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Abstract

We address the issue of modelling and forecasting macroeconomic variables using
rich datasets by adopting the class of Vector Autoregressive Moving Average (VARMA)
models. We overcome the estimation issue that arises with this class of models by im-
plementing an iterative ordinary least squares (IOLS) estimator. We establish the con-
sistency and asymptotic distribution of the estimator for weak and strong VARMA(p,q)
models. Monte Carlo results show that IOLS is consistent and feasible for large systems,
outperforming the MLE and other linear regression based efficient estimators under al-
ternative scenarios. Our empirical application shows that VARMA models are feasible
alternatives when forecasting with many predictors. We show that VARMA models
outperform the AR(1), ARMA(1,1), Bayesian VAR, and factor models, considering dif-
ferent model dimensions.
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1 Introduction

The use of large arrays of economic indicators to forecast key macroeconomic variables

has become very popular recently. Economic agents consider a wide range of information

when they construct their expectations about the behaviour of macroeconomic variables

such as interest rates, industrial production, and inflation. In the past several years, this

information has become more widely available through a large number of indicators that

aim to describe different sectors and fundamentals from the whole economy. To improve

forecast accuracy, large sized datasets that attempt to replicate the set of information used

by agents to make their decisions are incorporated into econometric models.

For the past twenty years, macroeconomic variables have been forecasted using vector

autoregression (VAR) models. This type of model performs well when the number of vari-

ables in the system is relatively small. When the number of variables increases, however,

the performance of VAR forecasts deteriorates very fast, generating the so-called “curse of

dimensionality”. In this paper, we propose the use of vector autoregressive moving average

(VARMA) models, estimated with the iterative ordinary least squares (IOLS) estimator,

as a feasible method to address the “curse of dimensionality” on medium and large sized

datasets and improve forecast accuracy of macroeconomic variables. To the best of our

knowledge, the VARMA methodology has never been applied to medium and large sized

datasets, as we do in this paper.

VARMA models have been studied for the past thirty years, but they have never been

as popular as VAR models because of estimation and specification issues. Despite having

attractive theoretical properties, estimation of VARMA models remains a challenge. Linear

estimators (Hannan and Rissanen (1982), Hannan and Kavalieris (1984), Dufour and Jouini

(2014), among others) and Bayesian methods (Chan, Eisenstat, and Koop (2016)) have

been proposed in the literature as a way to overcome the numerical difficulties posed by

the efficient maximum-likelihood estimator. We address the estimation issue and hence

contribute to this literature by proposing the use of the IOLS estimator that is feasible for

high-dimensional VARMA models.

Other methodologies have been proposed in the literature to deal with the “curse of

dimensionality”. We can divide them mainly in two groups of models. The first aims

to overcome the dimensionality issue by imposing restrictions on the parameter matrices

of a standard VAR model. Among the many important contributions from this field, we
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point out the following classes of models: Bayesian VAR (BVAR) (De Mol, Giannone, and

Reichlin (2008) and Bańbura, Giannone, and Reichlin (2010)); Ridge (De Mol, Giannone,

and Reichlin (2008)); reduced rank VAR (Carriero, Kapetanios, and Marcellino (2011));

and Lasso (De Mol, Giannone, and Reichlin (2008) and Tibshirani (1996)). The second

group of models dealing with the “curse of dimensionality” reduces the dimension of the

dataset by constructing summary proxies from the large dataset. Chief among these models

is the class of factor models. The seminal works in this area are Forni, Hallin, Lippi, and

Reichlin (2000) and Stock and Watson (2002a,b). Common factor models improve forecast

accuracy and produce theoretically well-behaved impulse response functions, as reported

by De Mol, Giannone, and Reichlin (2008) and Bernanke, Boivin, and Eliasz (2005).

VARMA models are able to capture two important features from these two groups of

models. The first is the reduction of the model dimensionality, achieved by setting some

elements of the parameter matrices to zero following uniqueness requirements. This pro-

duces parameter matrices which are not full rank, resembling the reduced rank VAR model

of Carriero, Kapetanios, and Marcellino (2011). Furthermore, VARMA models parsimo-

niously account for sample correlation profiles of different shapes than the geometrically

declining sinusoids associated with the VAR models. The second is the relationship be-

tween VARMA models and factor representations of a vector stochastic process. If the

latent common factors follow either a finite VAR or VARMA processes, then the observed

series will have a VARMA representation (Dufour and Stevanović (2013)). This fact rein-

forces the use of VARMA models as a suitable framework to forecast key macroeconomic

variables using potentially many predictors. Additionally, VARMA models are closed under

linear transformation and marginalization (see Lütkepohl (2007, Section 11.6.1)), providing

additional flexibility and potentially better forecast performance.

With regard to the theory, we establish the consistency and asymptotic distribution

of the IOLS estimator for the weak and strong VARMA(p,q) models. Strong VARMA

models have innovations that are independently identically distributed (i.i.d.), while the

disturbances of the weak VARMA models are only uncorrelated. Our asymptotic results

are obtained under mild assumptions using the asymptotic contraction mapping framework

of Dominitz and Sherman (2005). We conduct an extensive Monte Carlo study, considering

different system dimensions, sample sizes, weak and strong innovations, eigenvalues associ-

ated with the parameter matrices, and Kronecker indices specifications. We show that the
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IOLS estimator has a good finite sample performance when compared to alternative esti-

mators, such as the efficient maximum-likelihood (MLE) estimator, and important linear

competitors. Specifically, the IOLS estimator performs well in a variety of scenarios such as

small sample size; the eigenvalues associated with the parameter matrices are near-to-zero;

and high-dimensional systems.

In the empirical part of the paper, we focus on forecasting three key macroeconomic

variables: industrial production, interest rate, and CPI inflation using potentially large sized

datasets. As in Carriero, Kapetanios, and Marcellino (2011), we use the 52 US macroeco-

nomic variables taken from the dataset provided by Stock and Watson (2006) to construct

systems with five different dimensions: 3, 10, 20, 40, and 52 variables. By doing that, we

are able to evaluate the tradeoff between forecast gains by incorporating more information

(large sized datasets) and the estimation cost associated with it. Additionally, the differ-

ent system dimensions play the role of robustness check. We show that VARMA models

are strong competitors and produce more accurate forecasts than the benchmark models

(AR(1), ARMA(1,1), BVAR, and factor models) in different occasions. This conclusion

holds for different system sizes and horizons.

The paper is structured as follows. In Section 2, we discuss the properties and identi-

fication of VARMA models and derive the IOLS estimator. In Section 3, we establish the

consistency and asymptotic distribution of the IOLS estimator considering the general weak

and strong VARMA(p,q) models. In Section 4, we address the consistency and efficiency

of VARMA models estimated with the IOLS procedure through a Monte Carlo study. In

Section 5, we display the results of our empirical application. The proofs and tables are

relegated to an Appendix. An online Supplement presents proofs for the auxiliary Lemmas,

the entire set of tables with results for the Monte Carlo and the empirical studies, and

further discussion on selected topics.

2 VARMA Models, Identification, and Estimation Proce-

dures

Our interest lies in modelling and forecasting key elements of the K-dimensional vector

process Yt = (y1,t, y2,t, ..., yK,t)
′, where K is allowed to be large. We assume, as a baseline
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model, a general nonstandard VARMA(p,q) model where the means have been removed,1

A0Yt = A1Yt−1 +A2Yt−2 + ...+ApYt−p +M0Ut +M1Ut−1 + ...+MqUt−q, (1)

where the disturbances Ut = (u1,t, u2,t, ..., uK,t)
′ are assumed to be a zero-mean sequence

of uncorrelated random variables (weak white noise process) with a nonsingular (K ×K)

covariance matrix Σu, and Y has dimension (K × 1). Our baseline model is assumed to be

stable and invertible.2

2.1 Identification and Uniqueness

The issue of identifying unique parameterizations of VARMA models has been an important

topic of study in econometrics and statistics (Hannan (1969, 1976), Akaike (1974, 1976),

Hannan and Kavalieris (1984), Hannan and Deistler (1988), among others). This follows

because nonstandard VARMA models require restrictions on the parameter matrices to

ensure that the model is uniquely identified. To formally define uniqueness of a VARMA

representation, define the lag polynomials A(L) = A0 − A1L − A2L
2 − ... − ApL

p and

M(L) = M0+M1L+M2L
2+...+MqL

q, where L is the usual lag operator. More specifically,

we say that a model is unique if there is only one pair of stable and invertible polynomials

A (L) and M (L), respectively, which satisfies the canonical MA representation

Yt = A (L)−1M (L) = Θ (L)Ut =
∞∑

i=0

ΘiUt−i, (2)

for a given Θ (L) operator. In contrast to the reduced form VAR models, setting A0 =

M0 = IK is not sufficient to ensure a unique VARMA representation. Uniqueness of (1)

is guaranteed by imposing restrictions on the A (L) and M (L) operators in that these

operators are unique left-coprime, i.e. the only feasible left divisor of [A (L) : M (L)] is the

unimodular operator given by the identity matrix.3

A number of different strategies can be implemented to obtain unique VARMA repre-

sentations, such as the extended scalar component approach of Athanasopoulos and Vahid

1We adopt the terminology in Lütkepohl, 2007, p. 448 and call a VARMA representation nonstandard
when A0 and M0 are allowed to be nonidentity invertible matrices. If A0 = M0 = IK , we call it a standard
VARMA model.

2A general VARMA(p,q) is considered stable and invertible if det
(

A0 −A1z −A2z
2 − ...−Apz

p
)

6= 0
for |z| ≤ 1 and det

(

M0 +M1z +M2z
2 + ...+Mqz

q
)

6= 0 for |z| ≤ 1 hold, respectively.
3C (L) is an unimodular operator if det (C (L)) is a nonzero constant that does not depend on L.

5



(2008), the final equations form (see Lütkepohl, 2007, pg.362) and the Echelon form trans-

formation (Hannan and Kavalieris (1984), Poskitt (1992), Lütkepohl and Poskitt (1996),

among others). Although Athanasopoulos, Poskitt, and Vahid (2012) show that scalar com-

ponents perform slightly better than the Echelon form methodology in empirical exercises,

the authors argue that the latter has the advantage of having a simpler identification proce-

dure. More specifically, the Echelon form identification strategy can be fully automated and

provides a more parsimonious parametrization, when compared to final equations. These

are highly desired features when modelling medium and large systems. In this paper, we

implement the Echelon form transformation as a way to impose uniqueness in both Monte

Carlo and empirical applications. Nevertheless, because the three identification strategies

(scalar components, final equations form, and Echelon form) impose uniqueness through

a set of linear restrictions on the A (L) and M (L) operators, the IOLS estimator can be

directly implemented no matter which identification strategy the researcher chooses.

A general VARMA model such as the one stated in (1) is considered to be in its Echelon

form if the conditions stated in equations (3), (4), (5), and (6) are satisfied (see Lütkepohl,

2007, p. 452 and Lütkepohl and Poskitt (1996) for more details):

pki :=





min (pk + 1, pi) for k ≥ i

min (pk, pi) for k < i,

for k, i = 1, ...,K, (3)

αkk (L) = 1−
pk∑

j=1

αkk,jL
j for k = 1, ...,K, (4)

αki (L) = −
pk∑

j=pk−pki+1

αki,jL
j for k 6= i, (5)

mki (L) =

pk∑

j=0

mki,jL
j , for k, i = 1, ...,K with M0 = A0, (6)

where A(L)=[αki]k,i=1,...,K and M(L)=[mki]k,i=1,...,K are, respectively, the operators from

the autoregressive and moving average components of the VARMA process; the pki numbers

specify the free coefficients in the operator αki (L) for i 6= k from the A (L) polynomial;

and the arguments pk with k = 1, ...,K are Kronecker indices which specify the maximum

degrees in each row of both A(L) and M(L) polynomials. We define p = (p1, p2, ..., pK)′ as

the vector collecting the Kronecker indices (Section 5.1 discusses alternative procedures to

choose the Kronecker indices).
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The Echelon form formulae in (3) to (6) deliver the necessary and sufficient restrictions

for the unique identification of the VARMA models (Hannan and Deistler, 1988, Chapter

2). Notably, the Echelon representation allows the baseline model in (1) to be rewritten as

Yt = (IK −A0) (Yt − Ut)+A1Yt−1+A2Yt−2+ ...+ApYt−p+Ut+M1Ut−1+ ...+MqUt−q, (7)

where (Yt − Ut) = A−1
0 {∑p

i=1AiYt−i +
∑q

i=1MiUt−i} is uncorrelated with Ut. A compact

notation of (7) reads

vec (Y ) =
(
X ′ ⊗ IK

)
vec (B) + vec (U) , (8)

where B = [(IK − A0), A1, ..., Ap,M1, ...,Mq] with dimension (K × K(p + q + 1)); X =

(Xq̄+1, ..., XT ) is the matrix of regressors with dimension (K(p + q + 1) × T − q̄), where

q̄ = max {p, q} and Xt = vec(Yt − Ut, Yt−1, ..., Yt−p, Ut−1, ..., Ut−q); Y = (Yq̄+1, ..., YT ) has

dimension (K × T − q̄); and U = (Uq̄+1, ..., UT ) is a (K × T − q̄) matrix of disturbances.

