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A Study on Low-Drift State Estimation for Humanoid Locomotion,

using LiDAR and Kinematic-Inertial Data Fusion

Vignesh Sushrutha Raghavan1,2, Dimitrios Kanoulas1, Chengxu Zhou1,

Darwin G. Caldwell1, and Nikos G. Tsagarakis1

Abstract— Several humanoid robots will require to navigate
in unsafe and unstructured environments, such as those after
a disaster, for human assistance and support. To achieve
this, humanoids require to construct in real-time, accurate
maps of the environment and localize in it by estimating
their base/pelvis state without any drift, using computationally
efficient mapping and state estimation algorithms. While a
multitude of Simultaneous Localization and Mapping (SLAM)
algorithms exist, their localization relies on the existence of
repeatable landmarks, which might not always be available in
unstructured environments. Several studies also use stop-and-
map procedures to map the environment before traversal, but
this is not ideal for scenarios where the robot needs to be
continuously moving to keep for instance the task completion
time short. In this paper, we present a novel combination of
the state-of-the-art odometry and mapping based on LiDAR
data and state estimation based on the kinematics-inertial data
of the humanoid. We present experimental evaluation of the
introduced state estimation on the full-size humanoid robot
WALK-MAN while performing locomotion tasks. Through this
combination, we prove that it is possible to obtain low-error,
high frequency estimates of the state of the robot, while moving
and mapping the environment on the go.

I. INTRODUCTION

Humanoid robot navigation in any environment requires

the development of efficient sensor data fusion algorithms.

This is especially paramount for robots that have the potential

to operate in disaster scenarios, where the environment is

unstructured and dangerous. The robot needs to be aware

both of its own movements and the changes to the en-

vironment. For this reason, the robotics community has

developed efficient state estimation algorithms [1], [2] to

provide humanoids with every possible information about

their body state within the surrounding environment. One

important state is the pose of the pelvis or the base of the

robot during navigation. It is crucial to know the base pose

in the world frame, as it helps in building maps of the

environment where the robot needs to execute operations.

Several solutions were introduced to solve the robot pose

estimation problem, with respect to a fixed world reference

frame. The studies in [3], [4], and [5] presented a base

pose estimation based on data fusion from Inertial Measure-

ment Units (IMU) and joint kinematics through an External

Kalman Filter (EKF). The algorithm in [3] (applied on a

quadrupedal robot) used IMU data to predict the robot’s
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Fig. 1. The WALK-MAN humanoid robot in a disaster environment,
created in the lab, before executing a debris removal task after locomotion.

state and the data from joint kinematics to correct the state

updates. The obtained state included estimates of the veloc-

ity, roll, and pitch angles of the base. The algorithm in [4]

(applied on a humanoid robot) used separate estimations for

the base and the upper body of the robot, with the goal being

to reduce the computational complexity of linearizations

of the EKF at every time step. While the aforementioned

algorithms used the standard non-linear equation of motions,

the algorithm in [5] (applied also on a humanoid robot) used

the linear inverted pendulum model to estimate the base and

Capture Point(CP). These were in turn used for control of

joint torques to perform stable walking and preventing falls.

Recently in [6], a sensor data fusion method combining

data from IMU, joint kinematics, foot contact sensors and

LiDAR named Pronto, was presented. The algorithm is very

similar to [3] in terms of calculations for state predictions

and corrections. In addition, foot contact force torque sensors

were used to determine the foot in contact with the ground.

The estimation takes place based on the motion of the pelvis

or the base with respect to the stationary foot frame that is

in contact with the ground. A very minimal drift of 2cm per

10 steps was achieved with the above mentioned kinematic-

inertial state estimator, in quasi-static locomotion with step

sizes of 15cm and 36cm.

Drift accumulation is one of the recurring problems of

state estimation algorithms based on proprioceptive sensors,

such as joint encoders and IMU. While trying to estimate

global pose using proprioceptive sensors, the algorithm usu-

ally relies constantly on integrating a model using sensor

data. The estimation is incrementally accumulative and de-

pendent on previous values. In such estimations, the noisy

nature of sensor data causes error in the estimates. This error



keeps getting accumulated and increases, thereby giving rise

to drift. Estimates based solely on proprioception may result

into inaccurate environment maps and hence may not be

useful for navigation in challenging environments. For this

reason, low drift accumulation and very accurate real-time

state estimation is required. Typically, drifts are eliminated

by using data from exteroceptive sensors, such as LiDAR

scanners, monocular/stereo cameras, or other range sensors.

