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Abstract

In the present paper, we introduce the backdoor set approach into the field of temporal

logic for the global fragment of linear temporal logic. We study the parameterized

complexity of the satisfiability problem parameterized by the size of the backdoor. We

distinguish between backdoor detection and evaluation of backdoors into the fragments

of Horn and Krom formulas. Here we classify the operator fragments of globally-

operators for past/future/always, and the combination of them. Detection is shown to

be fixed-parameter tractable whereas the complexity of evaluation behaves differently.

We show that for Krom formulas the problem is paraNP-complete. For Horn formulas,

the complexity is shown to be either fixed parameter tractable or paraNP-complete

depending on the considered operator fragment.
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1 Introduction

Temporal logic is one of the most important formalism in the area of program ver-

ification and validation of specification consistency. Most notable are the seminal

contributions of Kripke [21], Pnueli [32], Emerson, Clarke, and Halpern [7,14] to

name a few. There exist several different variants of temporal logic from which, best

known are the computation tree logic CTL, the linear temporal logic LTL, and the full

branching time logic CTL∗. In this paper, we will consider the global fragment of LTL

for formulas in separated normal form (SNF) which has been introduced by Fisher

[15]. This normal form is a generalization of the conjunctive normal form from propo-

sitional logic to linear temporal logic with future and past modalities interpreted over

the flow of time, i.e., the frame of the integers (Z,<). In SNF the formulas are divided

into a past, a present, and a future part. Technically this normal form is not a restriction

since one can always translate an arbitrary LTL formula to a satisfiability-equivalent

formula in SNF in time linear in the original formula [15]. In fact, the restriction to

SNF normal form is crucial for us, because it is known that syntactical restrictions of

arbitrary LTL formulas such as Horn or Krom do not lead to tractability [4].

LTL and its two main associated computational problems LTL model checking and

LTL satisfiability have been deeply investigated in the past. In this work we focus on

the LTL satisfiability problem, i.e., given an LTL formula the question is whether there

is a temporal interpretation that satisfies the formula. Sistla and Clarke classified the

computational complexity of the satisfiability problem to be PSPACE-complete [36].

Then, later, several restrictions of the unrestricted problem have been considered.

These approaches considered operator fragments [29], Horn formulas [4], temporal

operator fragments, temporal depth, and number of propositional variables [8], the use

of negation [27], an XOR fragment [11], an application of Post’s lattice [3], and the

SNF fragment [2].

In contrast to LTL satisfiability where the search for fruitful parameterization has

so far been rather unsuccessful [26], various important parameterizations have been

identified for the satisfiability problem of propositional formulas (SAT) [5,30,37]. One

very prominent and well-studied structural parameterization for SAT are so-called

backdoor sets. Informally, backdoors are small sets of variables of a SAT instance that

represent “clever reasoning shortcuts” through the search space. Backdoor sets have

been widely used in the areas of propositional satisfiability [9,10,19,20,33,35,38],

and also for material discovery [25], abductive reasoning [31], argumentation [13],

planning [22,23], and quantified Boolean formulas [34]. A backdoor set is defined

with respect to some fixed base class for which the computational problem under

consideration is polynomial-time tractable. For instance, in the case of SAT, a backdoor

set B for a given CNF formula φ into the base class of Horn formulas is a set of

variables such that for every assignment of the variables in B it holds that the reduced

formula, i.e., the formula obtained after applying the assignment to φ, is Horn. Given

such a backdoor set one can decide the satisfiability of φ in time O(2|B| p(|φ|)) by

enumerating the 2|B| assignments of the variables in B and for each such assignment

solving the remaining formula in time p(|φ|), where p is a polynomial given by the

base class. As a result, once a small backdoor set is identified the satisfiability check

is fixed-parameter tractable for the parameter backdoor size. Since the backdoor set
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Table 1 Results overview

Problem Operators horn krom

Detection Any FPT (Thm. 5) FPT (Thm. 5)

Evaluation �∗ FPT (Thm. 8) paraNP-c. (Thm. 9)

�F, �P paraNP-c. (Thm. 10) paraNP-c. (Above)

One of �F, �P Open paraNP-c. (Cor. 11)

LTL-SAT �∗ , �F,�P P [2] NP-c. [2]

�∗ P [2] NL [2]

The term “Any” refers to any combination of �∗ , �F,�P , whereas “Above” denotes that the lower bound

from the cell above applies

is usually not provided with the input, it is crucial that small backdoor sets to a

given base class can be found efficiently. When employing the backdoor approach one

consequently usually considers two subtasks the so-called detection and evaluation

problem, where the former is the task to identify a small backdoor set and the later

concerns the solution of the problem using the backdoor set.

Our Contribution In this paper, we introduce a notion of backdoors for the global

fragment of LTL formulas that are given in SNF. Namely, we consider backdoor sets to

the base classes that have recently been identified by Artale et al. [2]. These base classes

are defined by both restrictions on the allowed temporal operators (i.e., to a subset of

{�∗ ,�P,�F}) and restrictions on the clauses to be either horn or krom. We show that

surprisingly a notion of backdoor sets very similar to the strong backdoor sets employed

for SAT [18] can also be successfully applied to LTL formulas. Whereas the detection

of these backdoor sets can be achieved via efficient fpt-algorithms for all the considered

fragments (using algorithms similar to the algorithms employed in the context of

SAT), the evaluation of these backdoor sets turns out to be much more involved. In

particular, we obtain tractability of the evaluation problem for horn formulas using

only the always operator. In fact, LTL restricted to only the always operator, is already

quite interesting, since it allows one to express “Safety” properties of a system. For

almost all of the remaining cases we show that the evaluation problem is paraNP-

hard. Moreover, the techniques used to show these results are very different from and

more involved than the techniques employed for SAT, i.e., in the context of SAT the

backdoor set evaluation problem is trivial. Our results are summarized in Table 1.

2 Preliminaries

Parameterized Complexity A good introduction into the field of parameterized com-

plexity is given by Downey and Fellows [12]. A parameterized problem Π is a tuple

(Q, κ) such that the following holds. Q ⊆ Σ∗ is a language over an alphabet Σ ,

and κ : Σ∗ → N is a computable function; then κ also is called the parameterization

(of Π ).

If there is a deterministic Turing machine M and a computable function f : N → N

s.t. for every instance x ∈ Σ∗ (i) M decides correctly if x ∈ Q, and (ii) M has a runtime
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bounded by f (κ(x)) · |x |O(1), then we say that M is an fpt-algorithm for Π and that

Π is fixed-parameter tractable (or in the class FPT). If M is non-deterministic, then Π

belongs to the class paraNP. One way to show paraNP-hardness of a parameterized

problem (Q, κ) is to show that Q is NP-hard for a specific, fixed value of κ , i.e., there

exists a constant ℓ ∈ N such that (Q, κ)ℓ := {x | x ∈ Q and κ(x) = ℓ} is NP-hard.

Temporal Logic We assume familiarity with standard notions of propositional logic.

Let PROP be a finite set of propositions and ⊥/⊤ abbreviate the constants false/true.

The syntax of the global fragment of LTL is defined by the following EBNF:

ϕ ::= ⊥ | ⊤ | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �P ϕ | �F ϕ | �∗ ϕ,

where p ∈ PROP. Here �P ϕ can be read as “ϕ holds in every point in the past”, �F ϕ

as “ϕ holds in every point in the future”, and �∗ ϕ as “ϕ holds always”. We also will

make use of well-known shortcuts such as →,↔. Now we define the semantics of

these formulas. Here, we interpret LTL formulas over the flow of time (Z,<) (for

further information on this approach, see, e.g., Gabbay et al. [17]). Note that all our

results can be easily transferred to the case if the formulas are evaluated over the set

of natural numbers instead of the set of all integers.

