canfora, G., García, F., Piattini, M. & Visaggio, C. A. (2005) Pair designing as practice for
enforcing and diffusing design knowledge. Journal of Software Maintenance and Evolution:
Research and Practice, 17, 401-423.

Boehm, B. & Turner, R. (2003) Balancing agility and discipline: A guide for the perplexed, Addison-Wesley
Professional.

Boehm, B. W. (1991) Software risk management: principles and practices. IEEE Software 8, 32-41.
Carmel, E., Espinosa, J. A. & Dubinsky, Y. (2010) "Follow the Sun" Workflow in Global Software

Development. Journal of Management Information Systems, 27, 17-38.
Chakraborty, S. & Sarker, S. (2010) An exploration into the process of requirements elicitation: a grounded

approach. Journal of the Association for Information Systems, 11, 212-249.
Conboy, K., Coyle, S., Wang, X. & Pikkarainen, M. (2010) People over process: key people challenges in

agile development. IEEE Software, 99, 47-57.
Conboy, K. & Morgan, L. (2011) Beyond the customer: Opening the agile systems development process.

Information and Software Technology, 53, 535-542.
Corvera Charaf, M., Rosenkranz, C. & Holten, R. (2012) The emergence of shared understanding: applying

functional pragmatics to study the requirements development process. Information Systems Journal,
23, 115-135.

Dalcher, D. (2002) Safety, risk, and danger: A new dynamic perspective. Cutter IT Journal, 15, 23-27.
Davis, G. B. (1982) Strategies for information requirements determination. IBM Systems Journal, 21, 4-30.
Dingsøyr, T. & Hanssen, G. (2003) Extending agile methods: postmortem reviews as extended feedback, 4th

International Workshop on Learning Software Organizations, Chicago, IL, USA: Springer Verlag, 4-
12.

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 28 of 33

Dorairaj, S., Noble, J. & Malik, P. (2012) Knowledge Management in Distributed Agile Software
Development, Agile Conference (AGILE), Dellas, Texas, US: IEEE, 64-73.

Dybå, T. & Dingsøyr, T. (2008) Empirical studies of agile software development: A systematic review.
Information and Software Technology, 50, 833-859.

Earl, M. 1987. Information Management Strategy. Englewood-Cliffs, NJ: Prentice-Hall.
Eisenhardt, K. M. (1989) Building theories from case study research. Academy of Management Review, 14,

532-550.
Eisenhardt, K. M. & Graebner, M. E. (2007) Theory building from cases: opportunities and challenges.

Academy of Management Journal, 50, 25-32.
Fitzgerald, B., Russo, N. L. & O'Kane, T. (2000) An Empirical Study of System Development Method

Tailoring in Practice, European Conference on Information Systems: Citeseer, 187-194.
Fitzgerald, B., Russo, N. L. & Stolterman, E. (2002) Information systems development: Methods in action.
Ghobadi, S. (2015) What drives knowledge sharing in software team: a review and classification framework.

Information and Management, 52, 82-97.
Ghobadi, S., Campbell, J. & Clegg, S. (2015) Pair programming teams and high-quality knowledge sharing:

A comparative study of coopetitive reward structures. Information Systems Frontiers.
Ghobadi, S. & D'ambra, J. (2013) Modeling High-Quality Knowledge Sharing in Cross-Functional Software

Development Teams Information Processing & Management, 49, 138-157.
Ghobadi, S. & Mathiassen, L. (2015) Perceived Barriers to Effective Knowledge Sharing in Agile Software

Teams. Information Systems Journal.
Glaser, B. G. & Strauss, A. L. (1977) The discovery of grounded theory: Strategies for qualitative research,

Aldine Publishing, Chicago.
Gupta, N. & Bajwa, J. K. (2012) Analysis of Knowledge Sharing Practices in Distributed Agile

Environment. International Journal of Computer & Communication Technology, 3, 1-11.
Highsmith, J. (2009) Agile project management: creating innovative products, Pearson Education, MA, US.
Hoda, R., Babb, J. & Norbjerg, J. (2013) Toward Learning Teams. IEEE Software 30, 95-98.
Holmström, H., Fitzgerald, B., Ågerfalk, P. J. & Conchúir, E. Ó. (2006) Agile practices reduce distance in

global software development. Information Systems Management, 23, 7-18.
Iversen, J. H., Mathiassen, L. & Nielsen, P. A. (2004) Managing risk in software process improvement: an

action research approach. MIS Quarterly, 28, 395-433.
Janis, I. L. (1982) Groupthink: Psychological studies of policy decisions and fiascoes, Houghton Mifflin,