LiDARs have become popular due to their ability to give

robust, accurate, and repeatable data even in the presence of

varying lighting conditions—unlike monocular/stereo cam-

eras or most of the range sensors.

The Iterative Closest Point (ICP) [7] method is a com-

monly used approach to process data from LiDAR sensors

to perform localization and motion estimation. Several ap-

proaches for robotic applications have been based on ICP,

such as [8] and [9]. One major drawback of ICP-based algo-

rithms that are based on range data (e.g., point clouds) is that

they need sufficient overlap between the new incoming and

the reference data, with which they are compared to. In [10],

this issue was solved by tuning the inlier percentage based

on the overlap of the range data. This led to more accurate

localization and motion estimation, which was demonstrated

on the Valkyrie humanoid robot, using the Carnegie Melon

Multisense-SL depth/LiDAR sensor. The robot was able to

walk to and from a target point repeatedly, without much

drift accumulation. Whereas, this was not the case with just

the kinematic-inertial state estimator.

Another method to eliminate drift was introduced in [6],

where a particle filter-based laser scan localization was used

to compare scans to a pre-made LiDAR data-based map. On

one side a complete elimination of the drift was achieved, but

on the other side, a map needed to be generated prior as input

to the state estimation method. This is not ideal for robots

that need to move freely in large environments. Similarly,

there exist studies like [11] which have used Simultaneous

Localization and Mapping (SLAM) on a humanoid robot,

which are usually computationally expensive and either they

require an initial stop-and-map the environment step, or they

need repeatable locations/features.

Other than ICP, several other motion estimation ap-

proaches were introduced, which were based on laser

range data. Recently, the LiDAR Odometry and Mapping

(LOAM) [12] method, achieved impressive estimation re-

sults. The LOAM and its vision-based version V-LOAM [13],

are currently ranked at the top of the KITII datasets [14].

LOAM extracts repeatable features from consecutive laser

scans, such as smooth points belonging to a plane or edge

points. It uses such points to run an optimization to minimize

the distance between either an edge point and its corre-

sponding edge line, or a plane point and its corresponding

plane surface. Through this optimization, it obtains either the

motion transform between the laser scans or the odometry

and mapping. The method runs in two cores in a quadcore

2.5 GhZ computer with 6 GB RAM and generates accurate

LiDAR-based motion estimates. To the best of the authors’

knowledge, this method has not been yet applied on hu-

manoid robots.

As the accuracy of LOAM has not been leveraged for

humanoid robots, in this paper we investigate the accuracy,

robustness, and the computational efficiency of a global

state estimator, which combines the LOAM and the Pronto

kinematic-inertial state estimator. The computational power

consumption analysis is important for having the method

working on the on-board computers of a humanoid robot,

for long periods of time. The advantage of using the LOAM

algorithm to process exteroceptive LiDAR data is that we ob-

tain low-drift estimates that allow the generation of accurate

maps without extensive localizations and loop closures. This

is useful in challenging environments, where a robot may

need to move continuously without stopping to create maps

of the environment. We experimentally validate the intro-

duced state estimation algorithm on our full-size humanoid

robot WALK-MAN [15], under locomotion tasks. For the

exteroceptive sensing, we use the rotating Hokuyo LiDAR

sensor, which is part of the CMU Multisense-SL head. We

compare the performance of the combined Pronto+LOAM

estimator with the Pronto-only and LOAM-only estimations,

in an effort to prove that it is possible to perform low

drift, high frequency state estimation while simultaneously

mapping the environment. We also present an analysis of

the computational power consumed to run the combined state

estimator.

We acknowledge that two existing, state-of-the art al-

gorithms will be extensively used in this study. Although,

through this study we aim to present and experimentally

evaluate the accuracy, robustness, and precision of a state

estimator that combines Pronto and LOAM for our humanoid

robot WALK-MAN, to aid future works in unstructured and

dynamic environment locomotion. The main contributions of

this paper are as follows;

• We present a subtle 2-way connection to connect LOAM

and Pronto estimates, so as to leverage both the drift

reducing nature of LOAM and the high frequency

estimation of Pronto.

• Through this new combination, we present an algorithm

which performs much better that the original individual

components.

• We experimentally establish that this combination of

Pronto+LOAM provides similar improvements when

reduction of drift and pose error are concerned, for

different gaits and different duration of experiments.