Definition 1 (Temporal Semantics) LetPROP be a finite set of propositions. A temporal

interpretation M = (Z,<, V ) is a mapping from propositions to moments of time,

i.e., V : PROP → P(Z). The satisfaction relation |� is then defined as follows where

n ∈ Z, ϕ,ψ ∈ LTL

M, n |� ⊤ always,

M, n |� ⊥ never,

M, n |� p iff n ∈ V (p),

M, n |� ¬ϕ iff M, n �|� ϕ,

M, n |� ϕ ∨ ψ iff M, n |� ϕ or M, n |� ψ ,

M, n |� ϕ ∧ ψ iff M, n |� ϕ and M, n |� ψ ,

M, n |� �F ϕ iff for all k > n it holds M, k |� ϕ,

M, n |� �P ϕ iff for all k < n it holds M, k |� ϕ, and

M, n |� �∗ ϕ iff for all k ∈ Z it holds M, k |� ϕ.

We say that ϕ is satisfiable if there is a temporal interpretation M such that M, 0 |�

ϕ. Then M is also referred to as a (temporal) model (of ϕ). Sometimes we also directly

write M(p) instead of V (p).

Table 2 exemplifies the semantics with some basic formulas. As shown by Fisher

et al. every LTL formula considered over the frame (Z,<) has a satisfiability-

equivalent formula in the separated normal form SNF [16], which can be constructed

in linear time [15]). We follow the notation of SNF formulas by Artale et al. [2] and

directly restrict them to the relevant global fragment of this study:

λ ::= ⊥ | p | �F λ | �P λ | �∗ λ, (1)

ϕ ::= λ | ¬λ | ϕ ∧ ϕ | �∗ (¬λ ∨ · · · ∨ ¬λ ∨ λ ∨ · · · λ), (2)

where λ is called a temporal literal and ϕ is said to be in clausal normal form.
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Table 2 Temporal semantics
< 0 0 1 2 3 4 5 > 5

p 1 1 0 1 0 1 1 0

q 0 0 1 1 0 0 1 1

r 0 0 0 0 1 0 0 0

p ∧ q 0 0 0 1 0 0 1 0

�∗ p 0 0 0 0 0 0 0 0

�F q 0 0 0 0 0 1 1 1

�F �F q 0 0 0 0 1 1 1 1

�P p 1 1 1 0 0 0 0 0

�∗ (�P p) 0 0 0 0 0 0 0 0

�∗ (p ∨ �F q ∨ �P p ∨ r) 1 1 1 1 1 1 1 1

Table 3 Considered normal forms

Class Description Restrictions on n, m

cnf No restrictions on (2) –

horn At most one positive temporal literal m ≤ 1

krom Binary clauses n + m ≤ 2

Restrictions refer to Eq. (2)

Note that the operator name G instead of �F often occurs in literature. Yet,

in contrast to Gϕ, for �F ϕ it is not required that ϕ holds in the present world.

We distinguish fragments of LTL by adding superscripts and subscripts as fol-

lows. If O ⊆ {�F,�P,�∗ } is an operator subset then LTLO is the fragment of

LTL consisting of formulas that are allowed to only use temporal operators from

O for temporal literals, i.e., it is a constraint on the allowed operators in equation

(1) from above. We also consider restrictions of the clausal normal form in (2):

�∗ (¬λ1 ∨ · · · ∨ ¬λn ∨ λn+1 ∨ · · · λn+m). Table 3 lists the relevant cases for this

study. If α ∈ {cnf, horn, krom} then LTLα is the set of formulas where the subfor-

mulas of the type �∗ (¬λ1 ∨ · · · ∨¬λn ∨ λn+1 ∨ · · · λn+m) (3), obey the normal form

α.

The following lemma shows a log-space constructible normal form which prohibits

deep nesting of temporal operators of the investigated formulas.

Proposition 2 ([2, Lemma 2]) Let L ∈ {LTL�F,�P
α , LTL�F

α , LTL�P
α , LTL�∗

α } be a for-

mula class for α ∈ {cnf, horn, krom}. For any formula ϕ ∈ L, one can construct, in

log-space, a satisfiability-equivalent L-formula Ψ ∧ �∗ Φ, where Ψ is a conjunction

of propositional variables from Φ, and Φ is a conjunction of clauses of the form (3)

containing only �F,�P for LTL�F,�P
α , �F for LTL�F

α , �P for LTL�P
α , and only �∗ for

LTL�∗

α , in which the temporal operators are not nested.

In the following sections we consider only formulas given in this normal form Ψ ∧�∗ Φ.
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3 Introduction of Backdoors for the Global Fragment of LTL

In the following, we will introduce a notion of backdoors for formulas in the global

fragment of linear temporal logic. The definition of these backdoors turns out to be

very similar to the definition of the so-called strong backdoor sets for propositional

formulas [18]. The main difference is that whenever a propositional variable is in the

backdoor set then also all of its temporal literals are required to be in the backdoor set

as well. A consequence of this is that in contrast to propositional formulas, where a

backdoor set needs to consider all assignments of the backdoor set variables, we only

need to consider assignments that are consistent between propositional variables and

their temporal literals.

Let O be a set of operators. An assignment θ : Vars(φ)∪{ Ox | x ∈ Vars(φ)∧ O ∈

O } → {0, 1} is consistent if for every x ∈ Vars(φ) it holds that if θ(�∗ x) = 1, then

also θ(�P x) = 1, θ(�F x) = 1, and θ(x) = 1.

Definition 3 (Backdoors) Let C be a class of cnf-formulas, O be a set of operators,

and φ be an LTLO

cnf
formula. A set X ⊆ Vars(φ) is a (strong) (C,O)-backdoor if for

every consistent assignment θ : X ∪ {Ox | x ∈ X , O ∈ O} → {0, 1} it holds that

φ[θ ] is in C.

The reduct φ[θ ] is defined similarly to that for standard cnf-formulas, i.e., all

clauses that contain a satisfied literal are deleted, and all falsified literals are deleted

from their clauses. Here empty clauses are substituted by false, and the empty formula

by true. Sometimes if the context of O is clear, we omit to state it and just mention

the backdoor class C.

Example 4 Let ϕ = p1∧ p2∧�∗ (¬�P p4∨�P p2∨�P p3) be the considered formula.

Then B = {p3} is a strong (krom, {�P,�∗ })-backdoor as the following assignments

have to be examined:

p3 �P p3 �∗ p3 ϕ[θ ]

0 0 0 p1 ∧ p2 ∧ �∗ (¬ �P p4 ∨ �P p2) ⋆

0 0 1 Irrelevant as inconsistent

0 1 0 p1 ∧ p2 ♥

0 1 1 Irrelevant as inconsistent

1 0 0 p1 ∧ p2 ∧ �∗ (¬ �P p4 ∨ �P p2) ⋆

1 0 1 Irrelevant as inconsistent

1 1 0 p1 ∧ p2 ♥

1 1 1 p1 ∧ p2

First, observe that all relevant rows lead to a krom-formula. Note that for the rows

marked with ⋆ the reduct just removed the temporal literal �P p3. All other rows are

either inconsistent (and hence irrelevant) or delete the clause (¬�P p4 ∨ �P p2 ∨

�P p3) completely, because �P p3 is set to true. At first glance, our definition of

backdoor sets for LTL is almost purely syntactical, and thereby is an accordance to
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strong backdoor sets for the propositional satisfiability problem. For instance consider

the assignments marked with the ♥. In these cases we delete the clause (¬�P p4 ∨

�P p2 ∨�P p3) completely because �P p3 is set to true. However, we also know that,

because �∗ p3 is set to false, the clause will not be satisfied solely by �P p3 in all

possible worlds of a satisfying model. This indicates that solving the formula using

the backdoor will not be as simple as it was for the propositional satisfiability problem,

where it was sufficient to enumerate all assignments of the backdoor set and solve the

reduced formula. Nevertheless, as we will show in Sect. 5.1 our backdoor sets can still

be used for the efficient evaluation of LTL formulas.