Boston.
Karlsen, J. T., Hagman, L. & Pedersen, T. (2011) Intra-project transfer of knowledge in information systems

development firms. Journal of Systems and Information Technology, 13, 66-80.
Keil, M., Cule, P. E., Lyytinen, K. & Schmidt, R. C. (1998) A framework for identifying software project

risks. Communications of the ACM, 41, 76-83.
Keil, M., Tiwana, A. & Bush, A. (2002) Reconciling user and project manager perceptions of IT project risk:

a Delphi study. Information Systems Journal, 12, 103-119.
Lee, A. S. & Baskerville, R. L. (2003) Generalizing generalizability in information systems research.

Information Systems Research, 14, 221-243.
Lippert, M., Becker-Pechau, P., Breitling, H., Roock, S., Schmolitzky, A., Wolf, H. & Heinz, Z. (2003)

Developing complex projects using XP with extensions. Computer, 36, 67-73.
Lyytinen, K. (1987) Different perspectives on information systems: problems and solutions. ACM

Computing Surveys (CSUR), 19, 5-46.
Lyytinen, K., Mathiassen, L. & Ropponen, J. (1998) Attention Shaping and Software Risk—A Categorical

Analysis of Four Classical Risk Management Approaches. Information Systems Research, 9, 233-
255.

Mcavoy, J., Nagle, T. & Sammon, D. (2012) Using mindfulness to examine ISD agility. Information Systems
Journal, 23, 155-172.

Mcfarlan, F. W. (1981) Portfolio approach to information systems. Harvard Business Review, 59, 142-150.

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 29 of 33

Moe, N. B., Aurum, A. & Dybå, T. (2012) Challenges of shared decision-making: A multiple case study of
agile software development. Information and Software Technology, 54, 853-865.

Nerur, S. & Balijepally, V. G. (2007) Theoretical reflections on agile development methodologies.
Communications of the ACM, 50, 79-83.

Newell, S. (2004) Enhancing cross-project learning. Engineering Management Journal, 16, 12-20.
Newman, M. & Robey, D. (1992) A social process model of user-analyst relationships. MIS Quarterly, 16,

249-266.
Olsen, R. J. (1988) Niche shock: And how to survive it. Planning Review, 16, 6-13.
Persson, J. S., Mathiassen, L., Boeg, J., Madsen, T. S. & Steinson, F. (2009) Managing risks in distributed

software projects: an integrative framework. IEEE Transactions on Engineering Management, 56,
508-532.

Petter, S. & Vaishnavi, V. (2008) Facilitating experience reuse among software project managers.
Information Sciences, 178, 1783-1802.

Ramesh, B., Cao, L. & Baskerville, R. (2010) Agile requirements engineering practices and challenges: an
empirical study. Information Systems Journal, 20, 449-480.

Ramesh, B., Cao, L., Mohan, K. & Xu, P. (2006) Can distributed software development be agile?
Communications of the ACM, 49, 41-46.

Ramesh, B., Mohan, K. & Cao, L. (2012) Ambidexterity in Agile Distributed Development: An Empirical
Investigation. Information System Research, 23, 323-339.

Ropponen, J. & Lyytinen, K. (2000) Components of software development risk: How to address them? A
project manager survey. IEEE Transactions on Software Engineering, 26, 98-112.

Scott, W. A. (1955) Reliability of content analysis: The case of nominal scale coding. Public Opinion
Quarterly, 19, 321-325.

Smith, H. J. & Keil, M. (2003) The reluctance to report bad news on troubled software projects: a theoretical
model. Information Systems Journal, 13, 69-95.

Sutherland, J. (2005) Future of scrum: Parallel pipelining of sprints in complex projects, Agile Conference:
IEEE, 90-99.

Tasharofi, S. & Ramsin, R. 2007. Process patterns for agile methodologies. In: Situational Method
Engineering: Fundamentals and Experiences, pp. 222-237. Boston, Springer.

Tynjälä, P., Pirhonen, M., Vartiainen, T. & Helle, L. (2009) Educating IT project managers through project-
based learning: A working-life perspective. Communications of the Association for Information
Systems, 24, 269-288.