• We also experimentally establish that it is possible to

obtain drift reduction in the pose estimates of pelvis of

a humanoid robot, using LiDAR data, with on-the-go

map construction.

We first explain the state estimation method that integrates

LOAM and Pronto (Sec. II). Following this, we present our

experimental evaluation (Sec. III) on the WALK-MAN robot

and we finally conclude with some future directions.

II. BASE POSE ESTIMATION FOR HUMANOIDS

As mentioned earlier, in this paper, we attempt to combine

the Pronto and LOAM algorithms, on a humanoid robot,



that dynamically walks in the environment. First, we will

explain the mathematical notations used in this paper and

the robot and environment setup. Then, both state-of-the-art-

algorithms will be explained in brief. This will be followed

by the details of how we fuse data from the Pronto and

LOAM algorithms to create an algorithm which is a new

combination of base state estimation and LiDAR mapping.

A. Mathematical Notations

In this paper, the following notations would be used.

Vectors will be represented with small-case italics, e.g, v.

Matrices will be represented by camel-case bold letters,

coordinate time instances with lower-case normal italics and

scalars by the normal font. The coordinate frames will be

referred as Σu, where the letters like u will be used to dif-

ferentiate the frames. Furthermore, the matrix HP
Q represents

a homogeneous transformation of frame P with respect to

frame Q.

In our robot, the pelvis frame is fixed in the middle of

the waist of the robot with the x-axis facing forward and the

z-axis upright when the robot stands in its homing position.

The pelvis frame will also be referred to as the base of the

robot. The LiDAR frame will be represented by Σl , while

the base frame is represented as Σb. The world frame is

represented by Σw. Quaternions representing rotation from

the time-frame t −1 to t will be simply represented by q(t).
The absolute orientation quaternions and positions of the

base w.r.t to the world frame will be simply represented by

qw and xw respectively.

B. Robot and Environment Setup

The WALK-MAN humanoid robot [15] will be used for

the proof of concept and the experimental evaluation in the

paper. WALK-MAN is a 102 kg robot and is 195 cm tall.

It has an IMU attached at its waist, and encoders for every

joint. It is also equipped with a CMU Multisense-SL sensor,

which consists of a stereo camera and a rotating Hokuyo

LiDAR scanner. The primary aim of WALK-MAN is to

function in disaster scenarios. An environment similar to the

one shown in Fig. 1 will be used for our experiments. A

motion capture OptiTrack camera system will be used to

track markers attached rigidly to the waist of the robot and

thereby provide ground-truth for the base state estimation.

C. Pronto-EKF

Pronto is an EKF-based algorithm with two primary steps,

namely state vector prediction and correction update. The

state vector consists of the following elements:

• 3D positions of the base frame Σb in the world frame:

xw.

• Global orientation quaternion: qw.

• Global Linear velocity of the body frame Σb expressed

in body coordinates: vb.

• Angular velocity in the body frame: ωb.

• Accelerometer and gyro biases: ba,bg.

The complete state vector s is [xw,qw,vb,ωb,ba,bg]. The

accelerations ab and angular velocity wb, obtained from the

IMU, are used to predict the state vector ŝ, using standard

non-linear kinematic models, similar to those presented

in [16]. The corrections to the state vector ŝ are provided by

the joint kinematics. The calculations for determining these

corrections are made based on the foot in contact with the

ground. The process is described below.

The initial position of the base in the fixed world frame

Σw, is set to [0,0,L], where L is the height of the base

from the ground at the beginning of the experiment. The

joint-kinematics module has low level filters of its own

and provides transforms of each joint frame with respect

to the base frame Σb. From the initial position and the joint

kinematics module output, we know the initial pose of the

feet with respect to the world frame. Using these initial poses

and joint kinematics, we ascertain the pose of the feet in

contact with the ground, with respect to the world frame Σw.

As mentioned earlier, the calculations for the correction

update is made with respect to the foot in contact with the

ground, the global pose of which is known. To determine

which foot is in contact with the ground, foot contact

force/torque sensors are used. A Schmitt trigger [17] with a

threshold for the vertical force value F was used. When the

vertical or Z component of the foot sensor data sensed a force

greater than F, it was ascertained that the foot corresponding

to that particular force sensor was in contact with the ground.