Note that by setting the dimensions of the X and Y matrices as (K(p + q + 1) × T − q̄)

and (K ×T − q̄), respectively, we explicitly highlight the fact that we lose q̄ observations in

finite sample. We obtain the free parameters in the model (excluding the distinct covariance

parameters) by rewriting vec (B) into the product of a
(
K2 (p+ q + 1)× n

)
deterministic

matrix R and a (n× 1) vector β,

vec (Y ) =
(
X ′ ⊗ IK

)
Rβ + vec (U) , (9)

where n denotes the number of free parameters in B, and the (n× 1) vector β concate-

nates these parameters. The Echelon restrictions imply a unique full-rank column matrix

R and, provided that Σu is nonsingular, ensure that rank {R′ [E (XtX
′
t)⊗ IK ]R} = n (Du-

four and Jouini (2005, 2014)). It is still possible to impose additional zero restrictions (data

dependent) while keeping the model uniquely identified and hence obtain a more parsimo-

nious model (see Lütkepohl and Poskitt, 1996, p. 73). This follows because a Kronecker

index only gives the maximum row degree, and hence not all operators in the kth row of

[A(L) : M(L)] need to have the same degree as pk. As an example, consider a VARMA(1,1)

model with K = 3 and p = (1, 0, 0)′. The resulting VARMA representation expressed in
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Echelon form reads




1 0 0

a21,0 1 0

a31,0 0 1




Yt =




a11,1 0 0

0 0 0

0 0 0




Yt−1 +




1 0 0

a21,0 1 0

a31,0 0 1




Ut +




m11,1 m12,1 m13,1

0 0 0

0 0 0




Ut−1. (10)

While the zero restrictions imposed in (10) are those required to meet the restriction im-

posed by the canonical structure, further restrictions that simplify the model could be added

(e.g. a21,0 = a31,0 = m12,1 = m13,1 = 0) without affecting the uniqueness of the VARMA

representation. Throughout this entire study, we refrain from adding these additional re-

strictions and restrict ourselves to the ones implied from (3) to (6). Furthermore, we always

consider the Echelon forms that yield VARMA models that cannot be partitioned into

smaller independent systems.

Finally, it is important to note that the VARMA representation in (1) is not a structural

VARMA (SVARMA) model in its classical definition (see Gourieroux and Monfort (2015)),

because (1) is not necessarily driven by independent (or uncorrelated) shocks. To construct

impulse response functions, which depend on the structural shocks, additional identification

restrictions to the ones required for uniqueness are necessary. In particular, as noted by

Gourieroux and Monfort (2015), the structural shocks can usually be derived by imposing

restrictions either on the contemporaneous correlation among the innovations in (1) (see

the so-called B-model in Lütkepohl, 2007, p. 362 and the general identification theory in

Rubio-Ramı́rez, Waggoner, and Zha (2010)), or on the long-run impact matrix of the shocks

(Blanchard and Quah (1989)), or by imposing sign restrictions on some impulse response

functions (Uhlig (2005)). This identification issue is common to both VARMA and VAR

models and has been primarily explored in the context of VAR models.

2.2 Estimation

VARMA models, similar to their univariate (ARMA model) counterparts, are usually es-

timated using MLE procedures. Provided that the model in (1) is uniquely identified and

disturbances Ut are normally distributed, MLE delivers consistent and efficient estimators.

Although MLE seems to be very powerful at first glance, it presents serious problems when

dealing with medium and large sized datasets. We overcome this issue by implementing an
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IOLS procedure in the spirit of Spliid (1983), Hannan and McDougall (1988) and Kapetan-

ios (2003).

The IOLS framework consists of computing ordinary least squares (OLS) estimates of

the parameters using estimates of the latent regressors. These regressors are computed

recursively at each iteration using the OLS estimates. Using the invertibility condition, we

can express a finite VARMA model as an infinite VAR, Yt =
∞∑
i=1

ΠiYt−i + Ut. We compute

consistent estimates of Ut, denoted as Û0
t , by truncating the infinite VAR representation

using some lag order, p̃, that minimizes some criterion. Following the results in Ng and

Perron (1995) and Dufour and Jouini (2005), choosing p̃ proportional to ln (T ) delivers

consistent estimates of Ut, so that Û0
t = Yt −

p̃∑
i=1

Π̂iYt−i.
4 Substitute Û0

t into the matrix

X in (9) and denote it X̂0. Note that both X̂0 and vec (Y ) change their dimensions to

(K(p+ q + 1)× T − q̄ − p̃) and (K(T − q̄ − p̃)× 1), respectively. This happens exclusively

on this first iteration, because p̃ observations are lost on the VAR(p̃) approximation of Ut.

The first iteration of the IOLS estimator is obtained by computing the OLS estimator from

the modified version of (9),

β̂1 =
[
R′
(
X̂0X̂0′ ⊗ IK

)
R
]−1

R′
(
X̂0 ⊗ IK

)
vec(Y ). (11)

It is relevant to highlight that the first step of the IOLS estimator is the two-stage Hannan-

Rissanen (HR) algorithm formulated in Hannan and Rissanen (1982), and for which Dufour

and Jouini (2005) show the consistency and asymptotic distribution.

We are now in a position to use β̂1 to recover the parameter matrices Â1
0, ..., Â

1
p,

M̂1
1 , ..., M̂

1
q and a new set of residuals Û1 =

(
Û1
1 , Û

1
2 , ..., Û

1
T

)
by recursively applying

Û1
t = Yt −

[
Â1

0

]−1 [
Â1

1Yt−1 − ...− Â1
pYt−p − M̂1

1 Û
1
t−1 − ...− M̂1

q Û
1
t−q

]
, for t = 1, ..., T, (12)

where Yt−ℓ = Û1
t−ℓ = 0 for all ℓ ≥ t. Setting the initial values to zero when computing the

residuals recursively on any iteration is asymptotically negligible (see Lemma 2). Note that

the superscript on the parameter matrices refers to the iteration in which those parameters

are computed, and the subscript is the usual lag order. We compute the second iteration of

the IOLS procedure by plugging Û1
t into (9) yielding X̂1. Note that X̂1 = (X̂1

q̄+1, ..., X̂
1
T ),

4Lemmas 4.1 and 4.2 in Ng and Perron (1995) show that determining the truncation lag proportional
to ln (T ) guarantees that the difference between the residuals from the truncated VAR model and the ones

obtained from the infinite VAR process is op
(

T−1/2
)

uniformly in p̃.
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where X̂1
t = [Yt − Û1

t , Yt−1, ..., Yt−p, Û
1
t−1, ..., Û

1
t−q]

′, is a function of the estimates obtained

in the first iteration: β̂1. Similarly as in (11), we obtain β̂2 and its correspondent set of

residuals recursively as in (12). The jth iteration of the IOLS estimator is thus given by

β̂j =
[
R′
(
X̂j−1X̂j−1′ ⊗ IK

)
R
]−1

R′
(
X̂j−1 ⊗ IK

)
vec(Y ). (13)

We stop the IOLS algorithm when estimates of β converge. We assume that β̂j converges

if ‖ Û j − Û j−1 ‖≤ ǫ holds from some exogenously defined criterion ǫ, where ‖.‖ accounts for

the Frobenius norm. If the IOLS fails to converge, we adopt the consistent HR estimator,

β̂1, given in (11). The maximum number of iterations is set to 1,000 and ǫ = 10−5. We also

notice from our simulations that sample size, number of free parameters, system dimension,

and the values of β play an important role on the convergence rates of the IOLS estimator.

In general, we find that convergence rates increase monotonically with T (see discussion in

Sections 3 and 4).

3 Theoretical Properties

This section provides theoretical results regarding the consistency and the asymptotic dis-

tribution of the IOLS estimator. A previous attempt to establish these results have been

made by Hannan and McDougall (1988). They prove the consistency of the IOLS estimator

considering the univariate ARMA(1,1) specification, but no formal result is provided for the

asymptotic normality. Overall, this section differs from the work of Hannan and McDougall

(1988) in important ways. First, we derive the consistency and the asymptotic normality

for the general weak and strong VARMA(p,q) models; and second, our theory explicitly

accounts for the effects of setting initial values equal to zero when updating the residuals

on each iteration.

Similarly as in Section 2, we define our baseline weak VARMA(p,q) model expressed in

its Echelon form as in (14) and its more compact notation in (15):

A0Yt = A1Yt−1 +A2Yt−2 + ...+ApYt−p +A0Ut +M1Ut−1 + ...+MqUt−q, (14)

Yt =
(
X ′

t ⊗ IK
)
Rβ + Ut, (15)

where Ut is a sequence of uncorrelated random variables.
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We base our asymptotic results on the general theory for iterative estimators developed

by Dominitz and Sherman (2005).5 Their approach relies on the concept of the Asymptotic

Contraction Mapping (ACM). Denote (B, d) as a metric space where B is the closed ball

centered in β and d is a distance function; (Ω,A,P) is a probability space, where Ω is a

sample space, A is a σ-field of subsets of Ω and P is the probability measure on A; and

Kω
T (.) is a function defined on B, with ω ∈ Ω. From the definition in Dominitz and Sherman,

2005, p. 841, “The collection {Kω
T (.) : T ≥ 1, ω ∈ Ω} is an ACM on (B, d) if there exist a

constant c ∈ [0, 1) that does not depend on T or ω, and sets {AT } with each AT ⊆ Ω and

PAT → 1 as T → ∞, such that for each ω ∈ AT , Kω
T (.) maps B to itself and for all

x, y ∈ B, d (Kω
T (x) ,Kω

T (y)) ≤ cd (x, y)”. As pointed out by Dominitz and Sherman (2005),

if a collection is an ACM, then it will have a unique fixed point in (B, d), where the fixed

point now depends on the sample characteristics, i.e. T and ω. Additionally, their ACM

definition nests the case where the population mapping is a fixed deterministic function

(Dominitz and Sherman, 2005, p. 840).

Definition 1 (General Mapping) We define the sample mapping N̂T

(
β̂j
)
and its pop-

ulation counterpart N
(
βj
)
as follows:

i. β̂j+1 = N̂T

(
β̂j
)
=
[

1
T−q̄

∑T
t=q̄+1 X̃

j′
t X̃

j
t

]−1 [
1

T−q̄

∑T
t=q̄+1 X̃

j′
t Yt

]
,

ii. βj+1 = N
(
βj
)
= E

[
X̃j′

∞,tX̃
j
∞,t

]−1
E

[
X̃j′

∞,tYt

]
,

where X̃j
t =

[(
X̂j′

t ⊗ IK

)
R
]
and X̃j

∞,t =
[(

Xj′
∞,t ⊗ IK

)
R
]
have dimensions (K × n)

and denote the regressors computed on the jth iteration; n is the number of free pa-

rameters (excluding the distinct covariance parameters) in the model; X̂j
t = vec(Yt −

Û j
t , Yt−1, ..., Yt−p, Û

j
t−1, ..., Û

j
t−q), Xj

∞,t = vec(Yt − U j
t , Yt−1, ..., Yt−p, U

j
t−1, ..., U

j
t−q);

q̄ = max {p, q}; and the (n× 1) vectors β̂j and βj stack the estimates obtained from the

sample and population mappings, respectively. Notably, N̂T

(
β̂j
)
and its population coun-

terpart map from R
n to R

n. The sample and population mappings differ in two important

ways. First, the population mapping is a deterministic function, whereas its sample coun-

terpart is stochastic. Second, Û j
t is obtained recursively by

Û j
t = Yt −

[
Âj

0

]−1 [
Âj

1Yt−1 − ...− Âj
pYt−p − M̂ j

1 Û
j
t−1 − ...− M̂ j

q Û
j
t−q

]
, for t = 1, ..., T, (16)

5Pastorello, Patilea, and Renault (2003) develop a similar general asymptotic theory for iterative estima-
tors that also rests on the contracting property and hence on the unique fixed point condition.
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where Yt−ℓ = Û j
t−ℓ = 0 for all ℓ ≥ t, while U j

t is also computed recursively in the same

fashion as (16), but assumes the pre-sample values are known, i.e. Yt−ℓ and U j
t−ℓ are known

for all ℓ ≥ t. Note that N (β) = β, which implies that when evaluated on the true vector

of parameters, the population mapping maps the vector β to itself. This implies that if the

population mapping is an ACM then β is a unique fixed point of N (β) (see Dominitz and

Sherman, 2005, p. 841).