Vidgen, R. & Wang, X. (2009) Coevolving systems and the organization of agile software development.
Information Systems Research, 20, 355-376.

Williams, L. (2012) What agile teams think of agile principles. Communications of the ACM, 55, 71-76.

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 30 of 33

Appendix 1: Interview Guide

In this project, how important was ‘effective knowledge sharing” among team members? 
In what ways was knowledge sharing practiced? 
During the project, how satisfied were you by the knowledge sharing practices among team members? 
In what ways did knowledge sharing help the project achieve its goals? 
Which problems did you notice in achieving effective knowledge sharing among team members? 
What were the key enablers of effective knowledge sharing? 
What were the key barriers to effective knowledge sharing? 
Now, I have noted a number of barriers to effective knowledge sharing in this project. Can you please have a look and
sort them for me based on their level of importance.
Is there anything else that you would like to mention that we did not cover?
(Ghobadi & Mathiassen, 2015)

Appendix 2: Sample Coding

Sample Codes and Quotes
 Codes Sample Quote
High-performing project “Stakeholders got the results they wanted and they are happy with how they worked with the team.”

Low-performing project “Project stakeholders didn’t see results fast enough.”

Complex business rules “They [developers] knew what the algorithm was and what the code for it was, but understanding
what the code’s ultimate goal was and spotting errors in the output was hard and time consuming”
(user representative).

Making experienced and motivated

developers available

“We had [a senior developer] who has the most experience of these products. We asked him how

things work. If he hadn’t been available it would have been much more difficult”

Lack of motivation in the team “I think they may have been less motivated, because they didn’t feel that their work was as important
as what some of the other teams were doing”

Emphasizing the organizational
importance of the project

“And, we are trying to basically let them be aware that they are in a position that is highly visible in
the company and can grow very rapidly”

Employing agile methodology without

planning up front

“I didn’t understand how much time would be required of me at the start.”

Understanding client and being open and
flexible to adapt to changing conditions

“It seemed to me there was a clear awareness of the kinds of pressures that people in [my business]
have. So when I had difficulty making myself available, they [development team] were very quick to

adapt”

Inadequate client availability and
participation

“Most of the people in [my business] have heavy workloads and administrative loads”

Different working and discipline-related

backgrounds among members

“We had a huge amount of discrepancy in terms of people’s knowledge. We had someone who knows
the [domain knowledge] over five years. We had people who had never worked on [this area].”

Decreasing the length of sprints “Developers thought three weeks sprint to be better for their focus, because of rotating shifts with an
alternative project.”

Appendix 3: Project Summaries (Within-Case Analyses)

Project Alpha One Summary

Risk Area Risks Item Resolutions Actions

Team
Capabilities

Unfamiliarity with development and collaboration
technologies

Use pair programming to facilitate learning across development team
Relocate developers to spend more time with each other

Lack of IT resources and working experience with
software companies in client company

Discuss expectations and requirements with client and within team
Analyze client organization dynamics and be open to adapt to changing
conditions
Leverage team diversity through cross team observation and close team
member collaboration
Promote positive relationships across stakeholders

Project
Communication

Lack of communication of agile time requirements
with client up front

Analyze client organization dynamics and be open to adapt to changing
conditions
Support client and team communication with collaboration technologies
Share key project information with client representatives using nontechnical

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 31 of 33

language
Discuss expectations and requirements with client and within team

Project
Organization

Multitasking and lack of continuity in development
team

Leverage team diversity through cross team observation and close team
member collaboration
Assign team full time to project

Frequent change of IT representatives in client
company

Increase developers’ business knowledge through client-organized training
sessions
Build collaborative relationship with IT team in client organization

Project
Setting

Dependence on existing or legacy technology Discuss expectations and requirements with client and within team

Different approaches to agility between
development and client company

Analyze client organization dynamics and be open to adapt to changing
conditions

Bureaucratic and centralized organizations Leverage positive relationships between client representatives and client
management

Project Alpha Two Summary

Risk Area Risks Item Resolutions Actions

Team
Diversity

Different speaking languages among members -

Team
Perceptions

Lack of motivation, focus and adaptability in
development team

-

Inappropriate assumptions about project scope made
by client

Discuss expectations and requirements with client and within team

Team
Capabilities

Insufficient understanding of business domain and
context

Share historic and current systems documentation across team
Increase developers’ business knowledge through client-organized training
sessions