For our robot, F was equal to 300 N. A simple state machine

based on the force values obtained from the foot contact

sensors of the two feet was used to ascertain which foot was

in contact with the ground. Let the transformation matrix

of the foot in contact with the ground w.r.t to the world

frame be H
f
w, where f represents the foot frame. From the

joint kinematics, we acquire Hb
f which is the transform of

the base frame with respect to the stationary foot. The base

position and orientation in the world frame can be calculated

as follows:

Hb
w = H f

w ×Hb
f

with Hb
w = [R(qw)|xw]

(1)

where R is the rotation matrix corresponding to the quater-

nion qw. Two base positions at times t and t−1 are obtained

and the linear velocity expressed in world coordinates, cal-

culated as follows, is used for correcting the predicted state

vector ŝ:

vw =
xw(t)− xw(t −1)

δ t
(2)

where δ t is the difference in time of the position estimates

obtained from the joint kinematics. vw is used as a measure-

ment to update the estimated state ŝ.

With the above described kinematic-inertial fusion, the

study in [6] achieved estimates which drifted at the low rate

of 2cm every 10 steps. To eliminate this drift, a particle filter

localization was used with a pre-created LiDAR scans based

map, to provide corrections directly to the predicted estimate

of xw.



Fig. 2. The block diagram detailing an overview combination structure
of the Pronto and LOAM algorithms. The estimation of the particular base
state contributed to by the sensor or processing block is represented by the
italic letters. The position is represented by x, the linear velocity by v, the
acceleration by a, the angular velocity by ω and the orientation quaternion
by q.

D. LOAM

The LOAM algorithm uses data from a rotating 2D laser

scanner and has two primary steps. The first step is the

accumulative motion estimation or odometry. Motion is

estimated and accumulated in a set of three scans of one

single sweep. The algorithm extracts plane points and edge

points in each scan using a simple smoothness coefficient.

Based on this, it minimizes the distance between an edge

point and the corresponding line or a plane point and the

corresponding plane. In this way the motion performed dur-

ing the three scans is obtained. This motion is accumulated

with the previous motions to provide odometry. The initial

transform of the points to the laser frame Σl is done using

a rough orientation and position accumulation based on the

accelerations and angular velocities obtained from an IMU

attached to the rotating laser scanner. This rough pose is

also used as initial pose for the minimization optimization

to estimate the motion. This estimated odometry is published

at 10Hz.

The second step is the mapping. The mapping considers

scans from one complete sweep of the rotating laser scanner

and hence runs at a lower frequency of approximately 1Hz.

The mapping module uses the pose of the LiDAR accumu-

lated by the odometry module, and matches features, namely

the edges and plane points, obtained using the smoothness

coefficient from one sweep with features of the next sweep

and further refines the LiDAR pose using this matching. The

matched points are now transformed and associated to an

additive map expressed in a fixed world frame. The refined

pose is published as an odometry after mapping.

E. Pronto+LOAM

As mentioned earlier, in this paper we present a novel

combination of the kinematic-inertial Pronto with LOAM.

We present the results based on the experiments on the

WALK-MAN robot. The robot has all the necessary configu-

rations needed to use the Pronto algorithm. The open source

version of the Pronto algorithm presented in [6], was adapted

to a ROS based implementation. The LOAM algorithm was

already implemented in ROS based packages. Hence, very

little modification was necessary.

The IMU on the WALK-MAN robot provided data at

700Hz, while joint kinematics was obtained in the form

of joint frame transforms at about 1000Hz. The overall

estimate publishing rate of the Pronto module alone on the

WALK-MAN robot data was 700Hz. In the original Pronto

algorithm, LiDAR based localization on a pre-created map

was used to provide corrections for the position state xw.

Instead of using a pre-created map and a particle filter-

based localization, we used the odometry-after-mapping

estimates obtained from the LOAM module, to provide

corrections to the xw predicted state. We made a subtle

two-way connection between the Pronto and the LOAM

modules, which is the main contribution of the presented

work. LOAM by itself was considered a superior algorithm

owing to its high accuracy in benchmark tests. To the best of

the authors’ knowledge combining LOAM with an additional

filter is new. The shortcomings of the individual algorithms

for base pose estimation for a humanoid robot provided

ample motivation to connect the LOAM estimation to the

EKF. In this way, the drift is reduced, while the very high

frequency estimates from kinematic-inertial estimation are

not lost. This combination of two established state-of-the-art

methods to formulate Pronto+LOAM is novel for a humanoid

robot as it does not need stop-and-go-mapping. It creates

maps on-the-go and the accumulated errors and drift are very

low. The modifications to create the aforementioned two-way

connection will be explained briefly.