For theoretical reasons, such that we can formally handle the effect of initial values when

computing the residuals recursively, define the infeasible sample mapping as

β̆j+1 = N̆T

(
β̆j
)
=


 1

T − q̄

T∑

t=q̄+1

X̃j′
∞,tX̃

j
∞,t



−1 
 1

T − q̄

T∑

t=q̄+1

X̃j′
∞,tYt


 . (17)

The infeasible sample mapping in (17) differs from the sample mapping because it is a

function of U j
t rather than Û j

t . This is a stochastic version of the population mapping and

it is extensively used when deriving the consistency and the asymptotic normality of the

IOLS estimator. Lemma 2 shows that, when evaluated at the same vector of estimates,

N̂T

(
β̂j
)
converges uniformly to its infeasible counterpart as T −→ ∞, which implies that

setting the starting values to zero in (16) does not matter asymptotically.

To formally derive the consistency and asymptotic normality of the IOLS estimator, we

impose the following assumptions:

B.1 (Stability, Invertibility, and Uniqueness) Let Yt be a stable and invertible K-

dimensional VARMA(p,q) process. Moreover, assume Yt is uniquely identified and

expressed in Echelon form as in (14) with known Kronecker indices.

B.2 (Disturbances - strong mixing) Let Ut be a (K × 1) vector of innovations with

K ≥ 1. The disturbances Ut are strictly stationary with E (Ut) = 0, V ar (Ut) = Σu,

Cov (Ut−i, Ut−j) = 0 for all i 6= j and satisfy the following two conditions:

i. E |Ut|4+2ν < ∞,

ii.
∑∞

κ=0 {αu (κ)}ν/(2+ν) < ∞, for some ν > 0,

where αu (l) = sup
D∈σ(Ui,i≥t+l)
C∈σ(Ui,i≤t),

|Pr (C⋂D)− Pr (C)Pr (D)| are strong mixing coefficients of

order l ≥ 1, with σ(Ui, i ≤ t) and σ(Ui, i ≥ t+ l) being the σ-fields generated by {Ui : i ≤ t}

and {Ui : i ≥ t+ l}, respectively.
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B.3 (Contraction and Stochastic Equicontinuity) Define the (n× n) infeasible sam-

ple gradient as V̆T

(
β̆j
)
=

∂N̆T (β̆j)
∂β̆j′

and its population counterpart as V
(
βj
)
=

∂N(βj)
∂βj′ ;

and B as the closed ball centered at β satisfying invertibility and stability conditions

in Assumption B.1. Assume that the following hold:

i. The maximum eigenvalue associated with V (β) =
∂N(βj)
∂βj′

∣∣∣∣
β

is smaller than one

in absolute value.

ii. supφ∈B ‖V̆T (φ) ‖ = Op (1), with φ ∈ B.

Assumption B.1 provides the general regularity conditions governing the VARMA(p,q)

model. Assumption B.2 establishes the mixing conditions which satisfy the weak VARMA

definition. Notably, these mixing conditions are valid for a wide range of nonlinear models

that allow weak VARMA representations (Francq and Zakoian (1998), Francq, Roy, and

Zakoian (2005) and Francq and Zakoian (2005)). Item i. in Assumption B.3 suffices to

guarantee that the IOLS mapping is an ACM on (B, En). Lemma 1 provides the sample

counterpart of this result, making it possible to verify on every iteration whether the sample

mapping is an ACM. Albeit the result in Lemma 1 is computationally easy to obtain, we

could not pin down the eigenvalues of the population counterpart of Lemma 1 solely as

function of the parameters matrices eigenvalues. Numerical simulation indicates that the

maximum eigenvalue of V (β) depends on the elements of the parameters matrices in (14)

rather than on their eigenvalues. Furthermore, we note that the population mapping is not

an ACM if some of the eigenvalues of the AR and MA components have opposite signs and

are close to one in absolute value.

Define Z = [R′ (H ⊗ IK)R]−1, H = plim
[
1
T

∑T
t=q̄+1XtX

′
t

]
, J = [In − V (β)]−1, and

I =
∑∞

ℓ=−∞ E
{
[R′ (Xt ⊗ IK)Ut] [R

′ (Xt−ℓ ⊗ IK)Ut−ℓ]
′}. Theorem 1 gives the consistency

and asymptotic distribution of the IOLS estimator for the general weak VARMA(p,q) model.

Theorem 1 Suppose Assumptions B.1, B.2, and B.3 hold. Then,

i.
∣∣∣β̂ − β

∣∣∣ = op (1) as j, T −→ ∞;

ii.
√
T
[
β̂ − β

]
d−→ N (0, JZIZ ′J ′) as j, T −→ ∞ and ln(T )

j = o(1).

Proof. See Appendix.

The proof proceeds as follows. Item i. in Theorem 1 requires that both N (φ) and N̂T (φ)

are ACMs on (B, En), where En is the Euclidean metric on R
n and B is a closed ball centered
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at β. Lemma 5 gives that N̂T (φ) is an ACM on (B, En) and hence
∣∣∣N̂T (φ)− N̂T (γ)

∣∣∣ ≤

κ |φ− γ| holds, with γ, φ ∈ B and κ ∈ [0, 1). Additionally, the sample mapping has an

unique fixed point in B given by β̂, and Lemma 5 establishes that β̂j converges uniformly

in B to β̂. It follows that consistency of the IOLS estimator is obtained by using the

standard fixed point theorem and Lemma 3 (the sample mapping converges uniformly in

probability to its population counterpart). Next, the limiting distribution of β̂ also de-

mands N (φ) and N̂T (φ) to be ACMs on (B, En). Furthermore, it requires uniform conver-

gence of N̆T (φ) to N̂T (φ) in φ ∈ B (Lemma 2), supφ,γ∈B

∥∥∥
[
Λ̆T (φ, γ)− Λ (φ, γ)

]
(φ− γ)

∥∥∥ =

op (1) (Lemma 4), and
√
T
∣∣∣β̂j − β̂

∣∣∣ = op (1) as j, T −→ ∞ and ln(T )
j = o(1) (Lemma

6). It follows that the asymptotic normality result simplifies to the limiting behaviour

of [In − V (β)]−1
√
T
[
N̆T (β)− β

]
. We follow the work of Francq and Zakoian (1998)

and Dufour and Pelletier (2014), and use the central limit theorem of Ibragimov (1962)

that encompasses strong mixing processes such as the one in Assumption B.2. In turn,
√
T
[
N̆T (β)− β

]
d−→ N (0, ZIZ ′) as j, T −→ ∞. This yields an asymptotic variance that

is a function of I rather than the usual R′ (H ⊗ Σu)R term that appears when Ut is an

i.i.d. process (see Corollary 1).

Lemma 1 and β̂ can be used to compute the empirical counterparts of V (β), H, Z

and Σu, yielding a feasible estimate of the asymptotic variance. Specifically, I can be

consistently estimated by the Newey-West covariance estimator,

Î =
1

T − q̄

mT∑

ℓ=−mT

[
1− |ℓ|

mT + 1

] T∑

t=q̄+1+|ℓ|

{[
R′
(
X̂t ⊗ IK

)
Ût

]
×

[
R′
(
X̂t−ℓ ⊗ IK

)
Ût−ℓ

]′}
,

(18)

where m4
T /T → 0 with T,mT → ∞.

The practical implication of the violation of item i. in Assumption B.3 is that the IOLS

estimator does not converge even for large T . If this is the case, the asymptotic results

in this section cannot be implemented. By contrast, we note from our simulations that

if the IOLS estimator converges, the contraction property assumption is satisfied, i.e. the

modulus of the largest eigenvalue of V̂T

(
β̂
)
is strictly less than unity. It is also possible to

have a DGP satisfying item i. in Assumption B.3 and the IOLS estimator does not converge.

This follows because Lemma 5 holds only asymptotically, and convergence in finite sample

requires that both the population and sample mappings are ACMs, with the latter holding
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on every iteration. In turn, it is possible to use Lemma 1 and evaluate the modulus of the

largest eigenvalue of V̂T

(
β̂j
)
on every iteration to verify whether the IOLS estimator is in

its region of convergence. The Monte Carlo study shows that when the population mapping

is an ACM (item i. in Assumption B.3 holds), convergence rates increase monotonically

with T .6 Additionally, the Monte Carlo section discusses small sample adjustments that

improve the convergence rates of the IOLS estimator.

Finally, we derive the consistency and limiting distribution of the IOLS estimator under

the stronger assumption that the true data generation process is a strong VARMA process,

i.e. Ut is an i.i.d. process. The proof works in a similar fashion as the one in Theorem

1. Specifically, all the auxiliary results (Lemmas 2, 3, 4, 5, and 6) hold under the i.i.d.

assumption; and the limiting distribution of [In − V (β)]−1
√
T
[
N̆T (β)− β

]
is now derived

using the central limit theorem for m.d.s.

Corollary 1 Suppose Assumptions B.1 and B.3 hold. Additionally, assume

i. Ut is an i.i.d. process with E(Ut) = 0, V ar(Ut) = Σu and finite fourth moment.

Then, item i. in Theorem 1 holds and
√
T
[
β̂ − β

]
d−→ N (0, JZR′ (H ⊗ Σu)RZ ′J ′) as

j, T −→ ∞ and ln(T )
j = o(1).

Proof. See Appendix.

4 Monte Carlo Study

This section provides results on the finite sample performance of VARMA models estimated

with the IOLS methodology. We compare the IOLS estimator with estimators possessing

very different asymptotic and computational characteristics. We report results considering

five methods: the MLE, the two-stage method (HR) of Hannan and Rissanen (1982), the

three-step procedure (HK) of Hannan and Kavalieris (1984), the two-stage method (DJ2)

of Dufour and Jouini (2014), and the multivariate version of the three-step procedure (KP)

of Koreisha and Pukkila (1990) as discussed in Koreisha and Pukkila (2004) and Kascha

(2012). To broadly analyse and assess the performance of the IOLS estimator, we design

simulations covering different sample sizes (from 50 to 1,000 observations), system sizes

6Figure S.1 in the online Supplement displays finite sample convergence rates (heat-map) of the IOLS
estimator for ARMA(1,1) models defined as yt = β1yt−1 + ut + β2ut−1. We show that convergence rates
improve dramatically when sample size increases from T = 100 to T = 10, 000 in the entire set of parameters
satisfying item i. in Assumption B.3.
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(K = 3, K = 10, K = 20, K = 40, and K = 52), Kronecker indices, dependencies among

the variables, and both weak and strong processes.7

We simulate stable, invertible, and unique VARMA(1,1) models as

A0Yt = A1Yt−1 +A0Ut +M1Ut−1. (19)

Uniqueness is imposed through the Echelon form transformation, which implies A0 = M0

in (19) and requires a choice of Kronecker indices. We discuss results considering six DGPs.

DGPs I and II set all Kronecker indices to one, which implies that A0 = IK and A1 and

M1 are full matrices. These DGPs differ with respect to the eigenvalues assigned to the

parameter matrices. The eigenvalues of A1 and M1 in DGP I are constant and equal to 0.5,

whereas the eigenvalues in DGP II take positive, negative and near-to-zero values. Precisely,

the eigenvalues of A1 and M1 are (0.80, 0.20, 0.05)′ and (0.90, 0.02, 0.20)′, respectively.8 For

DGPs III, IV, V, and VI, the first k Kronecker indices are set to one, while the remaining

K − k Kronecker indices are set to zero, so that p = (p1, p2, ..., pK)
′ with pi = 1 for i ≤ k

and pi = 0 for all i > k. Specifically, DGP III has k = 1, while DGPs IV, V and VI have

k = 2, k = 3, and k = 6, respectively. The free parameters in DGPs III, IV, V, and VI are

based on real data and chosen as the estimates obtained by fitting VARMA(1,1) models

to the datasets in Section 5. DGPs III-VI are particularly relevant because they reduce

dramatically the number of free parameters in (19), while yielding rich dynamics in the MA

component of the standard representation of (19).9

Weak VARMA(1,1) models are obtained by generating Ut as in Romano and Thombs,

1996, p. 591, with Ut =
∏m

ℓ=0 εt−ℓ, where m = 3 and εt is a zero mean i.i.d. process with

covariance matrix IK . This procedure yields uncorrelated innovations satisfying the mixing

conditions stated in Assumption B.2. We summarize results for each specification using

two measures: MRRMSE and Share. MRRMSE accounts for the mean of the relative root

median squared error (RRMSE) measures of all parameters, where RRMSE is the ratio of

the root median squared error (RMSE) obtained from a given estimator over the RMSE

of the HR estimator. RRMSE measures lower than one indicate that the HR estimator is

outperformed by the alternative estimator. Share is the frequency a given estimator returns

7For sake of brevity, results for the strong VARMA specifications are in the online Supplement.
8File “DGPsfile.csv” (available online) contains the true values used in all simulations in this section.
9Because DGPs III-VI imply that A0 is an invertible lower triangular matrix, multiplying (19) by A−1

0

yields its standard representation, Yt = A∗
1Yt−1 + Ut + M∗

1 Ut−1, where A∗
1 := A−1

0 M1 = (A∗
1,K×k, 0) and

M∗
1 := A−1

0 M1 is a full matrix.

16



the lowest RRMSE over all the free parameters.10 The MRRMSE and Share measures are

only computed using the replications that achieved convergence and satisfy Assumption

B.1.11 We discard the initial 500 observations and fix the number of replications to 5,000,

unless otherwise stated. We report only a fraction of the entire set the Monte Carlo results.