To exploit backdoor sets to obtain efficient fpt-algorithms for LTL one needs to

accomplish two tasks: first, one needs to find a small backdoor set, and then one needs

to show how the backdoor set can be exploited to efficiently evaluate the formula.

This leads to the following problem definitions for every class C of formulas and set

of operators O.

Problem: EvalO(C) — Backdoor evaluation to LTLO

C
.

Input: LTLO

cnf
formula φ, strong (C,O)-backdoor X .

Parameter: |X |.

Question: Is φ satisfiable?

Problem: DetectO(C) — Backdoor detection to LTLO

C
.

Input: LTLO

cnf
formula φ, integer k ∈ N.

Parameter: k.

Task: Find a strong (C,O)-backdoor of size ≤ k if one exists.

Of course, this approach is only meaningful if one considers target classes that

have polynomial time solvable satisfiability problems. Artale et al. have shown [2] that

satisfiability for LTL�∗

horn
and LTL�∗

krom
are solvable in P. Adding �F,�P to the set of

allowed operators makes the krom fragmentNP-complete whereas for horn formulas

the problem stays in P. Accordingly, we will consider in the following only krom and

horn formulas. Moreover, note that when considering arbitrary CNF formulas instead

of horn or krom formulas, then LTLO

cnf
is known to be NP-complete for any (even

empty) subset O ⊆ {�F,�P,�∗ } [2].

4 Backdoor Set Detection

In this section, we show that finding strong C-backdoor sets (under the parameter size

of the set) is fixed-parameter tractable if C is either horn or krom. The algorithms

that we will present are very similar to the algorithms that are known for the detection

of strong backdoors for propositional CNF formulas [18].

We first show how to deal with the fact that we only need to consider consistent

assignments. The following observation is easily witnessed by the fact that if one of

�P x,�F x, x does not hold then ¬�∗ x is true.

Observation 1 Let φ := Ψ ∧�∗ Φ be an LTL�P ,�F ,�∗ formula. Then any clause C of Φ

containing ¬�∗ x and (at least) one of �P x, �F x or x for some variable x ∈ Vars(φ)

is tautological and can be removed from Φ (without changing the satisfiability of φ).
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Observe that the tautological clauses above are exactly the clauses that are satisfied

by every consistent assignment. It follows that once these clauses are removed from

the formula, it holds that for every clause C of φ there is a consistent assignment θ

such that C is not satisfied by θ .

Theorem 5 For every O ⊆ {�∗ ,�P ,�F } and C ∈ {horn, krom} the problem

DetectO(C) is in FPT.

Proof Let O ⊆ {�∗ ,�P ,�F }. We will reduce DetectO(horn) to the problem

VertexCover which is well-known to be fixed-parameter tractable (parameterized

by the solution size) and which can actually be solved very efficiently in time

O(1.2738k + kn) [6], where k is the size of the vertex cover and n the number of

vertices in the input graph. Recall that given an undirected graph G and an integer

k, VertexCover asks whether there is a subset C ⊆ V (G) of size at most k (which is

called a vertex cover of G) such that C ∩ e �= ∅ for every e ∈ E(G). Given an LTLO

formula φ := Ψ ∧ �∗ Φ, we will construct an undirected graph G such that φ has a

strong horn-backdoor of size at most k if and only if G has a vertex cover of size at

most k. The graph G has vertex set Vars(φ) and there is an edge between two vertices

x and y in G if and only if there is a clause that contains at least two literals from

{x, y}∪ { Ox, Oy | O ∈ O }. Note that if x = y, the graph G contains a self-loop. We

claim that a set X ⊆ Vars(φ) is a strong horn-backdoor if and only if X is a vertex

cover of G.

Towards showing the forward direction, let X ⊆ Vars(φ) be a strong horn-

backdoor set of φ. We claim that X is also a vertex cover of G. Suppose for a

contradiction that X is not a vertex cover of G, i.e., there is an edge {x, y} ∈ E(G) such

that X∩{x, y} = ∅. Because {x, y} ∈ E(G), we obtain that there is a clause C in Φ that

contains at least two literals from {x, y} ∪ { Ox, Oy | O ∈ O }. Moreover, because of

Observation 1 there is a consistent assignment θ : X∪{ Ox | x ∈ X∧O ∈ O} → {0, 1}

that falsifies all literals of C over variables in X . Consequently, φ[θ ] contains a sub-

clause of C that still contains at least two literals from {x, y} ∪ { Ox, Oy | O ∈ O }.

As a reason for this, φ[θ ] /∈ horn, contradicting our assumption that X is a strong

horn-backdoor set of φ.

Towards showing the reverse direction, let X ⊆ V (G) be a vertex cover of G. We

claim that X is also a strong horn-backdoor of φ. Suppose for a contradiction that this

is not the case, then there is an (consistent) assignment θ : X ∪ {Ox | x ∈ X ∧ O ∈

O} → {0, 1} and a clause C in φ[θ ] containing two positive literals say over variables

x and y. We obtain that C contains at least two positive literals from {x, y}∪{ Ox, Oy |

O ∈ O } and consequently G contains the edge {x, y}, contradicting our assumption

that X is a vertex cover of G.

Now we will reduce DetectO(krom) to the 3-HittingSet problem, which is well-

known to be fixed-parameter tractable (parameterized by the solution size) [1]. Recall

that given a universe U , a family F of subsets of U of size at most three, and an integer

k, 3-HittingSet asks whether there is a subset S ⊆ U of size at most k (which is called

a hitting set of F) such that S ∩ F �= ∅ for every F ∈ F . Given an LTLO formula

φ := Ψ ∧ �∗ Φ, we will construct a family F of subsets (of size at most three) of a

universe U such that φ has a strong krom-backdoor of size at most k if and only if F

has a hitting set of size at most k. The universe U is equal to Vars(φ) and F contains
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the set Vars(C) for every set C of exactly three literals contained in some clause of

Φ. We claim that a set X ⊆ Vars(φ) is a strong krom-backdoor if and only if X is a

hitting set of F .

Towards showing the forward direction, let X ⊆ Vars(φ) be a strong krom-

backdoor set of φ and suppose for a contradiction that there is a set F ∈ F such

that X ∩ F = ∅. It follows from the construction of F that Φ contains a clause C

containing at least three literals over the variables in F . Moreover, because of Obser-

vation 1 there is a consistent assignment θ : X ∪ { Ox | x ∈ X ∧ O ∈ O} → {0, 1}

that falsifies all literals of C over variables in X . Consequently, φ[θ ] contains a sub-

clause of C that still contains at least three literals over the variables in F . As a result,

φ[θ ] /∈ krom, contradicting our assumption that X is a strong krom-backdoor set of

φ.