On the LOAM side, instead of using the LiDAR attached

IMU to transform the laser scan points to the laser frame,

the final corrected estimates of position and orientation from

the Pronto module were used to transform points to the

world frame Σw. The estimates from Pronto also act as initial

points for the minimization optimization for the odometry

and mapping modules.

The LOAM module finally publishes the pose of the Li-

DAR with respect to the world frame Σw. Let the transforma-

tion matrix representing this pose be Hl′
w. The pose/transform

of the base frame Σb with respect to the laser frame Σl ,

is obtained from joint kinematics as Hb
l . We then obtain

the pose of the base as estimated by the LOAM module

as Hb′
w = Hl′

w ×Hb
l . We use the positions from Hb′

w directly,

to provide corrections to position state xw in the EKF of of

the Pronto module.

A block diagram of the flow of information between the

modules can be seen in Fig. 2. A summary of the roles of

the modules and sensor data in the EKF can be found in the

Table I

III. EXPERIMENTAL EVALUATION

In this section we will detail the experimental evaluation

of the Pronto+LOAM state estimator. The feet of the WALK-

MAN robot may slip on contact with the ground due to

the low grip and foot impact during walking at 1 step/s.



TABLE I

ROLES OF THE SENSOR DATA FUSION COMPONENTS

Sensor/
Module

Position Linear
Velocity

Angular
Velocity

Orientation

IMU Prediction Prediction Direct
Measure-
ment

Correction
Update

Joint
Kinemat-
ics+Foot
Contact

– Correction
Update

– –

LiDAR/
LOAM

Correction
Update

– – –

The algorithms presented in [18], [19] were used to perform

the walking experiments on the WALK-MAN robot. The

XBotCore platform on the robot [20] was the main communi-

cation interface used to obtain all joint states and sensor data

synchronized and in ROS compatible formats. We used two

experiments to demonstrate that the state estimator performs

accurately for different gaits at higher walking speeds than

the robots presented in the literature like the Valkyrie in [10]

and the Atlas robot in [6].

A. Experimental Setup

Throughout the experiments, we set the robot step time to

1 s meaning that every step of walking takes 1 s to execute.

In the first experiment, we let the robot walk with a step

size of 0.05 m in the following sequence: walk forward,

slightly turn, and walk backwards. This sequence is repeated

multiple times and its duration is 699 s. In the second

experiment, we let the robot walk with a step size of 0.10

m. The robot starts by turning on the spot multiple times

and the experiment ends with the robot walking backwards.

This experiment’s duration is 180 s. The Fig. 3 shows the

robot during the experiment after some motion, the body and

the world frames and the corresponding RVIZ visualization

during the experiment. In the rest of the paper, we notate

the first experiment as Exp-5 and the second one as Exp-10,

based on the step size (in cm) of the walking motion, for the

purposes of brevity. We compare three estimations: 1) the

kinematic-inertial Pronto-only, 2) LOAM-only, and finally

3) the combined estimator of Pronto+LOAM.

B. Analysis of Results

The results of the robot base position (X,Y,Z) tracking for

the two experiments can be seen in Fig. 4 and Fig. 6. As ex-

pected in both experiments, the estimation of the kinematic-

inertial Pronto-only algorithm, drifted from the ground truth

to a great extent. Fig. 5 and Fig. 7 show the translation

error magnitude comparison of the three estimators. As can

be seen from the illustrated magnitudes, the error of the

Pronto+LOAM estimation initially rises up, but is eventually

brought down by the corrections from the LOAM algorithm,

thereby keeping the error magnitude low and bounded, unlike

the kinematic-inertial Pronto-only estimation.

Fig. 3. Left: the WALK-MAN robot with the two 3D frames, labelled as
W (world) and B (body). Right: the visualization of robot frames (right)
inside the generated point cloud map, during the experiment. The estimated
(Pronto+LOAM) robot pose and the joint frames are visualized, with the
yellow curvy line to visualize the estimated robot base frame path.