The complete set of tables is in Section S.3 in the online Supplement.

A valid concern that emerges when estimating DGPs I and II with the IOLS estimator

is its rather low convergence rates for small sample sizes. Nevertheless, convergence rates

of the IOLS estimator increase monotonically with T in both DGPs and system dimensions

(K = 3 and K = 10), which leave us with the conclusion that this is a small sample issue.

This is in line with our theoretical results, as Lemma 1 holds when evaluated at the true

vector of parameters and Lemma 5 holds only asymptotically. We address the causes for

the IOLS estimator failing to achieve convergence and identify three reasons for this finite

sample anomaly. The IOLS fails when, first, it generates at some iteration a non-invertible

VARMA model that contains no roots on the unit circle; second, it generates a non-stable

VARMA model with no roots on the unit circle; third, it converges to multiple (finite)

fixed points. We address these issues individually in the IOLS estimator. Namely, first, in

the case of a non-invertible VARMA model, we convert the non-invertible moving average

polynomial to its corresponding invertible representation using Lippi and Reichlin’s 1994

procedure and continue iterating. Second, in the instance of a non-stable VARMA model,

we factorize the VAR polynomial and replace the eigenvalues greater than one in absolute

value by 0.99 and continue iterating. Finally, in the case of convergence to multiple fixed

points, we choose the one which minimizes the determinant of the covariance matrix of the

residuals and stop iterating.12 Implementing these small sample adjustments improves the

convergence rates and, most importantly, does not come at expense of worse results.13 In

short, considering DGPs I and II with sample sizes of T ≤ 400, convergence rates increase

an average of 34% and 56% for K = 3 and K = 10, respectively, while MRRMSE measures

increase by only 3% and 1% for K = 3 and K = 10, respectively. Numbers are even more

10As an example, when K = 3 and p = (1, 0, 0)′, n = 6, i.e. there are six free parameters (excluding the
distinct covariance parameters) to be estimated. If the IOLS estimator has a Share of 67%, it implies that
the IOLS estimator delivers the lowest RRMSE in four out of those six free parameters. This measure is
particularly informative when dealing with systems with large number of free parameters.

11Throughout this section, we assume an estimator converges if its final estimates satisfy Assumption
B.1. For the IOLS and MLE estimators, convergence also implies numerical convergence of their respective
algorithms.

12Section S.3.2 details the implementation of the small sample adjustments and discusses their finite
sample performance.

13See Tables S.6-S.13 in the online Supplement.
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favourable when considering DGP II, as convergence rates increase by 59% and 89% for

K = 3 and K = 10, respectively, while MRRMSE measures increase by only 5% and 2% for

K = 3 and K = 10, respectively. Despite the improvements in the convergence rates, we

take a conservative stand and report only results for the IOLS estimator computed without

any finite sample adjustments (Tables 1 and 2). When appropriate, we further discuss the

convergence rates and performances of the small sample adjustments.

The first set of Monte Carlo simulations addresses the finite sample performance of

the IOLS estimator in small sized (K = 3) VARMA(1,1) models. We simulate weak

VARMA(1,1) models considering DGPs I, II and III. DGPs I and II yield 18 free pa-

rameters in the A0, A1, and M1 parameter matrices, while DGP III has 6 free parameters

in these matrices. We consider samples of 50, 100, 150, 200, and 400 observations. Table 1

presents the results. First, we find that the MLE estimator is dominant in DGP I. This is

not surprising, because MLE is known to perform well on specifications where the absolute

eigenvalues are bounded away from zero and one (Kascha (2012)). The DGP II specification

is numerically more difficult to handle, yielding lower rates of convergence for both the IOLS

and MLE estimators. Nevertheless, the IOLS estimator is the one which delivers the best

results considering both MRRMSE and Share measures. This indicates that if convergence

is achieved, the IOLS estimator is able to handle systems with near-to-zero eigenvalues more

efficiently than the benchmark MLE estimator. Furthermore, when considering the IOLS

computed with the small sample adjustments discussed before, convergence rates for the

DGP II increase to 53%, 67%, 72%, 75%, and 82% for T = 50, T = 100, T = 150, T = 200,

and T = 400, respectively. The IOLS estimator is very competitive in DGP III and presents

the highest Share measure in all sample sizes. Simulating DGPs I, II, and III for K = 10

provides a comparable picture (see detailed discussion in the online Supplement).

Table 2 displays results covering the finite sample performance of the IOLS estima-

tor in medium and large sized systems. We simulate DGPs III, IV, V, and VI for K ∈

(10, 20, 40, 52), which mimic our empirical study. To the best of our knowledge, this is the

first study to consider such high-dimensional VARMA models in a Monte Carlo study. The

sample size and number of replications are set to T = 400 and 1, 000, respectively. These

are high-dimensional models with the number of free parameters (excluding the distinct co-

variance parameters), n, varying from 20 to 624. We find that the IOLS estimator presents

the best relative performance (in terms of both the MRRMSE and Share measures) for
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large systems (K = 40 and K = 52). These findings hold for all DGPs. The relative

performance of the HK and IOLS estimators are outstanding, with an average improve-

ment with respect to the HR estimator of up to 65%. On average, the IOLS outperforms

the HK estimator in 15% (in terms of the MRRMSE measure). Considering systems with

K = 10 and K = 20, the HK estimator is the one that delivers the best performance

for most specifications, while the IOLS estimator is constantly ranked as the second best

estimator.14 Therefore, the IOLS estimator considerably improves its performance when

estimating high-dimensional restricted models with A0 6= IK , while remaining a feasible

alternative (average convergence rate of 95%). These results motivate the use of the Eche-

lon form transformation in the fashion of DGPs III-VI and the IOLS estimator as feasible

alternative to high-dimensional VARMA(1,1) models.

Overall, we conclude that the IOLS estimator is a competitive alternative and compares

favourable with its competitors in a variety of cases: small sample sizes, small sized systems

with near-to-zero eigenvalues, and large sized systems with many Kronecker indices set

to zero. The MLE and HK estimators also present remarkable performances in terms of

RMSE, which is in line with previous studies (Kascha (2012)).

5 Empirical Application

In this section, we analyse the competitiveness of VARMA models estimated with the IOLS

procedure to forecast macroeconomic variables. We forecast three key macroeconomic vari-

ables: industrial production (IPS10), interest rate (FYFF), and CPI inflation (PUNEW).

We assess VARMA forecast performance under different system dimensions and forecast

horizons.

5.1 Data and Setup

We use US monthly seasonally adjusted data from the Stock and Watson (2006) dataset,

which runs from 1959:1 through 2003:12. The choice of using seasonally adjusted data is

in line with the large datasets literature (see Stock and Watson (2002a,b), De Mol, Gian-

none, and Reichlin (2008), and Bańbura, Giannone, and Reichlin (2010)), as seasonal data

intensifies the “curse of dimensionality” by requiring the inclusion of extra lags. Therefore,

14The online Supplement presents results where IOLS outperforms the HK estimator for K = 10 and
K = 20 in DGPs IV-VI with T = 200.
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as usual in this literature, a practitioner should be cautious when using the framework

discussed in this section for seasonal data. As in Carriero, Kapetanios, and Marcellino

(2011), we use 52 macroeconomic variables that represent the main categories of economic

indicators. We work with five system dimensions: K ∈ (3, 10, 20, 40, 52). We construct four

different datasets (one to four) for each system size where 10 ≤ K ≤ 40, as a way to assess

robustness of the VARMA framework when dealing with different explanatory variables.

When selecting the variables, we try to keep a balance among the three main categories of

data: real economy, money and prices, and financial market.15 The series are transformed,

as in Carriero, Kapetanios, and Marcellino (2011), in such a way that they are approxi-

mately stationary. The forecasting exercise is performed in pseudo real time, with a fixed

rolling window of 400 observations. All models considered in the exercise are estimated in

every window. We perform 115 out-of-sample forecasts considering six different horizons:

one- (Hor:1), two- (Hor:2), three- (Hor:3), six- (Hor:6), nine- (Hor:9) and twelve- (Hor:12)

steps-ahead.

We compare the different VARMA specifications with five alternative methods: AR(1),

ARMA(1,1), VAR(p∗), BVAR, and factor models.16 ARMA(1,1) models are estimated us-

ing the IOLS and maximum-likelihood estimators. We estimate the BVAR model with the

normal-inverted Wishart prior as in Bańbura, Giannone, and Reichlin (2010), so that the

prior is adjusted to accommodate the fact that our variables are approximately stationary.17

We report results considering three BVAR specifications. The first specification, BVARSC,

is obtained by setting the hyperparameter ϕ (tightness parameter) to the value which min-

imizes the SC criterion over a grid of ϕ ∈ (2.0e− 5, 0.0005, 0.002, 0.008, 0.018, 0.072, 0.2,

1, 500).18 The second specification, BVAR0.2, sets ϕ = 0.2, which is the default choice in the

package Regression Analysis of Time Series (RATS) and it is the benchmark model in Car-

riero, Kapetanios, and Marcellino (2011). The third specification, BVARopt, follows from

Bańbura, Giannone, and Reichlin (2010) and chooses ϕ ∈ (2.0e− 5, 0.0005, 0.002, 0.008,

0.018, 0.072, 0.2, 1, 500) which minimizes the in-sample one-step-ahead root mean squared

forecast error in the last 24 months of the sample. For the three different specifications, we

15Table S.14 in the online Supplement reports the details of the different datasets.
16The lag length p∗ in the VAR(p∗) specification is obtained by minimizing the AIC criterion.
17See the online Supplement (Section S.4.1) for an extended discussion on the BVAR framework imple-

mented in this section.
18This grid follows Carriero, Kapetanios, and Marcellino (2011) and it is broad enough to include both

very tight (ϕ = 2.0e− 5) and loose (ϕ = 500) hyperparameters.
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choose the lag length that minimizes the SC criterion.19 We grid search over ϕ and the opti-

mal lag length on every rolling window. Factor models summarize a large number of predic-

tors in only a few number of factors. We adopt the two-step procedure as in Stock and Wat-

son (2002a,b). In the first step, factors ({Ft}Tt=1) are extracted via principal components,

whereas the second step consists of projecting yi,t+h onto
(
F̂ ′
t , ..., F̂

′
t−ℓ, yi,t−1, ..., yi,t−r

)
, with

ℓ ≥ 0 and r > 0. We determine the lag orders by minimizing the Schwarz (SC) criterion,

and choose the number of factors according to the SC and ICp3 criteria, denoted as FMSC

and FMIC3, respectively (Stock and Watson (2002a)). Factors are computed using only

the variables available on the respective dataset.

When dealing with empirical data, the Kronecker indices which are required to express

a VARMA representation in its Echelon form are unknown. We determine them using

three strategies. The first one imposes rank reduction on the parameter matrices of the

VARMA(1,1) model in a similar fashion as the DGPs III, IV, V, and VI in the Monte Carlo

section. This follows Carriero, Kapetanios, and Marcellino (2011), who show that reduced

rank VAR (RRVAR) models perform well when forecasting macroeconomic variables using

large datasets. By specifying the Kronecker indices as p = (p1, p1, ..., pK)′ with pi = 1

for i ≤ k and pi = 0 for all i > k, the rank of both parameter matrices of the standard

VARMA representation A∗
1 = A−1

0 A1 and M∗
1 = A−1

0 M1 reduces to k, in that the VAR(∞)

representation of the VARMA(1,1) model is a RRVAR(∞) of rank k. We report results for

k ∈ (1, 2, 3, 4, 5, 6) denoted as pk=1, pk=2, pk=3, pk=4, pk=5, and pk=6. Notably, the restric-

tions and number of free parameters in pk=1, pk=2, pk=3, and pk=6 are analogous to DGPs

III, IV, V, and VI, respectively. The second and third strategies estimate the Kronecker in-

dices directly from the data. Specifically, the second strategy adopts the Hannan-Kavalieris

algorithm (denoted as pHK), which consists of choosing Kronecker indices that minimize the

SCK criterion (Lütkepohl, 2007, p. 503).20 We implement this procedure on every rolling

window for K = 3 and K = 10, and on the first rolling window for medium and large sized

datasets (K = 20, K = 40, and K = 52). We then carry the estimated Kronecker indices

to the subsequent rolling windows. The maximum value of the Kronecker indices is set to

one.