Inadequate social skills -

Lack of IT resources and working experience with
software companies in client company

Provide client with knowledge about agile projects through workshop
Discuss expectations and requirements with client and within team
Analyze client organization dynamics and be open to adapt to changing
conditions

Project
Communication

Inadequate client availability and participation Change the length of split sprints to improve interactions
Analyze client organization dynamics and be open to adapt to changing
conditions

Lack of communication of agile time requirements
with client up front

Analyze client organization dynamics and be open to adapt to changing
conditions

Lack of concurrence within client team -

Project
Organization

Tight sprints schedule with little time for interaction
-

Inadequate planning and organization in agile
practices

-

Multitasking and lack of continuity in development
team -

Inadequate planning and insufficient documentation
(communicate face-to-face principle)

-

Project
Technology

Making decisions in development without
consulting client -

Lack of a good prototype to communicate
requirements between stakeholders

Provide client with knowledge about agile projects through workshop

Employing agile methodology without planning up
front

-

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 32 of 33

Project
Setting

Complex and domain specific project Discuss expectations and requirements with client and within team
Recruit experienced and motivated developers
Communicate importance of project to team members for key stakeholders
and career opportunities

Small budget agile project with limited room for
interaction -

Profit focused culture in development company -

Project Beta One Summary

Risk Area Risk Item Resolutions Actions

Team
Diversity

Different speaking languages among members Create and share goals within team

Different working and disciple-related backgrounds
among members

Communicate importance of project to team members for key stakeholders
and career opportunities
Create and share goals within team
Delegate project responsibilities within team

Different time zones and physical distance between
members

Support participation and flexibility in project’s decision making

Lack of prior joint working experience in
development team

Communicate importance of project to team members for key stakeholders
and career opportunities
Create and share goals within team
Delegate project responsibilities within team

Different speaking languages among members -

Team
Perceptions

Lack of motivation, focus and adaptability in
development team

Communicate importance of project to team members for key stakeholders
and career opportunities
Create and share goals within team

Fear of low estimates in development team -

Team
Capabilities

Insufficient understanding of business domain and
context

-

Project
Communication

Product owner lack of sharing client feedback with
development team

Discuss expectations and requirements with client and within team

Project
Organization

Tight sprints schedule with little time for interaction Create and share goals within team
Communicate importance of project to team members for key stakeholders
and career opportunities
Recruit experienced and motivated developers

Inadequate planning and organization in agile
practices -

Multitasking and lack of continuity in development
team

-

Project
Technology

Lack of using high quality collaboration
technologies and processes in development team

Relocate developers to spend more time with each other

Project
Setting

Complex and domain specific project Discuss expectations and requirements with client and within team
Communicate importance of project to team members for key stakeholders
and career opportunities
Create and share goals within team

Multidimensional project involving both application
and infrastructure development

-

Project Beta Two Summary

Risk Area Risks Item Resolutions Actions

Team
Diversity

Different working and disciple-related backgrounds
among members

Discuss expectations and requirements with client and within team
Relocate developers to spend more time with each other

Lack of prior joint working experience in Discuss expectations and requirements with client and within team

Ghobadi, S., Mathiassen, L. 2016, A Model for Assessing and Mitigating Knowledge Sharing Risks in Agile Software Development, Information
Systems Journal (Accepted: May 2016)

Page 33 of 33

development team

Team
Perceptions

Lack of motivation, focus and adaptability in
development team

Relocate developers to spend more time with each other

Team
Capabilities

Insufficient understanding of business domain and
context

Recruit experienced and motivated developers

Unfamiliarity with development and collaboration
technologies

-

Insufficient and ambiguous requirements -

Project
Organization

Tight sprints schedule with little time for interaction Recruit experienced and motivated developers

Inadequate planning and organization in agile
practices

Document experiences to support planning of future projects

Inadequate planning and insufficient documentation
(communicate face-to-face principle)

Project
Technology

Lack of using high quality collaboration
technologies and processes in development team

Relocate developers to spend more time with each other

Employing agile methodology without planning up
front

Discuss expectations and requirements with client and within team

Project
Setting

Complex and domain specific project Recruit experienced and motivated developers

Dependence on existing or legacy technology Recruit experienced and motivated developers

Inability to choose development team members -

View publication statsView publication stats

https://www.researchgate.net/publication/303566033

