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Power analysis, sample size and assessment of statistical assumptions - 
improving the evidential value of lighting research 
 
 
Abstract 
The reporting of accurate and appropriate conclusions is an essential aspect of scientific 
research, and failure in this endeavour can threaten the progress of cumulative knowledge. 
This is highlighted by the current reproducibility crisis, and this crisis disproportionately 
affects fields that use behavioural research methods, as in much lighting research. A sample 
of general and topic-specific lighting research papers were reviewed for information about 
sample sizes and statistical reporting. This highlighted that lighting research is generally 
underpowered and, given median sample sizes, is unlikely to be able to reveal small effects. 
Lighting research most commonly uses parametric statistical tests, but assessment of test 
assumptions is rarely carried out. This risks the inappropriate use of statistical tests, 
potentially leading to Type I and Type II errors. Lighting research papers also rarely report 
measures of effect size, and this can hamper cumulative science and power analyses 
required to determine appropriate sample sizes for future research studies. Addressing the 
issues raised in this paper related to sample sizes, statistical test assumptions, and reporting 
of effect sizes, can improve the evidential value of lighting research. 
 
 
Keywords: Sample size; power analysis; effect size; statistical test; Type I II errors 
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1. Introduction 
 
“In the fields of observation chance favours only the prepared mind” 

- Louis Pasteur, 7 December 1854 
 
‘Eureka’ moments are not frequent in science and the scientific endeavour is characterised 
by the gradual accumulation of knowledge through empirical methods. This relies on 
evidence that is reliable. As a minimum, evidence should be reported in a manner that 
allows external verification of its veracity. This allows the reader to judge how appropriate 
the research conclusions are. One of the cornerstones of science that aims to support this 
external verification is the peer-review process. This review of research work by experts is 
designed to filter out poor-quality and unreliable research findings. Peer review has its 
limitations [Jefferson et al, 2002; Ware, 2008], and may not have been successful in many 
scientific fields in ensuring the quality of published research, as a large number of published 
research findings may be false [Ioannidis, 2005]. Publication bias means the vast majority of 
published findings are positive and support the research hypothesis, and do not provide a 
representative sample of all scientific studies carried out [Sterling, Rosenbaum & Weinkam, 
1995]. This is a problem that is particularly prevalent for human factors research in lighting, 
as psychological and behavioural science has the highest proportion of studies reporting 
positive results compared with other scientific disciplines [Fanelli, 2010]. Publication bias 
may help explain the current reproducibility crisis affecting many sciences but particularly 
psychological and behavioural science. The Open Collaboration Project recently attempted 
replications of 100 studies published in three major psychology journals in 2008. Ninety 
seven percent of the original studies reported significant findings, compared with only 36% of 
the replication studies. Mean effect sizes in the replications were also half the magnitude of 
those found in the original studies. 
 