The third strategy is based on Poskitt (1992) and reviewed in Lütkepohl and Poskitt

19The maximum lag length is set to be 15, 8, and 6 for K ≤ 10, 20 ≤ K ≤ 40, and K = 52, respectively.
20See Section S.4.2 in the online Supplement for a complete description of the Hannan-Kavalieris procedure.
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(1996). We refer to this method as the Lütkepohl-Poskitt procedure and denote it as pLP .
21

The Lütkepohl-Poskitt procedure is based on the property of the Echelon form that the

restrictions on the kth equation do not depend on the Kronecker indices pi > pk. The

Lütkepohl-Poskitt procedure consists of estimating each of the K equations in the system

by least squares (using the residuals from VAR(p̃) instead of the true disturbances) and

evaluating model selection criteria for each of the K equations separately.22 Because the

Kronecker indices are estimated equation by equation, the Lütkepohl-Poskitt searches for

the first local minimum of the criterion for each equation, and hence it suits particularly

well high-dimensional models. The Lütkepohl-Poskitt procedure is consistent under suitable

conditions (Poskitt (1992)). Specifically, if Assumptions B.1 and B.3 hold and Ut is an i.i.d.

process, choosing p̃ with the AIC criterion and setting the model selection criterion as the

SC criterion meet these conditions. The Lütkepohl-Poskitt procedure has two important

advantages compared to the Hannan-Kavalieris algorithm. First, it does not impose a pre-

specified upper bound to the Kronecker indices. This implies that very general and highly

complex VARMA(p,q) models with p, q ≥ 1 and up to K nonzero Kronecker indices can

be selected. Despite its general approach, the Lütkepohl-Poskitt procedure also attains

some degree of sparseness and parsimony, as it penalizes for the number of freely varying

parameters in each equation. Second, the Lütkepohl-Poskitt procedure is preferable from

a computational point of view, as it allows the estimation of the Kronecker indices on

every rolling window for all system sizes. To assess how these different strategies fit the

data, we report two SC criteria, denoted as SCK and SC3. SCK is the standard SC criterion

computed with the entire (K ×K) covariance matrix of the residuals, whereas SC3 uses only

the (3× 3) upper block of the residuals covariance matrix, as this contains the covariance

matrix of the three key macroeconomic variables. The SC3 criterion, therefore, is a measure

of fit that is solely related to the variables that we are ultimately interested in. All VARMA

specifications are estimated with the IOLS estimator discussed in Section 2.23

We compare different models using the out-of-sample relative mean squared forecast

error (RelMSFE) computed using the AR(1) as a benchmark. We choose this benchmark,

because it makes easy the comparison across the different datasets and system dimensions.

We assess the predictive accuracy with the Diebold and Mariano (1995) test. The use of

21We thank an anonymous referee for suggesting this procedure.
22See Section S.4.3 in the online Supplement for a complete description of the Lütkepohl-Poskitt procedure.
23If the IOLS does not converge, we implement the small sample adjustments discussed in Section 4. If

convergence is not achieved, we adopt the consistent initial estimates: the two-stage HR estimator.
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this test is justified given our focus on forecasts obtained through rolling windows.

5.2 Results

We organize the results as follows. Table 3 reports a summary of the forecast results

across the different datasets and presents, for each system size, three panels. The first

panel reports the frequency (in percentage points) for which at least one of the VARMA

specifications (pk=1, pk=2, pk=3, pk=4, pk=5, pk=6, pHK , and pLP ) outperforms (delivers the

lowest RelMSFE measures) the assigned group of competitors in a given forecast horizon.24

Similarly, the second and third panel display the frequencies for which the most restricted,

pk=1, and general, pLP , specifications outperform the assigned group of competitors. We

consider five groups of competitors: AR, ARMA, VAR, FM, and BVAR. The AR group

collects the AR(1) specification; ARMA has the ARMA(1,1) specification estimated with

IOLS and MLE; VAR contains the VAR(p∗) model; FM gathers the different factor model

specifications, namely the FMSC and FMIC3; and the BVAR collects the three BVAR spec-

ifications: BVARSC, BVAR0.2 and BVARopt. Finally, Table 4 compares the performance of

the IOLS estimator with the DJ2, HK, and KP estimators. We report the frequency (in

percentage points) for which the IOLS estimator outperforms the alternative estimators for

each forecast horizon. A comprehensive set of results is available in Section S.4.4 in the

online Supplement (Tables S.15 to S.28), making it possible to assess the forecast perfor-

mance of all VARMA specifications and the alternative model competitors in all datasets

and system sizes up to the level of the key macroeconomic variables. Convergence rates for

the IOLS estimator are also reported for all VARMA specifications. In what follows, we

draw from these tables when discussing the empirical results.

Starting with K = 3, we find that VARMA models largely outperform the AR, VAR,

FM, and the BVAR groups up to the sixth-step-ahead forecast (see Table 3). Specifically,

the pk=1 and pk=2 specifications are the ones which deliver the best results. VARMA models

also outperform the ARMA(1,1) specifications, which reinforces the idea that modelling the

three key macroeconomic variables in a multivariate context pays off. Taking into account

all forecast horizons, VARMA models deliver the best forecast in 67% of the cases.

We now summarize the results for the medium and large datasets, (K = 10, K = 20,

K = 40, and K = 52). We start by discussing the results for K = 10. For short horizons

24Percentages are computed across the three key macroeconomic variables and the four datasets discussed
in Section 5.1.
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(Hor:1 - Hor:6), VARMA models deliver the lowest RelMSFE in 63% of the cases. Com-

pared with the BVAR group, VARMA models remain dominant, delivering more accurate

forecasts in 81% of the cases (Hor:1 - Hor:6). Moreover, the pk=1 and pk=2 specifications

are the ones that usually deliver the lowest RelMSFE measures among the VARMA speci-

fications. Specifically, pk=1 minimizes the SC3 criterion in all datasets, which indicates that

choosing the Kronecker indices that minimize the SC3 criterion pays off in terms of forecast

accuracy. Increasing the number of nonzero Kronecker indices from three to six, pk=3, pk=4,

pk=5, and pk=6 specifications, delivers stable RelMSFE measures which are less often the best

among the competitors. This is in line with the large datasets literature, which documents

that imposing restrictions on the parameter matrices of a standard VAR model improves

forecast accuracy (De Mol, Giannone, and Reichlin (2008), Carriero, Kapetanios, and Mar-

cellino (2011), and Bańbura, Giannone, and Reichlin (2010)). Choosing the Kronecker

indices according to the general Lütkepohl-Poskitt procedure and the Hannan-Kavalieris

algorithm typically yields more complex models (up to eight nonzero Kronecker indices),

stable RelMSFE measures, and a slightly less accurate forecast performance. Specifically,

while the pLP generally outperforms the AR, ARMA, and VAR for short horizons, it is

outperformed by FM, and BVAR specifications. With regard to the estimation of VARMA

models, the IOLS estimator works well, presenting an average convergence rate of 93%.

Additionally, its relative performance with respect to the DJ2, HK, and KP estimators is

positive. Considering the pk=1 and the pk=2 specifications, the IOLS estimator outperforms

its linear competitors in 81% of the cases (Table 4).

We now discuss the results for K = 20. Overall, VARMA models are very competitive

in the short horizons (Hor:1 - Hor:6), outperforming the AR, ARMA, VAR, FM and BVAR

groups in 90%, 71%, 94%, 79%, and 88% of the cases, respectively. Results are also stable

across the different datasets and VARMA specifications, showing robustness of the VARMA

framework. Differently from the K = 10 scenario, there is not a clear winner among

the VARMA specifications, although pk=1 remains very competitive and minimizes the

SC3 criterion. While setting the number of nonzero Kronecker indices as k ∈ (2, 3, 4, 5, 6)

typically does not improve forecast accuracy (pk=6 in Dataset 3 is the exception), the data

driven Lütkepohl-Poskitt procedure emerges as a strong competitor and yields the most

accurate forecasts among all VARMA specifications in 29% of the cases. The IOLS estimator

presents rates of convergence averaging 94% (across all specifications) and usually delivers
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more accurate forecasts than the DJ2, HK, and KP estimators in the long horizons. The

strong performance of the HK estimator in the short horizons is in line with the Monte

Carlo results.

Considering the case of large datasets (K = 40), we find that VARMA models stay very

competitive, outperforming the AR, ARMA, VAR, FM, and BVAR groups in 92%, 81%,

96%, 58%, and 82% of the cases, respectively. The general pLP specification now emerges

as the clear winner among the VARMA specifications, as it produces the most accurate

forecasts in 46% of the cases. In turn, the Lütkepohl-Poskitt procedure is able to select the

relevant Kronecker indices to forecast the key macroeconomic variables and preserves some

degree of sparseness in the parameter matrices, which is important when forecasting using

rich datasets. The good performance of the pLP specification is also due to the use of the

IOLS estimator, as the IOLS estimator outperforms the DJ2, HK, and KP estimators in

68%, 71%, and 94% of the cases (Table 4). Indeed, the Monte Carlo simulations show that

the IOLS estimator delivers an outstanding performance in large sized systems, (K = 40

and K = 52). We report marginal gains in terms of forecast accuracy when moving from

the pk=1 specification to the more general models where the number of nonzero Kronecker

indices are k ∈ (2, 3, 4, 5, 6). Similarly to the case of the pLP specification, the IOLS

estimator systematically delivers more accurate forecasts than the alternative estimators.

Considering the specifications with k ∈ (1, 2, 3, 4, 5, 6), the IOLS estimator outperforms the

DJ2, HK, and KP estimators in 79%, 87%, and 86% of the cases, respectively (Table 4),

and improves the RelMSFE measures in 19%, 33%, and 40% on average for the DJ2, HK,

and KP estimators, respectively (Hor:1 - Hor:6).25 Finally, the IOLS estimator remains a

robust alternative, achieving convergence in 93% of the rolling windows (all specifications).

We now turn our attention to the results using the entire dataset (K = 52). When

comparing the performance of VARMA models with the BVAR group, the former delivers

lower RelMSFE measures in 72% of the cases. This is a strong result in favour of VARMA

models, since BVAR specifications are known to be very competitive when forecasting with

large datasets. Overall, factor models deliver the best performance. Among the VARMA

specifications, pk=1 and pk=2 deliver the best results. Increasing the number of nonzero

Kronecker indices to k ∈ (3, 4, 5, 6) delivers at most marginal improvements in terms of

RelMSFE measures. When the IOLS estimator presents low convergence rates (pLP and

25Results available upon request.
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pHK specifications), VARMA models become less competitive. Alternatively, using the

RelMSFE measures obtained with the DJ2, HK, and KP estimators does not help either, as

they yield no qualitative improvement in terms of forecast hierarchy when compared to the

IOLS based measures. On the comparison of the IOLS and the alternative linear estimators,

the IOLS estimator largely outperforms (presents values greater than 50%) the DJ2, HK,

and KP estimators for the pk=1 , pk=2, pk=3, pk=4, pk=5, and pk=6 specifications. Specifically,

the IOLS estimator outperforms the DJ2, HK, and KP estimators in 83%, 98%, and 94%

of the cases, respectively (Table 4), and improves the RelMSFE measures compared to the

DJ2, HK, and KP estimators an average of 33%, 54%, and 70%, respectively, (Hor:1 -

Hor:3).26 Finally, convergence rates for these specifications are 100%.

To sum up the results of this section, VARMA models estimated using the IOLS estima-

tor are generally very competitive and able to beat the four most prominent competitors in

this type of study: AR, ARMA, factor models and BVAR models. This finding is especially

present for the pk=1 and pLP specifications. VARMA results are also stable across the differ-

ent datasets and Kronecker indices specifications, indicating that the framework adopted is

fairly robust. Considering all system sizes and datasets, VARMA specifications deliver the

lowest RelMSFE measures for the one-, two-, three-, and six-month-ahead forecast in 63%

of the cases, indicating that VARMA models are indeed strong candidates to forecast key

macroeconomic variables using small, medium and large sized datasets. It is particularly

relevant to highlight the performance of VARMA models relative to the BVAR models, as

VARMA models systematically deliver more accurate forecasts for all datasets. The IOLS

estimator is a valid alternative to deal with large and complex VARMA systems (conver-

gence rates averaging 92%) and compares favourably with the main linear competitors (more

accurate forecasts in 69% of the cases). Finally, our findings reinforce two important aspects:

using the Echelon form transformation either in the fashion of DGPs III-VI or using the

Lütkepohl-Poskitt procedure is a powerful tool to deal with high-dimensional models; and

that IOLS estimator is particularly suitable to estimate high-dimensional VARMA models,

as the Monte Carlo simulations and empirical results suggest.

26Results available upon request.
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6 Conclusion

This paper addresses the issue of modelling and forecasting key macroeconomic variables

using rich (small, medium and large sized) datasets. We propose the use of VARMA models

as a feasible framework for this task. We overcome the natural difficulties in estimating

medium- and high-dimensional VARMA models with the MLE framework by adopting the

IOLS estimator.