Towards showing the reverse direction, let X ⊆ U be a hitting set of F and suppose

for contradiction that there is an (consistent) assignment θ : X ∪ {Ox | x ∈ X ∧ O ∈

O} → {0, 1} and a clause C in φ[θ ] containing at least three literals. Let C ′ be a set of

at exactly three literals from C . It follows from the construction of F , that F contains

the set Vars(C ′), however, Vars(C ′) ∩ X = ∅ contradicting our assumption that X is

a hitting set of G. ⊓⊔

Having shown that the detection problem is fixed-parameter tractable, we now

proceed to the backdoor set evaluation problem. We begin by investigating this problem

for the class horn and show that the problem lies in FPT.

5 Backdoor Set Evaluation

5.1 Formulas Using only the Always Operator

We showed in the previous section that strong backdoors can be found to the classes

horn and krom in FPT time. In fact, this result holds independently of the considered

temporal operators. In this section, we will consider the question of efficiently using a

backdoor set to decide the satisfiability of a formula in the case of formulas restricted to

the �∗ operator. We will show that this problem is in FPT for the class of horn formulas

but not for krom formulas. Our fixed-parameter tractability result for horn formulas

largely depends on the special semantics of formulas restricted to the �∗ operators.

Consequently, we will start by stating some properties of these formulas necessary to

obtain our tractability result.

Let M = (Z,<, V ) be a temporal interpretation. We denote by Vars(M) the set of

propositions (in the following referred to as variables) for which V is defined. For a

set of variables X ⊆ Vars(M), we denote by M|X the projection of M onto X , i.e.,

the temporal interpretation M|X = (Z,<, V|X ), where V|X is only defined for the

variables in X and V|X (x) = V (x) for every x ∈ X . For an integer z, we denote by

A(M, z) the assignment θ : Vars(M) → {0, 1} holding at world z in M, i.e., θ(v) = 1

if and only if z ∈ M(v) for every v ∈ Vars(M). Moreover, for a set of worlds Z ⊆ Z

we denote by A(M, Z) the set of all assignments occurring in some world in Z of

M, i.e., A(M, Z) := { A(M, z) | z ∈ Z }. We also set A(M) to be A(M, Z). For an
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Table 4 An example for the

notions G(A, V ) and G(A, V , θ)
A θ G(A, V )(�∗ vi ) G(A, V , θ)(vi )

α1 α2 α3 α4

v1 0 1 0 1 1 0 1

v2 1 1 1 1 0 1 0

v3 1 1 0 0 1 0 1

v4 1 1 1 1 0 1 0

assignment θ : X → {0, 1}, we denote by W(M, θ) the set of all worlds z ∈ Z of M

such that A(M, z) is equal to θ on all variables in X .

Let ϕ := Ψ ∧ �∗ Φ ∈ LTL�∗

cnf
. We denote by CNF(Φ) the propositional CNF

formula obtained from Φ after replacing each occurrence of �∗ x in Φ with the same

fresh propositional variable (with the same name). For instance, �∗ a ∧�∗ a is replaced

by �∗ a ∧�∗ a, where �∗ a is a fresh propositional variable. For a set of variables V and a

set of assignments A of the variables in V , we denote by G(A, V ) : { �∗ v | v ∈ V } →

{0, 1} the assignment defined by setting G(A, V )(�∗ v) = 1 if and only if α(v) = 1 for

every α ∈ A. Moreover, if θ : V → {0, 1} is an assignment of the variables in V , we

denote by G(A, V , θ) the assignment defined by setting G(A, V , θ)(v) = θ(v) and

G(A, V , θ)(�∗ v) = G(A, V )(�∗ v) for every v ∈ V . An example for these notions is

given in Table 4. For a set A of assignments over V and an assignment θ : V ′ → {0, 1}

with V ′ ⊆ V , we denote by A(θ) the set of all assignments α ∈ A such that α(v) =

θ(v) for every v ∈ V ′.

For a set A of assignments over some variables V and a subset V ′ ⊆ V , we denote

by A|V ′ the projection of A onto V ′, i.e., the set of assignments α ∈ A restricted to

the variables in V ′.

Intuitively the next lemma describes the translation of a temporal model into sepa-

rate satisfiability checks for propositional formulas.

Lemma 6 Let ϕ := Ψ ∧ �∗ Φ ∈ LTL�∗. Then, ϕ is satisfiable if and only if there is a

set A of assignments of the variables in ϕ and an assignment α0 ∈ A such that: α0

satisfies Ψ and for every assignment α ∈ A it holds that G(A, Vars(ϕ), α) satisfies

the propositional formula CNF(Φ).

Proof Towards showing the forward direction assume that ϕ := Ψ ∧�∗ Φ is satisfiable

and let M be a temporal interpretation witnessing this. It is easy to check from the

definition that the set of assignments A := A(M) together with the assignment α0 :=

A(M, 0) satisfy the conditions of the lemma.

Towards showing the reverse direction assume that A := {α0, . . . , α|A|−1} is as

given in the statement of the lemma. We claim that the temporal interpretation M

defined below satisfies the formula ϕ. Let Z<0 be the set of all integers smaller than

0 and let Z>|A| be the set of all integers greater than |A|. Then for every variable

v ∈ Vars(ϕ), the set M(v) contains the set { z | αz(v) = 1 ∧ 0 ≤ z ≤ |A| }. Moreover,

if α0(v) = 1, M(v) also contains the set Z<0 and if α|A|(v) = 1, M(v) additionally

contains the set Z>|A|. It is easy to verify that M, 0 |� ϕ. ⊓⊔
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Informally, the following lemma shows that for deciding the satisfiability of an

LTL�∗ formula, we only need to consider sets of assignments A, whose size is linear

(instead of exponential) in the number of variables.

Lemma 7 Let ϕ := Ψ ∧ �∗ Φ ∈ LTL�∗ and X ⊆ Vars(ϕ). Then ϕ is satisfiable if and

only if there is a set Θ of assignments of the variables in X, an assignment θ0 ∈ Θ ,

a set A of assignments of the variables in Vars(ϕ), and an assignment α0 ∈ A such

that:

(C1) the set Θ is equal to A|X ,

(C2) the assignment θ0 is equal to α0|X ,

(C3) A and α0 satisfy the conditions stated in Lemma 6, and

(C4) |A(θ)| ≤ |Vars(ϕ) \ X | + 1 for every θ ∈ Θ .

Proof Note that the reverse direction follows immediately from Lemma 6, because

the existence of the set of assignments A and the assignment α0 satisfying condition

(C3) imply the satisfiability of ϕ.

Towards showing the forward direction assume that ϕ is satisfiable. Because of

Lemma 6 there is a set A of assignments of the variables in ϕ and an assignment

α0 ∈ A that satisfy the conditions of Lemma 6. Let Θ be equal to A|X and θ0 be

equal to α0|X . Observe that setting Θ and θ0 in this way already satisfies (C1) to (C3).

We will show that there is a subset of A that still satisfies (C1)–(C3) and additionally

(C4). Towards showing this consider any subset A
′ of A that satisfies the following

three conditions: (1) α0 ∈ A
′, (2) for every θ ∈ Θ it holds that A

′(θ) �= ∅, and (3) for

every variable v of ϕ and every b ∈ {0, 1} it holds that there is an assignment α ∈ A

with α(v) = i if and only if there is an assignment α′ ∈ A
′ with α′(v) = i . Note that

conditions (1) and (2) ensure that A
′ satisfies (C1) and (C2) and condition (3) ensures

(C3). Accordingly, any subset A
′ satisfying conditions (1)–(3) still satisfies (C1)–(C3).