At the heart of publication bias and the reproducibility crisis is the occurrence of Type I errors 
(false positive findings) and Type II errors (false negative findings). We use statistical 
methods in science in an attempt to avoid making claims that in reality may be a Type I or 
Type II error. Null Hypothesis Statistical Testing (NHST, Hubbard & Ryan, 2000) produces a 
p-value that represents the probability of obtaining the result (or something more extreme) 
assuming there was no real effect or difference between the groups or measures being 
tested (the ‘null’ hypothesis). The p-value does not explicitly refer to the probability of the null 
hypothesis being true, but it does provide a “measure of the strength of evidence against H0 
[the null hypothesis]” [Dorey, 2010, p. 2297]. Abelson referred to “discrediting the null 
hypothesis” based on the p-value from a statistical test [Abelson, 1995, p.10]. A smaller p-
value provides stronger evidence against the null hypothesis. By convention, in the field of 
lighting research and most other scientific disciplines, we use a threshold of p < .05 to 
indicate a significant or ‘real’ effect, based on proposals by Fisher [1925]. However, Fisher 
himself recognised this threshold was arbitrary and debate is ongoing about its use. The 
reproducibility crisis has led some researchers to suggest a stricter threshold of .005 should 
be used [Benjamin et al, 2017], to reduce the number of Type I errors reported in the 
scientific literature. Other researchers suggest this is unwise, and instead we should justify 
all experimental design and analytical choices made, including the p-value threshold used to 
identify a real effect [Lakens et al, 2017]. 
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The debate over p-value thresholds and their use, the existence of publication bias, and the 
reproducibility crisis all raise questions regarding the evidential value within scientific 
research in general and within lighting research specifically. A significant consequence of 
incorrect conclusions made within the research literature is the promulgation of theoretical 
concepts or methods without appropriate evidence. There are a number of examples of this 
within lighting research. Veitch [2001] highlighted the example of guidelines for the lighting of 
internal spaces [Rea & IESNA, 1993; see DiLaura et al, 2011, for newest edition] being 
based on evidence from one unreplicated study with methodological limitations [Flynn et al, 
1979]. Work by Kruithof published in 1941 [Kruithof, 1941] identified combinations of 
illuminance and correlated colour temperature that supposedly produced pleasing visual 
conditions for interior lighting. These results have been widely used to support lighting 
design rules and practice, despite evidence against Kruithof’s results [e.g. Boyce & Cuttle, 
1990; Davis & Ginthner, 1990; see Fotios, 2017, for a review]. Fotios and Goodman [2012] 
also highlighted how current guidelines for pedestrian road lighting are based on flawed 
interpretation of a single unreplicated study by Simons et al [1987].  
 
The evidential value of a study and its contribution to cumulative scientific progress relies on 
appropriate experimental design and statistical reporting. A critical consideration for any 
experiment is the sample size used and the experiment’s ability to avoid making a Type I or 
Type II error. The average power of experiments in a range of fields, including cognitive 
neuroscience, biomedical sciences and ecology [Button et al, 2013; Dumas-Mallet et al, 
2017; Lemoine et al, 2016], is low. It is currently not known whether this is the case also in 
the lighting field of research. Another factor that may negatively impact on the evidential 
value of a study is the inappropriate use and reporting of statistical tests. Previous research 
has identified frequent inconsistencies in the reporting of statistics [Bakker & Wicherts, 2011; 
Garcia-Berthou & Alcaraz, 2004; Nuijten et al, 2016]. However it is not just incorrect 
statistical reporting that jeopardises the evidential value of a study - the appropriate use of 
statistical tests in the first place is an important consideration [Thiese, Arnold & Walker, 
2015]. Even when statistical tests may be used and reported correctly, and are based on an 
appropriately-powered experimental design, evidential value can still be limited when 
information about the size of an effect found in a study is not reported. The reporting of only 
p-values is not sufficient to convey valuable information about the effect being investigated 
[Rothman, 2014]. Reporting of effect sizes increases the information content within a paper 
and facilitates the inclusion of its results into a wider synthesis of evidence, e.g. through 
meta-analysis. 
 
To assess the inappropriate use of statistical tests, effect sizes and their reporting, and 
sample sizes and power within lighting research, a sample of lighting research papers were 
reviewed. Implications of the findings from this review are outlined alongside discussions 
about how to improve the evidential value of lighting research. 
 
 
2. Review of statistical reporting within lighting publications 
 
The review examined a sample of general research papers related to lighting, and a sample 
of research papers related to a specific topic within lighting. This method of using two 
different types of samples provides both a ‘broad but shallow’ and a ‘deep but narrow’ 
selection of papers. In addition, variations in statistical practices may exist between research 
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areas within lighting, and this dual-sampling approach allows us to confirm whether 
statistical practices across a generalised sample of lighting papers represent those used 
within a specific field. For the sample of general, cross-topic lighting papers, those published 
in LEUKOS and Lighting Research & Technology during 2017 were included in the review. 
These two journals are the most prominent outlets for lighting-specific research. For papers 
about a specific lighting topic, those related to the subject of spatial brightness were 
selected. There have been a significant number of papers published on this topic, as 
highlighted by the review carried out by Fotios et al [2015], which identified 70 studies of 
spatial brightness. Only papers included in Fotios et al’s review and published since 2000 
were assessed, to better reflect more recent research practice. 
 