We establish the consistency and asymptotic distribution for the IOLS estimator by

considering the general weak and strong VARMA(p,q) models. It is also important to point

out that our theoretical results are obtained under weak assumptions that are compatible

with the quasi-maximum-likelihood (QMLE) estimator. The extensive Monte Carlo study

shows that the IOLS estimator is feasible and consistent in small and high-dimensional sys-

tems. Furthermore, the IOLS estimator outperforms the MLE and other linear estimators,

in terms of mean squared error, in a variety of scenarios: when T is small; disturbances are

weak; near-to-zero eigenvalues; and high-dimensional models (K = 40 and K = 52). The

empirical results show that VARMA models perform better than AR(1), ARMA(1,1), VAR,

BVAR, and factor models for different system sizes and datasets. We find that VARMA

models estimated with the IOLS estimator are very competitive at forecasting short hori-

zons (one-, two-, three- and six-month-ahead horizons) in small, medium, and large sized

datasets. In particular, the pk=1 and the general pLP specifications most often emerge as the

ones which produce the most accurate results among all VARMA specifications. Finally,

we find that VARMA models estimated with the IOLS estimator usually deliver better

forecasts than the ones estimated with the alternative linear estimators.
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7 Appendix

Proof of Theorem 1: Denote φ = (φ1, φ2, ..., φn)
′ with φ ∈ B, as an n-dimensional vec-

tor collecting the parameter estimates of a general weak VARMA(p,q) model. We start

proving the consistency of the IOLS estimator. This proof follows analogous steps as in

Theorems 2 and 4 in Dominitz and Sherman (2005) (DS henceforth). The steps in our

proof are related to the primitive conditions in these theorems and hence we refer to them
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to easy the exposition. From DS, if N (φ) is an ACM on (B, En), then N (φ) is also a

contraction mapping. Item i. in Assumption B.3 implies that N
(
βj
)
is an ACM, so that

∣∣N
(
βj−1

)
−N (β)

∣∣ ≤ κ
∣∣βj−1 − β

∣∣ and N (β) = β hold. From Lemma 5, the sample map-

ping is an ACM on (B, En) with a fixed point β̂ in the closed set B, β̂ ∈ B (condition ii. in

DS’s Theorem 4). First, bound
∣∣∣β̂ − β

∣∣∣ as

∣∣∣β̂ − β
∣∣∣ ≤

∣∣βj − β
∣∣+
∣∣∣β̂ − βj

∣∣∣ . (20)

To show that
∣∣βj − β

∣∣ converges to zero, rewrite it as

∣∣βj − β
∣∣ =

∣∣N
(
βj−1

)
−N (β)

∣∣ ≤ κ
∣∣βj−1 − β

∣∣ . (21)

Recursive substitution of (21) yields
∣∣βj − β

∣∣ ≤ κj
∣∣β0 − β

∣∣. As j −→ ∞,
∣∣βj − β

∣∣ = o (1),

and hence the first term on the right-hand side of (20) converges to zero. It remains to

show that
∣∣∣β̂ − βj

∣∣∣ has order op (1). We bound
∣∣∣β̂ − βj

∣∣∣ using the auxiliary result given by

(S.46) in Lemma 5, so that

∣∣∣β̂ − βj
∣∣∣ ≤ κj

∣∣∣β0 − β̂
∣∣∣+
(

j−1∑

i=0

)
κi

[
sup
φ∈B

∣∣∣N̂T (φ)−N (φ)
∣∣∣
]
, (22)

where β0 is the vector collecting the initial estimates for the population mapping. As

j −→ ∞, with κ ∈ (0, 1], β0 ∈ B, β̂ ∈ B, and B is a closed ball centered at β, it follows that

(22) reduces to

∣∣∣β̂ − βj
∣∣∣ ≤ sup

φ∈B

∣∣∣N̂T (φ)−N (φ)
∣∣∣
[

1

1− κ

]
. (23)

Because the second term in brackets on the right-hand side of (23) is bounded and the

first term has order op (1), (Lemma 3),
∣∣∣β̂ − βj

∣∣∣ = op(1), which implies
∣∣∣β̂ − β

∣∣∣ = op(1)

and completes the proof of the consistency result. The consistency result is equivalent to

condition i. in DS’s Theorem 4, as β̂j converges uniformly in B to β̂ (Lemma 5).

We now turn our attention to the asymptotic distribution of the IOLS estimator. First,

write

√
T
∣∣∣β̂j − β

∣∣∣ ≤
√
T
∣∣∣β̂ − β

∣∣∣+
√
T
∣∣∣β̂j − β̂

∣∣∣ . (24)
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Lemma 6 gives that the second term on the right-hand side of (24) is op (1) as j, T −→ ∞

and ln(T )
j = o(1) (condition iii. in DS’s Theorem 4). Next, rewrite

√
T
[
β̂ − β

]
as

√
T
[
β̂ − β

]
=
√
T
[
N̂T (β)− N̆T (β)

]
+
√
T
[
N̂T

(
β̂
)
− N̂T (β)

]
+
√
T
[
N̆T (β)− β

]
. (25)

Lemma 2 gives
√
T
[
N̂T (β)− N̆T (β)

]
= Op

(
T−1/2

)
. Using the mean value theorem,

rewrite the second term on the right-hand side of (25) as

√
T
[
N̂T

(
β̂
)
− N̂T (β)

]
=
√
T
{[

N̂T

(
β̂
)
− N̆T

(
β̂
)]

+
[
N̆T (β)− N̂T (β)

]}
+

√
T
{
Λ̆T

(
β̂, β

) [
β̂ − β

]}
, (26)

where Λ̆T

(
β̂, β

)
=
∫ 1
0 V̆T

(
β̂ + ξ

(
β̂ − β

))
dξ. Because the first term has order Op(T

−1/2)

and Λ̆T

(
β̂, β

) [
β̂ − β

]
converges uniformly to its population counterpart (Lemma 4), (25)

reads

√
T
[
β̂ − β

]
=
√
T

[[
In − Λ

(
β̂, β

)]−1 [
N̆T (β)− β

]]
. (27)

Notably, Lemma 4 fulfills the condition v. in DS’s Theorem 4. From item (i.) in Theorem 1,

β̂ converges in probability to β as j −→ ∞ with T −→ ∞, implying that Λ
(
β̂, β

)
converges

in probability to V (β). It follows that (27) reduces to

√
T
[
β̂ − β

]
=
√
T
[
[In − V (β)]−1

[
N̆T (β)− β

]]
. (28)

The next step consists of proving condition iv. in DS’s Theorem 4. As N̆T (β) is evaluated

at the true vector of parameters and T −→ ∞, it follows that
√
T
[
N̆T (β)− β

]
reads

√
T
[
N̆T (β)− β

]
=


R′




 1

T

T∑

t=q̄+1

XtX
′
t


⊗ IK


R



−1

×


 1√

T

T∑

t=q̄+1

R′ (Xt ⊗ IK)Ut


 .

(29)

Recall that the last term is not an m.d.s, because Ut is not an i.i.d. process. Assumption

B.1 allows a VMA(∞) representation of Yt of the form Yt =
∑∞

i=0ΘiUt−i with Θ0 = IK . As

discussed in Francq and Zakoian (1998), a stationary process which is a function of a finite
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number of current and lagged values of Ut satisfies a mixing property of the form Assumption

B.2. Using the VMA(∞) representation of Yt, partition Xt in (29) into Xt = Xr
t + Xr+

t ,

such that

Xt =




Yt − Ut

Yt−1

...

Yt−p

Ut−1

...

Ut−q




=




∑r
i=1ΘiUt−i

∑r
i=0ΘiUt−1−i

...

∑r
i=0ΘiUt−p−i

Ut−1

...

Ut−q




+




∑∞
i=r+1ΘiUt−i

∑∞
i=r+1ΘiUt−1−i

...

∑∞
i=r+1ΘiUt−p−i

0

...

0




= Xr
t +Xr+

t . (30)

Rewrite 1√
T

∑T
t=q̄+1R

′ (Xt ⊗ IK)Ut as

1√
T

T∑

t=q̄+1

R′ (Xt ⊗ IK)Ut =
1√
T

T∑

t=q̄+1

R′ (Xr
t ⊗ IK)Ut +

1√
T

T∑

t=q̄+1

R′ (Xr+
t ⊗ IK

)
Ut. (31)

Auxiliary results in Dufour and Pelletier (2014, Theorem 4.2) show that the second term

on the right-hand side of (31) converges uniformly to zero in T as r → ∞. It follows that

first term on the right-hand side of (31) satisfies the strong mixing conditions of the form

Assumption B.2. We are now in position to use Ibragimov’s 1962 central limit theorem for

strong mixing processes (see also Dufour and Pelletier (2014, Lemma A.2)). This yields

1√
T

∑T
t=1R

′ (Xr
t ⊗ IK)Ut

d−→ N (0, Ir). From Francq and Zakoian, 1998, p. 157, Ir p−→ I

as r → ∞, such that as T, r → ∞

√
T
[
N̆T (β)− β

]
d−→ N

(
0, ZIZ ′) , (32)

where I =
∑∞

ℓ=−∞ E
{
[R′ (Xt ⊗ IK)Ut] [R

′ (Xt−ℓ ⊗ IK)Ut−ℓ]
′}, and Z = [R′ (H ⊗ IK)R]−1

with H = plim 1
T

∑T
t=q̄+1XtX

′
t. The final result of this Theorem is obtained by combining

the first element of the right-hand side of (28) with (32), such that

√
T
[
β̂ − β

]
d−→ N

(
0, JZIZ ′J ′) , (33)
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where J = [In − V (β)]−1.

Proof of Corollary 1: The consistency result follows directly from item i. in Theorem 1.

To show item ii., rewrite
√
T
[
β̂ − β

]
using the same arguments as in the proof of Theorem

1, such that

√
T
[
β̂ − β

]
=
√
T
[
[In − V (β)]−1

[
N̆T (β)− β

]]
. (34)

The limiting distribution of (34) depends on the limiting behaviour of,

√
T
[
N̆T (β)− β

]
=


R′




 1

T

T∑

t=q̄+1

XtX
′
t


⊗ IK


R



−1 
 1√

T

T∑

t=q̄+1

R′ (Xt ⊗ IK)Ut


 . (35)

Because Ut is an i.i.d. process, it follows that R′ (Xt ⊗ IK)Ut is an m.d.s, in that the central

limit theorem for m.d.s can be used to show that (35) converges in distribution to

√
T
[
N̆T (β)− β

]
d−→ N

(
0, ZR′ (H ⊗ Σu)RZ ′) , (36)

where Z = [R′ (H ⊗ IK)R]−1 and H = plim 1
T

∑T
t=q̄+1XtX

′
t. Define J = [In − V (β)]−1

and combine (34) with (36), and the asymptotic distribution of the IOLS estimator for the

strong VARMA(p,q) models reads,

√
T
[
β̂ − β

]
d−→ N

(
0, JZR′ (H ⊗ Σu)RZ ′J ′) . (37)

Lemma 1 Assume Assumptions B.1 and B.2 hold, then V̂T

(
β̂j
)
=

∂N̂T (β̂j)
∂β̂j′

is given by:

V̂T

(
β̂j
)
=




[
I1 ⊗W j−1

] 1

T − q̄

T∑

t=1+q̄

{
(
Y ′
t ⊗ In

) (
IK ⊗R′)×

[
(I1 ⊗KK,f ⊗ IK) (If ⊗ vec (IK))

]∂vec
(
X̂j

t

)

∂β̂j′

}
+

{


 1

T − q̄

T∑

t=1+q̄

X̃j′
t Yt




′

⊗ In



[
−
(
W j
)−1 ⊗

(
W j
)−1

]
×

[
1

T − q̄

T∑

t=1+q̄

{[
(In2 +Kn,n)

(
In ⊗ X̃j′

t

) (
R′ ⊗ IK

)
×

[(If ⊗KK,1 ⊗ IK) (If ⊗ vec (IK))]
∂vec

(
X̂j′

t

)

∂β̂j′

}]}

(38)
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where K is the commutation matrix, f = K (p+ q + 1), q̄ = max {p, q},

W j =
(

1
T−q̄

∑T
t=1+q̄ X̃

j′
t X̃

j
t

)
, and

∂vec(X̂j
t )

∂β̂j′
=

∂vec(X̂j′
t )

∂β̂j′
with

∂vec
(
X̂j

t

)

∂β̂j′
= vec

(
− ∂Ûj

t

∂β̂j′
, 0K,n, · · · 0K,n,

∂Ûj
t−1

∂β̂j′
, · · · , ∂Ûj

t−q

∂β̂j′

)
and (39)

∂Û j
t

∂β̂j′
=

{(
Âj−1

0

[
Âj

1Yt−1+...+ Âj
pYt−p + M̂ j

1 Û
j
t−1 + ...+ M̂ j

q Û
j
t−q

])′

⊗ Âj−1

0

}
×

[
IK2 : 0 : ... : 0

]
R−

[ (
Y ′
t−1, ..., Y

′
t−p, Û

j′
t−1, ..., Û

j′
t−q

)
⊗ Âj−1

0

][
0 : IK2(p+q)

]
R−

Âj−1

0

[
M j

1

∂Û j
t−1

∂β̂j′
+ ...+M j

q

∂Û j
t−q

∂β̂j′

]
.