Fig. 4. 3D translation tracking comparison of Pronto-only, LOAM-only,
and Pronto+LOAM methods, with respect to the ground truth for Exp-5.
From the first two subplots the drift in the Pronto-Only estimation can be
clearly observed. Whereas, the LOAM and Pronto+LOAM have low drifts.
From the second subplot, it can be clearly seen that the black line fails
to follow all the motion curves in the Y-tracking. This is due to the low-
frequency estimation of the LOAM algorithm

The subtle difference in the two experiments can be illus-

trated by the fact that the drift in position of the Pronto esti-

mation of the WALK-MAN base pose for Exp-5 is 0.28cm/s

of walking motion, whereas for Exp-10, it is around 0.7cm/s.

In the original Pronto kinematic-inertial only algorithm, low

drifts of 2 cm per ten steps were reported for the Atlas robot.

In our case, a similar calculation leads to 2.8cm/10 steps for

Exp-5 and and 7 cm/10 steps for Exp-10. The step sizes used

in study [6] were longer (15 cm and 36 cm steps), but smaller

drift rate was observed. This difference could be attributed

to the three key factors namely, difference in the systems

of the robots used for the experiments, slight differences in

adapting the Pronto kinematic-inertial only algorithm for our

WALK-MAN robot and finally the walking controller and

gait used for locomotion experiments. The difference in the

robotic systems, the controllers and gait generators, can lead

to differences in the walking style and trajectory of impact



TABLE II

ROOT MEAN SQUARED VALUES FOR X,Y,Z POSITION ERRORS(M) AND YAW(DEGREES), AND FINAL DRIFT(M)

Quantity
Exp-10 Exp-5

Pronto+LOAM Pronto LOAM Pronto+LOAM Pronto LOAM

X-Position 0.0855 0.3642 0.0807 0.0634 1.4304 0.2092

Y-Position 0.1215 0.4126 0.1526 0.1282 1.130 0.1423

Z-Position 0.0084 0.0080 0.0578 0.0191 0.0191 0.1597

Yaw 6.4723 11.3931 17.0841 - - -

Final Drift 0.1573 0.7916 0.2441 0.0956 3.2388 0.3914
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Fig. 5. 3D translation magnitude error comparison of Pronto-only, LOAM-
only, and Pronto+LOAM methods for Exp-5. It can be observed that the for
the majority of the time, the error in estimation by Pronto+LOAM(blue line)
is lower than that of LOAM only(black line) estimation.

Fig. 6. 3D translation tracking comparison of Pronto-only, LOAM-only,
and Pronto+LOAM methods with respect to the ground truth for Exp-10.
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Fig. 7. 3D translation magnitude error comparison of Pronto-only, LOAM-
only, and Pronto+LOAM methods for Exp-10.

with the ground while locomoting. Along with difference in

walking speeds, the aforementioned factors may have caused

more slippage during the experiments with the WALK-MAN

robot. As mentioned earlier, the robot foot slips on contact

with the ground. The slips were visually more observable

in Exp-10 case. Even though in Exp-5 more steps are taken

to cover the same distance, the rate of drift observed in the

Pronto estimation is lower. We attribute this to the fact that

higher speed of walking causes more slippage, which cannot

be determined by the kinematic-inertial estimator. Hence,

higher drift rate is observed in Exp-10.

Different step sizes were used in the two experiments, and

the duration of the Exp-5 was longer than that of Exp-10 by

∼ 8 minutes. In spite of these difference in speeds, from the

translation error magnitude illustrated in Figs. 5 and 7, we

can observe that, for our experiments, the Pronto+LOAM

estimator reduces the rate of drift accumulation to a great

extent. Furthermore, we can also observe that, for both the

presented experiments, the Pronto+LOAM estimator always

brings back the instantaneous translation error magnitude

to a value well below 0.2 m. The similar improvement in

performance and reduction in drift by the Pronto+LOAM

estimation when compared with the original algorithms, for

the two different experiments, proves that the combined esti-

mator is suitable for varying gaits and speeds of locomotion.



Fig. 8. Two views of the map created by the Pronto+LOAM estimation
during Exp-5. The top two images are the point could maps of the locations
in the lab represented in the corresponding images below them.

Fig. 9. Yaw tracking of the Pronto+LOAM, Pronto-only, and LOAM-
only estimations, compared with the ground truth. The Pronto+LOAM and
Pronto-only yaw estimations (yellow and red lines) are almost identical.

Furthermore, we obtained comparisons with ground truth

for the base-yaw with respect to the world frame for the

Exp-10 experiment, in which multiple turning motions were

executed by the robot. The results can be seen in Fig. 9.