It remains to show how to obtain such a subset A
′ that additionally satisfies (C4). We

define A
′ as follows. Let A

′
0 be a subset of A containing α0 as well as one arbitrary

assignment α ∈ A(θ) for every θ ∈ Θ . Note that A
′
0 already satisfies conditions

(1) and (2) as well as condition (3) for every variable v ∈ X . Observe furthermore

that if there is a variable v of ϕ such that condition (3) is violated by A
′
0 then it is

sufficient to add at most one additional assignment to A
′
0 in order to satisfy condition

(3) for v. Let A
′ be obtained from A

′
0 by adding (at most |Vars(ϕ) \ X |) assignments

in order to ensure condition (3) for every variable v ∈ Vars(ϕ) \ X . Then A
′ satisfies

the conditions of the lemma. ⊓⊔

We are now ready to show the tractability of the evaluation of strong horn-backdoor

sets.

Theorem 8 Eval�
∗
(horn) is in FPT.

Proof Let ϕ := Ψ ∧ �∗ Φ ∈ LTL�∗ and let X ⊆ Vars(ϕ) be a strong horn-backdoor

of ϕ. The main idea of the algorithm is as follows: For every set Θ of assignments of

the variables in X and every θ0 ∈ Θ , we will construct a propositional horn-formula

FΘ,θ0 , which is satisfiable if and only if there is a set A of assignments of the variables

in Vars(ϕ) and an assignment α0 ∈ A satisfying the conditions of Lemma 7. It then
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follows from Lemma 7 that ϕ is satisfiable if and only if there is such a set Θ of

assignments and an assignment θ0 ∈ Θ for which FΘ,θ0 is satisfiable. Because there

are at most 22|X |
such sets Θ and at most 2|X | such assignments θ0 and for each of these

sets the formula FΘ,θ0 is a horn-formula, it follows that checking whether there are Θ

and θ0 such that the formula FΘ,θ0 is satisfied (and as a result decide the satisfiability

of ϕ) can be done in time O(22|X |
· 2|X | · |FΘ,θ0 |). Since we will show below that

the length of the formula FΘ,θ0 can be bounded by an (exponential) function of |X |

times a polynomial in the input size, i.e., the length of the formula ϕ, this implies that

Eval�
∗
(horn) is in FPT.

The remainder of the proof is devoted to the construction of the formula FΘ,θ0 for a

fixed set of assignments Θ and a fixed assignment θ0 ∈ Θ (and to show that it enforces

the conditions of Lemma 7).

Let R := Vars(ϕ)\X and r := |R|+1. For a propositional formula F , a subset V ⊆

Vars(F), an integer i and a label s, we denote by copy(F, V , i, s) the propositional

formula obtained from F after replacing each occurrence of a variable v ∈ V with a

novel variable vi
s . We need the following auxiliary formulas. For every θ ∈ Θ \ {θ0},

let Fθ
Θ,θ0

be the formula (where the notation Φ[G(Θ, X , θ)] refers to the formula

that is obtained after applying the assignment G(Θ, X , θ) in the usual sense, that is,

removing satisfied clauses and deleting falsified literals):

∧

1≤i≤r

copy(CNF(Φ[G(Θ, X , θ)]), R, i, θ).

Moreover, let F
θ0

Θ,θ0
be the formula:

copy(Ψ [θ0] ∧ CNF(Φ[G(Θ, X , θ0)]), R, 1, θ0) ∧
∧

2≤i≤r

copy(CNF(Φ[G(Θ, X , θ0)]), R, i, θ0).

Observe that because X is a strong horn-backdoor set (and the formula Ψ only

consists of unit clauses), it holds that the formula Fθ
Θ,θ0

is horn for every θ ∈ Θ .

We also need the propositional formula Fcons that enforces the consistency between

the propositional variables �∗ x and the variables in { x i
θ | θ ∈ Θ ∧ 1 ≤ i ≤ r } for

every x ∈ Vars(ϕ) \ X . The formula Fcons consists of the following clauses: for every

θ ∈ Θ , i with 1 ≤ i ≤ r , and v ∈ R, the clause �∗ v → vi
θ = ¬�∗ v ∨ vi

θ and for every

v ∈ R the clause

¬�∗ v →
∨

θ∈Θ∧1≤i≤r

¬vi
θ = �∗ v ∨

∨

θ∈Θ∧1≤i≤r

¬vi
θ .

Observe that Fcons is a horn formula.

Finally the formula FΘ,θ0 is defined as:
∧

θ∈Θ Fθ
Θ,θ0

∧ Fcons.
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Note that FΘ,θ0 is horn and the length of FΘ,θ0 is at most

|FΘ,θ0 | ≤
∑

θ∈Θ

|Fθ
Θ,θ0

| + |Fcons|

≤ 2|X |(|Vars(ϕ) \ X | + 1)(|Φ| + |Ψ |) + 2 · 2|X | · (|Vars(ϕ) \ X | + 1)2

and consequently bounded by a function of |X | times a polynomial in the input size. It

is now relatively straightforward to verify that FΘ,θ is satisfiable if and only if there is

a set A of assignments of the variables in Vars(ϕ) and an assignment α0 ∈ A satisfying

the conditions of Lemma 7. Informally, for every θ ∈ Θ , each of the r copies of the

formula CNF(Φ[G(Θ, X , θ)]) represent one of the at most r assignments in A(θ),

the formula F
θ0

Θ,θ0
ensures (among other things) that the assignment chosen for α0

satisfies Ψ and the formula Fcons ensures that the “global assignments” represented

by the propositional variables �∗ x are consistent with the set of local assignments in A

represented by the variables in { x i
θ | θ ∈ Θ ∧ 1 ≤ i ≤ r } for every x ∈ Vars(ϕ) \ X .

⊓⊔

Surprisingly, the next result will show that krom formulas turn out to be quite

challenging. Backdoor set evaluation of this class of formulas is proved to be paraNP-

complete which witnesses an intractability degree in the parameterized sense.

Theorem 9 Eval�
∗
(krom) is paraNP-complete (theNP-completeness already holds for

backdoor sets of size two).

Proof The membership in paraNP follows because the satisfiability of LTL�∗

cnf
can be

decided in NP [2, Table 1].

We show paraNP-hardness of Eval�
∗
(krom) by giving a polynomial time reduction

from the NP-hard problem 3COL to Eval�
∗
(krom) for backdoors of size two. In 3COL

one asks whether a given input graph G = (V , E) has a coloring f : V (G) → {1, 2, 3}

of its vertices with at most three colors such that f (v) �= f (u) for every edge {u, v}

of G. Given such a graph G = (V , E), we will construct an LTL�∗

cnf
formula φ :=

Ψ ∧ �∗ Φ, which has a strong krom-backdoor B of size two, such that the graph G

has a 3-coloring if and only if φ is satisfiable.

For the remainder we will assume that there exists an arbitrary but fixed ordering of

the vertices V (G) = {v1, . . . , vn}. Further for the construction we assume w.l.o.g. that

any undirected edge e = {vi , v j } ∈ E follows this ordering, i.e., i < j . The formula

φ contains the following variables:

(V1) The variables b1 and b2. These variables make up the backdoor set B, i.e.,

B := {b1, b2}.

(V2) For every i with 1 ≤ i ≤ n, the variable vi .

(V3) For every e = {vi , v j } ∈ E(G) with 1 ≤ i, j ≤ n the variables e
b1b2

i, j , e
b̄1b2

i, j , and

e
b1b̄2

i, j .