(40)

Proof. See Section S.1 in the online Supplement.

Lemma 2 Assume Assumptions B.1 and B.2 hold. Then,

supφ∈B

∥∥∥N̂T (φ)− N̆T (φ)
∥∥∥ = Op

(
T−1

)
.

Proof. See Section S.1 in the online Supplement.

Lemma 3 Assume Assumptions B.1, B.2, and B.3 hold. Then,

supφ∈B

∥∥∥N̂T (φ)−N (φ)
∥∥∥ = op (1) as T −→ ∞.

Proof. See Section S.1 in the online Supplement.

Lemma 4 Assume Assumptions B.1, B.2, and B.3 hold. Then,

supφ,γ∈B

∥∥∥
[
Λ̂T (φ, γ)− Λ (φ, γ)

]
(φ− γ)

∥∥∥ = op (1) as T −→ ∞,

supφ,γ∈B

∥∥∥
[
Λ̆T (φ, γ)− Λ (φ, γ)

]
(φ− γ)

∥∥∥ = op (1) as T −→ ∞.

Proof. See Section S.1 in the online Supplement.

Lemma 5 Assume Assumptions B.1, B.2, and B.3 hold, then, N̂T (φ) is an ACM on

(B, En), with φ ∈ B and it has fixed point denoted by β̂, such that
∣∣∣β̂j − β̂

∣∣∣ = op (1) uniformly

in B as j, T −→ ∞.

Proof. See Section S.1 in the online Supplement.

Lemma 6 Assume Assumptions B.1, B.2, and B.3 hold. If

i. N̂T (φ) is an ACM on (B, En)

then,
√
T
∣∣∣β̂j − β̂

∣∣∣ = op (1) as j, T −→ ∞ and ln(T )
j = o(1).

Proof. See Section S.1 in the online Supplement.
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Table 1: Monte Carlo - Weak VARMA(1,1) models: Small Sized Systems, K = 3.

DGP I DGP II DGP III

T=50, n = 18 T=50, n = 18 T=50, n = 6

HR IOLS DJ2 HK KP MLE HR IOLS DJ2 HK KP MLE HR IOLS DJ2 HK KP MLE

MRRMSE 1.00 0.89 0.81 1.09 0.95 0.91 1.00 0.95 0.97 1.10 0.97 1.08 1.00 0.66 0.77 0.78 0.98 0.61

Share (%) 0% 39% 39% 0% 17% 6% 0% 44% 0% 0% 33% 22% 0% 67% 0% 0% 0% 33%

Convergence(%) 97% 47% 73% 84% 85% 45% 98% 25% 83% 72% 91% 24% 99% 66% 96% 88% 95% 72%

T=100, n = 18 T=100, n = 18 T=100, n = 6

HR IOLS DJ2 HK KP MLE HR IOLS DJ2 HK KP MLE HR IOLS DJ2 HK KP MLE

MRRMSE 1.00 0.98 0.91 1.05 0.99 0.97 1.00 1.00 0.99 1.11 1.01 1.13 1.00 0.79 0.85 0.82 1.11 0.75

Share (%) 0% 39% 17% 6% 11% 28% 11% 44% 6% 0% 28% 11% 0% 67% 0% 0% 0% 33%

Convergence(%) 99% 67% 88% 95% 94% 86% 99% 37% 93% 78% 97% 59% 99% 70% 99% 91% 100% 90%

T=150, n = 18 T=150, n = 18 T=150, n = 6

HR IOLS DJ2 HK KP MLE HR IOLS DJ2 HK KP MLE HR IOLS DJ2 HK KP MLE

MRRMSE 1.00 1.03 1.05 1.06 1.00 1.00 1.00 0.96 1.02 1.04 1.01 1.09 1.00 0.86 1.29 0.87 1.17 0.82

Share (%) 6% 28% 22% 6% 11% 28% 0% 56% 33% 6% 0% 6% 0% 67% 0% 0% 0% 33%

Convergence(%) 100% 76% 81% 98% 97% 94% 100% 42% 83% 83% 99% 70% 100% 72% 98% 93% 100% 95%

T=200, n = 18 T=200, n = 18 T=200, n = 6

HR IOLS DJ2 HK KP MLE HR IOLS DJ2 HK KP MLE HR IOLS DJ2 HK KP MLE

MRRMSE 1.00 1.04 1.04 1.06 0.99 1.01 1.00 0.94 1.02 1.02 1.01 1.05 1.00 0.88 1.29 0.88 1.16 0.85

Share (%) 11% 33% 6% 6% 11% 33% 0% 44% 33% 11% 0% 11% 0% 67% 0% 0% 0% 33%

Convergence(%) 100% 80% 86% 99% 98% 95% 100% 48% 86% 87% 99% 74% 100% 71% 100% 93% 100% 97%

T=400, n = 18 T=400, n = 18 T=400, n = 6

HR IOLS DJ2 HK KP MLE HR IOLS DJ2 HK KP MLE HR IOLS DJ2 HK KP MLE

MRRMSE 1.00 1.05 1.04 1.03 1.00 1.00 1.00 0.88 1.07 0.95 1.01 0.92 1.00 0.90 1.39 0.92 1.16 0.91

Share (%) 6% 28% 6% 6% 17% 39% 0% 44% 33% 0% 0% 22% 0% 67% 0% 0% 0% 33%

Convergence(%) 100% 88% 95% 100% 99% 97% 100% 57% 88% 91% 99% 80% 100% 71% 100% 95% 100% 99%

We report results for weak VARMA(1,1) models simulated with different Kronecker indices. The first set of results reports results for DGP I, while the second and third set of
results display results for weak VARMA(1,1) models simulated from DGPs II and III, respectively. Recall that DGP I and II set all the Kronecker indices to one, p = (1, 1, 1)′,
while DGP III sets p = (1, 0, 0)′. DGPs I and II differ with respect to the eigenvalues driving the AR and MA parameter matrices. DGP I has all the eigenvalues associated with
both the AR and MA parameter matrices set to 0.5, while DGP II has eigenvalues associated with the AR and MA components given by (0.80, 0.20, 0.05)′ and (0.90,−0.02,−0.20)′,
respectively. The true vector of parameters in DGP III collects the estimates obtained by fitting a VARMA(1,1) model to the first rolling window of a dataset comprising only the
three key macroeconomic variables studied in Section 5. File “DGPsfile.csv” (available online) contains the true values. n accounts for the number of free parameters in A0, A1,
and M1 parameter matrices. MRRMSE is the mean of the RRMSE measures of all parameters. The lowest MRRMSE is highlighted in bold. RRMSE measures are computed as the
ratio of the RMSE (root median squared error) measures obtained from a given estimator over the HR estimator. Share is the percentage over the total number of free parameters
for which a given estimator delivers the lowest MRRMSE. The highest Share is highlighted in bold. Convergence is the percentage of replications in which the algorithms converged
and yielded invertible and stable models. HR is the two-stage estimator of Hannan and Rissanen (1982); DJ2 is the two-step estimator of Dufour and Jouini (2014); HK is the
three-stage estimator of Hannan and Kavalieris (1984); KP is the multivariate version of the three-step estimator of Koreisha and Pukkila (1990) as formulated in Kascha (2012);
and MLE accounts for the maximum-likelihood estimator. The number of replications is set to 5,000.
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Table 2: Monte Carlo - Weak VARMA(1,1) models: Medium and Large Sized Systems, K = 10, K = 20, K = 40 and K = 52, with T = 400.

DGP III DGP IV DGP V DGP VI

K=10, n = 20 K=10, n = 40 K=10, n = 60 K=10, n = 120

HR IOLS DJ2 HK KP HR IOLS DJ2 HK KP HR IOLS DJ2 HK KP HR IOLS DJ2 HK KP

MRRMSE 1.00 0.99 2.00 0.76 1.17 1.00 0.94 1.57 0.89 1.22 1.00 0.97 1.46 0.94 1.20 1.00 0.98 1.18 0.99 1.10

Share (%) 0% 25% 5% 70% 0% 10% 23% 8% 60% 0% 17% 18% 17% 48% 0% 10% 32% 38% 15% 5%

Convergence(%) 100% 98% 100% 100% 98% 100% 92% 99% 100% 95% 100% 83% 99% 100% 95% 100% 83% 100% 100% 85%

K=20, n = 40 K=20, n = 80 K=20, n = 120 K=20, n = 240

HR IOLS DJ2 HK KP HR IOLS DJ2 HK KP HR IOLS DJ2 HK KP HR IOLS DJ2 HK KP

MRRMSE 1.00 1.01 2.23 0.79 1.49 1.00 0.98 1.76 0.87 1.41 1.00 0.98 1.65 0.88 1.45 1.00 0.96 1.30 0.92 1.38

Share (%) 30% 15% 0% 55% 0% 19% 19% 1% 61% 0% 13% 14% 7% 65% 2% 4% 24% 22% 47% 3%

Convergence(%) 100% 100% 100% 100% 82% 100% 97% 100% 100% 80% 100% 94% 100% 100% 75% 100% 77% 100% 100% 81%

K=40, n = 80 K=40, n = 160 K=40, n = 240 K=40, n = 480

HR IOLS DJ2 HK KP HR IOLS DJ2 HK KP HR IOLS DJ2 HK KP HR IOLS DJ2 HK KP

MRRMSE 1.00 0.35 1.30 0.46 1.07 1.00 0.44 1.30 0.59 1.28 1.00 0.47 1.36 0.62 1.37 1.00 0.53 1.35 0.70 1.38

Share (%) 4% 56% 0% 40% 0% 9% 75% 0% 16% 0% 10% 83% 0% 8% 0% 14% 86% 0% 1% 0%

Convergence(%) 100% 100% 87% 100% 65% 100% 99% 87% 100% 62% 100% 100% 80% 99% 45% 100% 99% 77% 99% 28%

K=52, n = 104 K=52, n = 208 K=52, n = 312 K=52, n = 624

HR IOLS DJ2 HK KP HR IOLS DJ2 HK KP HR IOLS DJ2 HK KP HR IOLS DJ2 HK KP

MRRMSE 1.00 0.41 2.01 0.45 2.39 1.00 0.43 1.71 0.53 2.16 1.00 0.48 1.92 0.58 2.76 1.00 0.57 1.63 0.70 2.38

Share (%) 4% 51% 0% 45% 0% 4% 67% 0% 29% 0% 6% 82% 0% 12% 0% 13% 85% 1% 1% 0%

Convergence(%) 100% 100% 81% 99% 36% 100% 100% 75% 97% 22% 100% 100% 63% 96% 8% 100% 99% 43% 95% 4%

We report results for weak VARMA(1,1) models simulated with different Kronecker indices and system sizes. The first set of results reports results for DGP III, while the second, third, and four set of results display
results for weak VARMA(1,1) models simulated from DGPs IV, V, and VI, respectively. Recall that DGPs III, IV, V, and VI set the first k Kronecker indices to one and the remaining K − k Kronecker indices to zero,
so that p = (p1, p2, ..., pK)′ with pi = 1 for i ≤ k and pi = 0 for all i > k. DGPs III, IV, V, and VI have k = 1, k = 2, k = 3, and k = 6, respectively. The true vectors of parameters in these DGPs are the estimates
obtained by fitting VARMA(1,1) models to the first rolling window of Dataset 1 in their respective system dimensions. File “DGPsfile.csv” (available online) contains the true values. n accounts for the number of free
parameters in A0, A1, and M1 parameter matrices. MRRMSE is the mean of the RRMSE measures of all parameters. The lowest MRRMSE is highlighted in bold. RRMSE measures are computed as the ratio of the
RMSE (root median squared error) measures obtained from a given estimator over the HR estimator. Share is the percentage over the total number of free parameters for which a given estimator delivers the lowest
MRRMSE. The highest Share is highlighted in bold. Convergence is the percentage of replications in which the algorithms converged and yielded invertible and stable models. HR is the two-stage estimator of Hannan and
Rissanen (1982); DJ2 is the two-step estimator of Dufour and Jouini (2014); HK is the three-stage estimator of Hannan and Kavalieris (1984); and KP is the multivariate version of the three-step estimator of Koreisha
and Pukkila (1990) as formulated in Kascha (2012). The number of replications is set to 1,000.
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Table 3: Forecast Summary: VARMA Out-of-Sample Performance Relative to Alternative
Group of Models

K = 3

VARMA pk=1 pk=LP

AR ARMA VAR FM BVAR AR ARMA VAR FM BVAR AR ARMA VAR FM BVAR

Hor: 1 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 67% 100% 100% 100% 33%