It can be observed that the LOAM-only algorithm performs

worse than the Pronto-only and Pronto+LOAM algorithm

when it comes to yaw tracking. This observation provided

sufficient motivation to not use yaw estimates from the

LOAM algorithm for the EKF corrections. As both Pronto-

only and Pronto-LOAM rely only on IMU data for yaw

estimation, they have identical results. The low accuracy

tracking of yaw by LOAM module for the particular case

of our humanoid robot will be investigated and improved

upon in future works.

We present the Root Mean Squared (RMS) errors com-

parison for the positions and yaw in Table II. We also

present the final positional drift at the end of the exper-

iment in Table II. The light blue coloured cells indicate

best performances in Exp-10 while the pink coloured cells

indicate the best performances in Exp-5. From the various

plots and the Table II it can clearly be seen that, in terms

of errors, the combination of Pronto+LOAM performs much

better in almost all cases when compared with the original

state-of-the art algorithms. As LOAM publishes estimates

at lower frequencies (≤ 1Hz ), its estimates are not useful

for dynamic control and walking, which is one the major

areas of future applications of this work. The low frequency

estimates lead to higher errors for the LOAM-only estima-

tion and also causes the algorithm to miss many motions

performed between two consecutive estimates. Whereas, the

Pronto-only algorithm faces the problem of accumulating

the drift. Although when we combine both the Pronto and

LOAM, we are able to take advantage of the high frequency

estimates of Pronto and correct for the drift using LOAM.

The benefits of the Pronto-LOAM can be easily seen not

only in the RMS values but also in the final position drifts

of the estimations. Furthermore, it is to be noted that the

Pronto+LOAM estimation had a very low drift of only 9.56

cm for a ∼ 11 minute long experiment with an approximate

walking path length of ∼ 10.7m. This experiment did not

have just monotonous one direction straight walk but back

and forth walking with small turns. This provides sufficient

proof of the robustness and precision of the Pronto+LOAM

algorithm for long experiments.

The experimental data was collected in the form of “ros-

bag” from the robot and they were run on a laptop with

a 2.50 GHz 4 core i7-6500U CPU and 16 GB RAM. The

average memory used when the Pronto only estimation was

being executed was 54 MiB. The combined estimation of

Pronto+LOAM used up to 96 MiB of memory, while the

LOAM-only estimation used only 48 MiB in average. It is

to be noted that, the complete Pronto+LOAM estimation

used 3 CPUs, and the average usage percentages of each

of the CPUs were approximately 93%, 74% and 34%,

respectively. The LOAM-only estimation published at an

average rate of 0.690 Hz. The maximum time without a new

published estimate was 5.06s. This was slightly improved

in the Pronto+LOAM estimator, where the LOAM module

published estimates at 0.705 Hz, with the maximum time

period without a published estimate being 3.57 s. The low

memory usage of the Pronto+LOAM estimation makes it

suitable for on-board devices on the robot, leaving open

the problem of achieving high publishing frequency of the

estimates on an on-board computer with lower number of

processors.



IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel combination of two

state-of-the-art algorithms to perform state estimation and

mapping for the humanoid robot WALK-MAN. The Pronto

and LOAM algorithms were combined with a subtle two-way

connection and the robustness and accuracy of the combined

global state estimation algorithm was tested and compared

with the original algorithms on real experimental data ob-

tained from WALK-MAN. We were able to prove that it is

possible to consistently achieve low drifts, low error and high

frequency base pose estimation. This is achieved while doing

on-the-go state estimation and mapping for the humanoid

robot WALK-MAN, by combining the aforementioned algo-

rithms. Similar performance improvement from the original

algorithms was seen in two separate experiments, where the

step size differed (5cm and 10cm), proving its robustness

to varying speeds. We also presented the computational

power consumption analysis for the combined estimator. The

results of this analysis are encouraging and in the future we

look to achieving similar high frequency and high accuracy

estimation, when the algorithm is ported to the on-board

computer of the robot. We intend to use this framework in

future work, where the robot will be capable of traversing

unknown terrain without the need for repeatable features,

or stop-and-go-mapping algorithms. Future work will also

involve testing the combined Pronto+LOAM estimator with

the robot walking on rough and non-flat surfaces. Further-

more, the Pronto+LOAM estimates will be used for dynamic

navigation planning on non-flat and irregular surfaces as

well as for dynamic control, while walking on irregular

surfaces [21], using also our newly developed real-time dense

surface mapping and tracking system [22].
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