We set Ψ to be the empty formula and the formula Φ contains the following clauses:

(C1) For every i with 1 ≤ i ≤ n, the clause ¬�∗ vi . Informally, this clause ensures

that vi has to be false at least at one world, which will later be used to assign a

color to the vertex vi of G. Observe that the clause is krom.
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Table 5 Given a graph G = ({v1, v2, v3}, {{v1, v2}, {v1, v3}, {v2, v3}}) together with a 3-coloring f (vi ) =

i for 1 ≤ i ≤ 3, leads to the depicted temporal interpretation M satisfying M |� φ given as a table

b1 b2 v1 v2 v3 e
b1b2
1,2 e

b̄1b2
1,2 e

b1b̄2
1,2 e

b1b2
1,3 e

b̄1b2
1,3 e

b1b̄2
1,3 e

b1b2
2,3 e

b̄1b2
2,3 e

b1b̄2
2,3

1 0 0 0 1 1 1 0 ∗ 1 ∗ 0 ∗ 1 0

2 1 0 1 0 1 1 0 ∗ 1 ∗ 0 ∗ 1 0

3 0 1 1 1 0 1 0 ∗ 1 ∗ 0 ∗ 1 0

Each row of the table corresponds to a world as indicated by the first column of the table. Each column

represents the assignments of a variable as indicated in the first row. A “∗” indicates that the assignment is

not fixed, i.e., the assignment does not influence whether M |� φ

(C2) For every e = {vi , v j } ∈ E(G) with 1 ≤ i, j ≤ n, the clauses vi ∨ �∗ e
b1b2

i, j ∨

b1 ∨b2, vi ∨�∗ e
b̄1b2

i, j ∨¬b1 ∨b2, and vi ∨�∗ e
b1b̄2

i, j ∨b1 ∨¬b2 as well as the clauses

v j ∨¬�∗ e
b1b2

i, j ∨b1∨b2, v j ∨¬�∗ e
b̄1b2

i, j ∨¬b1∨b2, and v j ∨¬�∗ e
b1b̄2

i, j ∨b1∨¬b2.

Observe that all of these clauses are krom after deleting the variables in B.

(C3) The clause ¬b1 ∨¬b2. Informally, this clause excludes the color represented by

setting b1 and b2 to true. Observe that the clause is krom.

It follows from the definition of φ that φ[θ ] ∈ LTL�∗

krom
for every assignment θ of

the variables in B. As a consequence, B is a strong krom-backdoor of size two of φ

as required. Moreover, since φ can be constructed in polynomial time, it only remains

to show that G has a 3-coloring if and only if φ is satisfiable.

Towards showing the forward direction assume that G has a 3-coloring and let

f : V (G) → {1, 2, 3} be such a 3-coloring for G. We will show that φ is satisfiable

by constructing a temporal interpretation M such that M |� φ. The interpretation M

is defined as follows:

– For every i with 1 ≤ i ≤ n, we set M(vi ) = Z \ { f (vi )}.

– We set M(b1) = {2} and M(b2) = {3}.

– For every e = {vi , v j } ∈ E(G):

– if f (vi ) = 1 set M(e
b1b2

i, j ) = Z, else set M(e
b1b2

i, j ) = ∅.

– if f (vi ) = 2 set M(e
b̄1b2

i, j ) = Z, else set M(e
b̄1b2

i, j ) = ∅.

– if f (vi ) = 3 set M(e
b1b̄2

i, j ) = Z, else set M(e
b1b̄2

i, j ) = ∅.

An example for such a temporal interpretation resulting for a simple graph is illus-

trated in Table 5. Towards showing that M |� φ, we consider the different types of

clauses given in (C1)–(C3).

– The clauses in (C1) hold because M, f (vi ) �|� vi for every i with 1 ≤ i ≤ n.

– For every e = {vi , v j } ∈ E(G), we have to show that the clauses given in (C2)

are satisfied for every world. Because f is a 3-coloring of G, we obtain that

f (vi ) �= f (v j ). W.l.o.g. we assume in the following that f (vi ) = 1 and f (v j ) = 2.

We first consider the clauses given in (C2) containing vi . Because M(vi ) = Z\{1},

it only remains to consider the world 1. In this world b1 and b2 are false. It follows

that all clauses containing either ¬b1 or ¬b2 are satisfied in this world. As a reason
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for this, it only remains to consider clauses of the form vi ∨�∗ e
b1b2

i, j ∨ b1 ∨ b2. But

these are satisfied because f (vi ) = 1 implies that M(e
b1b2

i, j ) = Z.

Consider now the clauses given in (C2) that contain v j . Using the same argumen-

tation as used above for vi , we obtain that we only need to consider world 2 and

moreover we only need to consider clauses of the form v j ∨¬�∗ e
b̄1b2

i, j ∨¬b1 ∨ b2.

Because f (vi ) = 1, we obtain that M(e
b̄1b2

i, j ) = ∅, which implies that these clauses

are also satisfied.

– The clause ¬b1 ∨ ¬b2 is trivially satisfied, because there is no world in which b1

and b2 hold simultaneously.

Towards showing the reverse direction assume that φ is satisfiable and let M be a

temporal interpretation witnessing this. First note that because of the clauses added

by C1, it holds that M(vi ) �= Z for every i with 1 ≤ i ≤ n. Let w : V (G) → Z be

defined such that for every i with 1 ≤ i ≤ n, w(vi ) is an arbitrary world in Z \M(vi ).

We define f : V (G) → {1, 2, 3} by setting:

– f (vi ) = 1 if M, w(vi ) �|� b1 ∨ b2,

– f (vi ) = 2 if M, w(vi ) �|� ¬b1 ∨ b2, and

– f (vi ) = 3 if M, w(vi ) �|� b1 ∨ ¬b2.

Note that because of the clause added by (C3), f assigns exactly one color to

every vertex vi of G. We claim that f is a 3-coloring of G. To show this it suffices

to show that for every e = {vi , v j } ∈ E(G), it holds that f (vi ) �= f (v j ). Assume

for a contradiction that this is not the case, i.e., there is an edge e = {vi , v j } ∈ E(G)

such that f (vi ) = f (v j ). W.l.o.g. assume furthermore that f (vi ) = f (v j ) = 1.

Consider the clause vi ∨ �∗ e
b1b2

i, j ∨ b1 ∨ b2 (which was added by C2). Then, because

of the definition of w and f , we obtain that M, w(vi ) �|� vi ∨ b1 ∨ b2. It follows

that M, w(vi ) |� �∗ e
b1b2

i, j . Consider now the clause v j ∨ ¬�∗ e
b1b2

i, j ∨ b1 ∨ b2 (which

was added by C2). Then, again because of the choice of w and f , we obtain that

M, w(v j ) �|� v j ∨ b1 ∨ b2. As a consequence, M, w(v j ) |� ¬�∗ e
b1b2

i, j contradicting

M, w(vi ) |� �∗ e
b1b2

i, j . This completes the proof of the theorem. ⊓⊔

5.2 Globally in the Past and Globally in the Future

Now we turn to a more flexible fragment where we can talk about the past as well

as about the future and show it is possible to encode NP-complete problems into the

horn-fragment yielding a paraNP lower bound.

Theorem 10 Eval�F ,�P (horn) is paraNP-complete (the NP-completeness already

holds for backdoor sets of size four).

Proof The membership in paraNP follows as the satisfiability of LTL
�F ,�P

cnf
can be

decided in NP [2, Table 1].