Hor: 2 100% 100% 100% 100% 100% 100% 67% 100% 100% 100% 67% 67% 100% 100% 33%

Hor: 3 100% 67% 100% 100% 100% 67% 33% 67% 100% 67% 100% 33% 100% 100% 67%

Hor: 6 100% 100% 100% 100% 100% 100% 100% 67% 100% 100% 67% 33% 33% 67% 67%

Hor: 9 67% 100% 100% 0% 67% 67% 67% 100% 0% 67% 0% 0% 0% 0% 0%

Hor: 12 67% 67% 67% 33% 67% 67% 33% 33% 33% 33% 33% 33% 0% 0% 33%

K = 10

VARMA pk=1 pLP

AR ARMA VAR FM BVAR AR ARMA VAR FM BVAR AR ARMA VAR FM BVAR

Hor: 1 83% 92% 100% 67% 42% 83% 83% 100% 58% 42% 50% 58% 92% 25% 17%

Hor: 2 100% 83% 100% 92% 100% 92% 75% 100% 83% 92% 67% 58% 92% 67% 42%

Hor: 3 100% 50% 100% 92% 100% 83% 33% 83% 75% 58% 50% 25% 75% 42% 25%

Hor: 6 92% 100% 92% 100% 100% 100% 83% 67% 100% 50% 58% 58% 50% 75% 33%

Hor: 9 100% 92% 58% 33% 83% 100% 92% 50% 17% 50% 50% 58% 8% 25% 33%

Hor: 12 100% 92% 67% 67% 92% 58% 58% 50% 58% 75% 33% 33% 33% 17% 42%

K = 20

VARMA pk=1 pLP

AR ARMA VAR FM BVAR AR ARMA VAR FM BVAR AR ARMA VAR FM BVAR

Hor: 1 75% 67% 100% 75% 75% 67% 58% 92% 58% 67% 58% 33% 75% 50% 33%

Hor: 2 100% 75% 100% 75% 100% 75% 58% 92% 67% 83% 75% 50% 83% 50% 75%

Hor: 3 100% 42% 100% 67% 92% 83% 33% 58% 17% 50% 67% 33% 58% 42% 58%

Hor: 6 83% 100% 75% 100% 83% 100% 75% 58% 100% 50% 83% 67% 58% 67% 50%

Hor: 9 100% 83% 75% 33% 83% 100% 75% 67% 33% 58% 83% 75% 58% 25% 67%

Hor: 12 100% 75% 75% 42% 100% 58% 67% 58% 42% 42% 42% 42% 33% 42% 25%

K = 40

VARMA pk=1 pLP

AR ARMA VAR FM BVAR AR ARMA VAR FM BVAR AR ARMA VAR FM BVAR

Hor: 1 83% 75% 100% 67% 92% 67% 42% 100% 33% 67% 67% 67% 100% 50% 75%

Hor: 2 83% 83% 100% 58% 92% 67% 50% 100% 33% 75% 75% 67% 100% 50% 75%

Hor: 3 100% 58% 100% 75% 92% 42% 33% 100% 17% 42% 67% 25% 100% 58% 58%

Hor: 6 92% 100% 75% 56% 67% 100% 67% 100% 42% 42% 67% 58% 100% 42% 58%

Hor: 9 100% 83% 100% 33% 75% 100% 67% 100% 8% 33% 58% 42% 100% 25% 42%

Hor: 12 92% 83% 100% 58% 75% 33% 67% 100% 42% 42% 42% 58% 100% 58% 58%

K = 52

VARMA pk=1 pLP

AR ARMA VAR FM BVAR AR ARMA VAR FM BVAR AR ARMA VAR FM BVAR

Hor: 1 67% 33% 100% 33% 67% 67% 33% 100% 33% 67% 0% 0% 100% 0% 67%

Hor: 2 67% 33% 100% 33% 67% 67% 33% 100% 33% 67% 33% 33% 100% 33% 33%

Hor: 3 100% 67% 100% 33% 100% 67% 33% 100% 0% 67% 0% 0% 100% 0% 0%

Hor: 6 100% 67% 100% 67% 67% 100% 67% 100% 67% 33% 0% 0% 100% 0% 0%

Hor: 9 100% 67% 100% 33% 67% 100% 67% 100% 0% 33% 0% 0% 100% 0% 0%

Hor: 12 67% 100% 100% 67% 67% 33% 67% 100% 33% 33% 33% 33% 100% 67% 33%

Hor:1, Hor: 2, Hor: 3, Hor: 6, Hor: 9, and Hor: 12 account for one-, two- three- six-, nine-, and twelve-month-ahead forecast, respectively. For each
system size, the first panel reports the frequency (in percentage points) for which at least one of the VARMA specifications (pk=1, pk=2, pk=3,
pk=4, pk=5, pk=6, pLP , and pHK) outperforms (delivers the lowest RelMSFE measures) the assigned group of competitors in a given forecast
horizon. The second and third panel report the frequencies for which the pk=1 and pLP specifications, respectively, outperform the assigned group
of competitors. We consider five groups of competitors. AR collects the AR(1) model; ARMA has the ARMA(1,1) specifications estimated with the
IOLS and MLE estimators, VAR contains the VAR(p∗) model, where p∗ is obtained by minimizing the AIC criterion; FM gathers the factor model
specifications, namely FMIC3

and FMSC ; and BVAR aggregates the three Bayesian VAR models: BVARSC, BVAR0.2, and BVARopt. Percentages

are also computed across the four datasets discussed in Section 5.1. Values greater or equal than 50% are highlighted in bold.

39



Table 4: Forecast: IOLS Out-of-Sample Performance Relative to Alternative VARMA Estimators

K = 3

VARMA pk=1 pk=2 pk=3 pk=4 pk=5 pk=6 pk=LP pk=HK

DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP

Hor: 1 73% 80% 67% 100% 33% 100% 100% 67% 67% 33% 100% 33% - - - - - - - - - 33% 100% 33% 100% 100% 100%

Hor: 2 87% 87% 60% 100% 67% 100% 100% 67% 67% 67% 100% 33% - - - - - - - - - 67% 100% 33% 100% 100% 67%

Hor: 3 73% 67% 53% 100% 67% 67% 100% 67% 67% 33% 67% 33% - - - - - - - - - 33% 67% 33% 100% 67% 67%

Hor: 6 73% 80% 67% 100% 100% 100% 100% 0% 100% 33% 100% 33% - - - - - - - - - 33% 100% 33% 100% 100% 67%

Hor: 9 60% 87% 40% 100% 100% 67% 100% 33% 67% 0% 100% 0% - - - - - - - - - 0% 100% 0% 100% 100% 67%

Hor: 12 73% 80% 47% 100% 100% 33% 100% 100% 67% 33% 67% 33% - - - - - - - - - 33% 67% 33% 100% 67% 67%

K = 10

VARMA pk=1 pk=2 pk=3 pk=4 pk=5 pk=6 pk=LP pk=HK

DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP

Hor: 1 45% 50% 40% 75% 58% 42% 42% 58% 50% 58% 42% 50% 50% 50% 58% 50% 50% 33% 25% 33% 50% 33% 42% 17% 25% 67% 17%

Hor: 2 42% 41% 47% 100% 75% 92% 92% 83% 92% 42% 33% 50% 25% 42% 50% 17% 25% 25% 8% 17% 25% 25% 25% 8% 25% 25% 33%

Hor: 3 60% 46% 56% 100% 83% 83% 100% 67% 83% 92% 58% 67% 42% 42% 83% 33% 42% 58% 33% 8% 33% 25% 50% 25% 58% 17% 17%

Hor: 6 64% 49% 64% 100% 75% 100% 100% 58% 75% 67% 33% 67% 42% 33% 67% 33% 50% 58% 75% 42% 83% 25% 58% 25% 67% 42% 33%

Hor: 9 60% 56% 60% 100% 83% 100% 100% 75% 100% 42% 58% 42% 25% 50% 50% 42% 33% 50% 58% 42% 58% 50% 58% 42% 67% 50% 42%

Hor: 12 77% 61% 73% 75% 92% 67% 92% 92% 75% 75% 75% 75% 67% 67% 75% 67% 33% 83% 75% 33% 75% 75% 50% 75% 92% 50% 58%

K = 20

VARMA pk=1 pk=2 pk=3 pk=4 pk=5 pk=6 pk=LP pk=HK

DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP

Hor: 1 45% 40% 66% 50% 0% 42% 33% 50% 58% 67% 58% 75% 58% 33% 75% 58% 58% 92% 50% 83% 92% 8% 8% 75% 33% 25% 17%

Hor: 2 43% 34% 57% 83% 17% 42% 75% 50% 75% 42% 25% 75% 33% 33% 50% 33% 33% 92% 17% 33% 67% 17% 42% 58% 42% 42% 0%

Hor: 3 64% 48% 61% 100% 42% 33% 100% 58% 42% 58% 50% 67% 75% 58% 75% 58% 42% 100% 42% 42% 50% 25% 42% 67% 50% 50% 58%

Hor: 6 70% 31% 61% 100% 42% 75% 100% 33% 75% 100% 25% 58% 75% 25% 67% 42% 17% 92% 50% 33% 50% 42% 50% 58% 50% 25% 17%

Hor: 9 65% 65% 72% 100% 92% 92% 100% 92% 92% 75% 58% 58% 50% 58% 67% 33% 50% 75% 33% 75% 67% 58% 50% 83% 67% 42% 42%

Hor: 12 74% 64% 76% 83% 100% 75% 83% 92% 83% 92% 50% 75% 67% 42% 83% 50% 33% 92% 83% 50% 83% 67% 58% 92% 67% 83% 25%

K = 40

VARMA pk=1 pk=2 pk=3 pk=4 pk=5 pk=6 pk=LP pk=HK

DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP

Hor: 1 85% 81% 98% 58% 75% 92% 100% 92% 100% 100% 100% 100% 100% 92% 100% 100% 67% 100% 100% 92% 100% 75% 67% 92% 50% 67% 100%

Hor: 2 76% 85% 97% 67% 100% 100% 92% 100% 100% 92% 92% 100% 100% 92% 100% 75% 75% 100% 83% 75% 100% 58% 58% 83% 42% 92% 92%

Hor: 3 72% 91% 93% 92% 100% 92% 100% 100% 100% 92% 100% 100% 100% 100% 100% 42% 92% 75% 75% 92% 92% 50% 58% 100% 25% 83% 83%

Hor: 6 68% 82% 81% 100% 75% 92% 100% 92% 75% 83% 92% 75% 100% 92% 92% 8% 75% 58% 33% 83% 67% 50% 58% 100% 67% 92% 92%

Hor: 9 73% 79% 88% 100% 75% 92% 100% 75% 67% 83% 83% 100% 83% 83% 92% 25% 67% 75% 50% 83% 75% 75% 92% 100% 67% 75% 100%

Hor: 12 73% 86% 68% 100% 100% 58% 100% 83% 42% 100% 100% 58% 50% 92% 75% 33% 67% 67% 42% 75% 75% 100% 92% 92% 58% 83% 75%

K = 52

VARMA pk=1 pk=2 pk=3 pk=4 pk=5 pk=6 pk=LP pk=HK

DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP DJ2 HK KP

Hor: 1 83% 83% 96% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 67% 0% 100% 0% 67% 67%

Hor: 2 58% 83% 88% 67% 100% 100% 100% 100% 100% 67% 100% 100% 67% 100% 100% 67% 100% 100% 100% 100% 100% 0% 0% 33% 0% 67% 67%

Hor: 3 75% 83% 88% 67% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 0% 0% 33% 33% 67% 67%

Hor: 6 83% 88% 96% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 67% 0% 0% 100% 67% 100% 100%

Hor: 9 67% 92% 88% 100% 100% 100% 67% 100% 67% 67% 100% 100% 67% 100% 100% 67% 100% 100% 67% 100% 33% 0% 33% 100% 100% 100% 100%

Hor: 12 50% 63% 67% 33% 67% 100% 67% 67% 100% 33% 100% 100% 67% 100% 100% 67% 100% 100% 67% 100% 33% 67% 67% 100% 67% 33% 33%

Hor:1, Hor: 2, Hor: 3, Hor: 6, Hor: 9, and Hor: 12 account for one-, two- three- six-, nine-, and twelve-month-ahead forecast, respectively. The first set of results, denoted as VARMA, summarizes the relative forecast
performance of all VARMA specifications. The remaining panels summarize the results for the eight VARMA specifications, i.e. pk=1, pk=2, pk=3, pk=4, pk=5, pk=6, pLP , and pHK . We report the frequency (in
percentage points) which the IOLS estimator delivers lower RelMSFE measures than the assigned competitor. Percentages are also computed across the four datasets. DJ2 is the two-step estimator of Dufour and Jouini
(2014); HK is the three-stage estimator of Hannan and Kavalieris (1984) and KP is the three-step multivariate version of Koreisha and Pukkila (1990). Values greater or equal than 50% are highlighted in bold.
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