We show paraNP-hardness of Eval�F ,�P (horn) by describing a polynomial time

reduction again from 3COL to Eval�F ,�P (horn) for backdoors of size four. Recall

that in 3COL one asks whether a given input graph G = (V , E) has a coloring
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f : V (G) → {1, 2, 3} of its vertices with at most three colors such that f (v) �= f (u)

for every edge {u, v} of G. Given such a graph G = (V , E), we will construct an

LTL
�F ,�P

cnf
formula φ := Ψ ∧�∗ Φ, which has a strong horn-backdoor B of size four,

such that the graph G has a 3-coloring if and only if φ is satisfiable.

For the remainder we will assume that V (G) = {v1, . . . , vn} and E(G) =

{e1, . . . , em}. The formula φ contains the following variables:

(V1) The variables c1, c2, c3, p′
n . These variables make up the backdoor set B, i.e.,

B := {c1, c2, c3, p′
n}.

(V2) The variable s, which indicates the starting world.

(V3) For every i with 1 ≤ i ≤ n, three variables v1
i , v2

i , v3
i .

(V4) For every i with 1 ≤ i ≤ n the variable pi .

We set Ψ to be the formula s and the formula Φ contains the following clauses:

(C1) The clauses c1 ∨ c2 ∨ c3, ¬c1 ∨ ¬c2 ∨ ¬c3, c1 ∨ ¬c2 ∨ ¬c3, ¬c1 ∨ ¬c2 ∨ c3,

and ¬c1 ∨c2 ∨¬c3. Informally, these clauses ensure that in every world it holds

that exactly one of the variables c1, c2, c3 is true. Note that c1 ∨ c2 ∨ c3 is not

horn, however, all of its variables are contained in the backdoor set B.

(C2) For every i and c with 1 ≤ i ≤ n and 1 ≤ c ≤ 3, the clauses vc
i → �Fvc

i

and vc
i → �Pvc

i ; note that vc
i → �Fvc

i corresponds to the clause ¬vc
i ∨ �Fvc

i .

Informally, these clauses ensure that the variable vc
i either holds in every world

or in no world for every i and c as above. Observe that both of these clauses are

horn.

(C3) Informally, the following set of clauses ensures together that for every i with

1 ≤ i ≤ n, it holds that pi is true in every world apart from the i-th world (where

pi is false). Here, the first world is assumed to be the starting world.

(C3-1) The clauses s → ¬p1, s → �F p1, and s → �P p1. Informally, these ensure

that p1 is only false in the starting world (and otherwise true).

(C3-2) The clause pi ∧ �F pi → �F pi+1 for every i with 1 ≤ i < n. Informally,

these clauses (together with the clauses from C3-1) ensure that for every i

with 2 ≤ i ≤ n, it holds that pi is true in every world after the i-th world.

(C3-3) The clause ¬pi → ¬�F pi+1 for every i with 1 ≤ i < n. Informally, these

clauses (together with the clauses from C3-1 and C3-2) ensure that for every

i with 2 ≤ i ≤ n, it holds that pi is false at the i-th world. Observe that the

clauses from C3-1 to C3-3 already ensure that ¬pi ∧ �F pi holds if and only

if we are at the i-th world of the model for every i with 1 ≤ i ≤ n.

(C3-4) The clauses ¬pn ∧ �F pn → p′
n and ¬pn ∧ �F pn ← p′

n = ¬pn ∧ �F pn ∨

¬p′
n = (¬pn ∨ ¬p′

n) ∧ (�F pn ∨ ¬p′
n). Informally, these clauses (together

with the clauses from C3-1 to C3-3) ensure that p′
n only holds in the n-th

world of the model. Observe that all these clauses are horn after removing

the backdoor set variable p′
n .

(C3-5) The clause p′
n → �P pn . Informally, this clause (together with the clauses

from C3-1 to C3-4) ensures that pn is only false in the n-th world of the model.

(C3-6) The clause pi ∧ �P pi → �P pi−1 for every i with 2 ≤ i ≤ n. Informally,

these clauses (together with the clauses from C3-1 to C3-5) ensure that pi is

true before the i-th world for every i with 2 ≤ i < n.
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v1

1

v2

2

v3

3

sc1c2c3p′

n
v1

1
v2

1
v3

1
v1

2
v2

2
v3

2
v1

3
v2

3
v3

3
p1p2p3

< 1 0 ∗ ∗ ∗ 0 1 0 0 0 1 0 0 0 1 1 1 1

1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1

2 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 1

3 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0

> 3 0 ∗ ∗ ∗ 0 1 0 0 0 1 0 0 0 1 1 1 1

Fig. 1 Left: A graph G with vertices v1, v2, and v3 together with a 3-coloring given by the numbers above

and below respectively of every vertex. Right: A temporal interpretation M that corresponds to the given

3-coloring of G and satisfies M |� φ given as a table. Each row of the table corresponds to a world (or a

set of worlds) as indicated by the first column of the table. Each column represents the assignments of a

variable as indicated in the first row. A “∗” indicates that the assignment is not fixed, i.e., the assignment

does not influence whether M |� φ

Observe that all of the above clauses are horn or become horn after removing

all variables from B. Note furthermore that all the above clauses ensure that

�P pi ∧�F pi holds if and only if we are at the i-th world of the model for every

i with 1 ≤ i ≤ n.

(C4) For every i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ 3 the clauses �F pi ∧ �P pi ∧

v
j
i → c j and �F pi ∧ �P pi ∧ c j → v

j
i . Informally, these clauses ensure that

in the i-th world for every 1 ≤ i ≤ n, the variables c1, c2, c3 are a copy of the

variables v1
i , v2

i , v3
i . Observe that all of these clauses are horn.

(C5) For every edge e = {vi , v j } ∈ E(G) and every c with 1 ≤ c ≤ 3, the clause

¬vc
i ∨ ¬vc

j . Informally, these clauses ensure that the 3-partition (of the vertices

of G) given by the (global) values of the variables v1
1 , v2

1 , v3
1 , . . . , v1

n , v2
n , v3

n is

a valid 3-coloring for G. Observe that all of these clauses are horn.

It follows from the definition of φ that φ[θ ] ∈ LTL
�F ,�P

horn
for every assignment θ

of the variables in B. Consequently, B is a strong horn-backdoor of size four of φ as

required. Moreover, since φ can be constructed in polynomial time, it only remains to

show that G has a 3-coloring if and only if φ is satisfiable.

Towards showing the forward direction assume that G has a 3-coloring and let

f : V (G) → {1, 2, 3} be such a 3-coloring for G. We will show that φ is satisfiable by

constructing a temporal interpretation M such that M |� φ. M is defined as follows:

– For every j with 1 ≤ j ≤ 3, we set M(c j ) = { i | f (vi ) = j }.

– We set M(p′
n) = {n}.

– For every i and c with 1 ≤ i ≤ n and 1 ≤ c ≤ 3, we set M(vc
i ) = Z if c = f (vi )

and otherwise we set M(vc
i ) = ∅.

– For every i with 1 ≤ i ≤ n, we set M(pi ) = Z \ {i}.

An example for such a temporal interpretation resulting for a simple graph is illus-

trated in Figure 1. It is straightforward (but a little tedious) to verify that M |� φ by

considering all the clauses of φ.

Towards showing the reverse direction assume that φ is satisfiable and let M be a

temporal interpretation witnessing this. We will start by showing the following series

of claims for M.
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(M1) For every a ∈ Z exactly one of M, a |� c1, M, a |� c2, and M, a |� c3 holds.

(M2) For every i , c, a, and a′ with 1 ≤ i ≤ n, 1 ≤ c ≤ 3, and a, a′ ∈ Z, it holds that

M, a |� vc
i if and only if M, a′ |� vc

i .

(M3) For every i with 1 ≤ i ≤ n and every a ∈ Z, it holds that M, a |� pi if and

only if a �= i .

(M4) For every i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ 3, it holds that M, i |� c j if

and only if M, i |� v
j

i .

(M1) holds because of the clauses added by (C1). Towards showing (M2) consider

the clauses added by (C2) and assume for a contradiction that there are i , c, a, and

a′ as in the statement of (M2) such that w.l.o.g. M, a |� vc
i but M, a′ �|� vc

i . Then,

a �= a′. If a < a′, then we obtain a contradiction because of the clause vc
i → �Fvc

i

and if on the other hand a′ < a, we obtain a contradiction to the clause vc
i → �Pvc

i .

This completes the proof of (M2). Considering the explanations for the clauses the

proof of (M3) is now reasonably straightforward, however, for completeness we now

provide a detailed proof. We will show (M3) with the help of the following series of

claims.

(M3-1) For every a ∈ Z it holds that M, a |� p1 if and only if a �= 1 (here we assume

that 1 is the starting world).

(M3-2) For every i and a with 1 ≤ i ≤ n, a ∈ Z, and a > i , it holds that M, a |� pi .

(M3-3) For every i with 1 ≤ i ≤ n, it holds that M, i �|� pi .

(M3-4) For every a ∈ Z, it holds that M, a |� p′
n if and only if a = n.

(M3-5) For every a ∈ Z, it holds that M, a �|� pn if and only if a = n.

Because of the clause s → ¬p1 (added by C3-1) and the fact that s ∈ Ψ , we obtain

that M, 1 �|� p1. Moreover, because of the clauses s → �F p1 and s → �P p1, we

obtain that M, a |� p1 for every a �= 1. This completes the proof for (M3-1).

We show (M3-2) via induction on i . The claim clearly holds for i = 1 because

of (M3-1). Now assume that the claim holds for pi−1 and we want to show it for

pi . Because of the induction hypothesis, we obtain that M, i |� pi−1 ∧ �F pi−1.

Moreover, because φ contains the clause pi−1 ∧�F pi−1 → �F pi (which was added

by (C3-2)), we obtain that M, i |� �F pi . This completes the proof of (M3-2).

We show (M3-3) via induction on i . The claim clearly holds for i = 1 because

of (M3-1). Now assume that the claim holds for pi−1 and we want to show it for pi .

Because of the induction hypothesis, we obtain that M, (i −1) �|� pi−1. Furthermore,

because of (M3-2), we know that M, i |� �F pi . Since φ contains the clause ¬pi−1 →

¬�F pi (which was added by (C3-3)), we obtain M, (i −1) |� ¬�F pi , which because

M, i |� �F pi can only hold if M, i �|� pi . This completes the proof of (M3-3).

Towards showing (M3-4), first note that because of (M3-2) and (M3-3), we have that

M, a |� ¬pn ∧�F pn if and only if a = n. Then, because of the clauses (added by C3-

4) ensuring that ¬pn ∧�F pn ↔ p′
n , the same applies to p′

n (instead of ¬pn ∧�F pn).

This completes the proof of (M3-4).

It follows from (M3-2) and (M3-3) that (M3-5) holds for every a ∈ Z with a ≥ n.

Moreover, because of (M3-4), we have that M, n |� p′
i . Because of the clause p′

n →

�P pn (which was added by (C3-5)), we obtain M, a |� pn for every a < n. This

completes the proof of (M3-5).
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We are now ready to prove (M3). It follows from (M3-2) and (M3-3) that (M3) holds

for every i and a with a ≥ i . Furthermore, we obtain from (M3-5) that (M3) already

holds if i = n. We complete the proof of (M3) via an induction on i starting from

i = n. Because of the induction hypothesis, we obtain that M, i+1 |� pi+1∧�P pi+1.

Accordingly, because of the clause pi+1 ∧ �P pi+1 → �P pi (added by (C3-6)), we

obtain that M, i + 1 |� �P pi , which completes the proof of (M3).

Towards showing (M4) first note that it follows from (M3) that M, i |� �F pi ∧

�P pi . Now suppose that there are i and j such that either M, i |� c j but M, i �|� v
j
i or

M, i �|� c j butM, i |� v
j
i . In the former case, consider the clause�F pi∧�P pi∧c j →

v
j

i (which was added by (C4)). Since M, i |� �F pi ∧�P pi , we obtain that M, i |� v
j

i ;

a contradiction. In the later case, consider the clause �F pi ∧�P pi ∧v
j
i → c j (which

was added by (C4)). Since M, i |� �F pi ∧ �P pi , we obtain that M, i |� c j ; again a

contradiction. This completes the proof of the claims (M1)–(M4).

It follows from (M1) and (M4) that for every i and a with 1 ≤ i ≤ n and a ∈ Z

there is exactly one c with 1 ≤ c ≤ 3, such that M, a |� vc
i . Moreover, because of

(M2) the choice of c is independent of a. Accordingly, the coloring f that assigns the

unique color c to every vertex vi such that M, a |� vc
i forms a partition of the vertex

set of G. Also f is a valid 3-coloring because for every {vi , v j } ∈ E(G) it holds that

M, a �|� ¬vc
i ∨ ¬vc

j for every a ∈ Z (using the clause added by C5) and hence vi and

v j must be assigned distinct colors by f . ⊓⊔

Corollary 11 Let O ∈ {�F,�P} then EvalO(krom) is paraNP-complete (the NP-

completeness already holds for backdoor sets of size zero).

Proof Satisfiability of LTLO
krom

is NP-hard [2, Theorem 5]. ⊓⊔

6 Conclusion and Discussion

We lift the well-known concept of backdoor sets from propositional logic up to the

clausal fragment of linear temporal logic LTL. From the investigated cases we obtain

a comprehensive picture of the parameterized complexity for the problem of backdoor

set evaluation. The evaluation parameterized by the size of the backdoor into krom for-

mulas becomes in all cases paraNP-complete and as a result is unlikely to be solvable

in FPTwhereas the case of backdoor evaluation into the fragment horn behaves differ-

ently. While allowing only �∗ makes the problem fixed-parameter tractable, allowing

both, �F and �P, makes it paraNP-complete. The last open case, i.e., the restriction to

either �F or �P is open for further research and might yield an FPT result. We want to

note here that all of our results still hold if LTL is evaluated over the natural numbers

instead of the integers.

Satisfiability of LTL�∗

cnf
is NP-complete, for horn/krom it is in P/NL [2]. With the

help of our backdoor notion, we achieved for a horn-backdoor an FPT membership.

However, for krom this surprisingly was not possible (paraNP-c., Theorem 9). For

the “full global” fragment only for horn satisfiability is in P and for krom it is NP-

complete [2]. Here in both cases, our notion of backdoors was not fruitful. This is,

however, natural since applying the backdoor approach to a novel problem is never a
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simple nor straightforward task. We see our work as a first attempt to come up with such

a notion for LTL, and, given the notorious difficulty of the LTL-satisfiability problem,

we believe our tractability result for LTL formulas restricted to the always operator

that are almost horn is an encouraging result that justifies further investigation of

this approach. As mentioned earlier, LTL restricted to the always operator, is already

pretty interesting, since it allows one to express “Safety” properties of a system (e.g.,

�∗ (¬x), where x encodes something bad to happen). Also, see the work of Kupferman

and Vardi on this topic [24]. Moreover, our intractability results for the remaining

fragments of LTL indicate that a different notion of “closeness” is required to obtain

tractability results for these fragments.
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