For both the general lighting papers published in 2017, and the spatial brightness papers 
published since 2000, only those that involved research with human participants were 
included in this review. Basic information was recorded about the sample size, research 
design (between-subjects, within-subjects or both), statistical tests used, checks of 
assumptions used in statistical tests, and reporting of effect sizes. A summary of this 
information is given in Table 1. This table highlights that ANOVAs and related tests (e.g. F-
test, MANOVA) are the most frequent type of statistical test used in the papers included in 
the review, supporting findings that ANOVA is the most common test used in other areas of 
research such as social psychology [e.g. Kashy et al, 2009]. Other parametric statistical 
tests such as correlation, regression and t-tests were also found to be in common use in 
lighting research papers. Parametric tests rely on certain assumptions about the way data 
were collected and the way they are distributed (discussed later in this paper), yet the review 
found that test assumptions were rarely assessed. 
 
Table 1 also highlights the median sample sizes used in studies included in the review, for 
within-subjects and between-subjects designs. The sample size has a major influence on the 
sensitivity of a study and its ability to reveal something real about the population that has 
been sampled. A sample that is too small will be unable to reveal a real effect (resulting in a 
Type II error). Using a larger sample may be a waste of resources however, if a smaller 
sample would be adequate to reveal the effect under investigation. Selection of sample size 
is therefore a critical experiment design choice, yet almost all of the studies that were 
assessed in the review failed to justify the sample size used. This included a lack of 
reporting of any preliminary power analysis carried out to justify sampling decisions, and a 
lack of discussion about the size of effect that could be revealed or the size of effect that was 
anticipated. In addition, a low proportion of studies reported any type of effect size measure, 
and this was particularly the case for reporting of group differences (the majority of effect 
size measures that were reported were R2 values from a regression). 
 
 
TABLE 1. Summary of basic findings from review of recent lighting papers, and papers relating to 
spatial brightness research topic since 2000. 

Variable LR&T and LEUKOS journal 2017 Spatial brightness papers since 
2000 

Total number of 83 N/A 
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journal papers in 
2017 

Number of papers 
included in final 
review 

37 13 

Research design 84% (31) within-subjects 
11% (4) between-subjects 
5% (2) mixed (within- & between-
subjects) 

54% (7) within-subjects 
15% (2) between-subjects 
31% (4) mixed (within- & between-
subjects) 

Median sample size 23 for within-subjects 
30 for individual groups in between-
subjects* 

35 for within-subjects 
21 for individual groups in between-
subjects* 

Statistical tests used ANOVA (including MANOVA) = 62% 
T-test = 22% 
Regression = 27% 
Correlation = 32% 
Wilcoxon signed-rank = 11% 
Kruskal-Wallis / Friedman test = 
11% 
Other** = 19% 
No inferential statistics reported = 
8% 

ANOVA (including MANOVA) = 46% 
T-test = 23% 
Regression = 8% 
Wilcoxon signed-rank / Friedman 
test / Kruskal-Wallis = 8% 
Other** = 23% 
No inferential statistics reported = 
23% 

Assessment of 
assumptions of 
statistical test(s) used 

24% of papers (9) 15% of papers (2) 

Report measure of 
effect size 

30% of papers (11) 8% of papers (1) 

* In studies with unequal group sizes, the mean group sample size was used in the calculation of the 
median group size across all studies  
** Includes McNemar test, Cochran’s Q, post hoc Tukey tests, Standardised Residual Sum of 
Squares, variance stable rank sums, binomial test, Dunn Rankin test 
 
 
 
One further conclusion that emerged from the review of statistical reporting in the selected 
papers was the variation in exactly what statistics are reported when inferential tests are 
used. These differences included whether measures of variation such as standard deviation 
were reported, whether the actual test statistic and associated degrees of freedom were 
reported, and the precision with which p-values were reported, particularly when a test was 
not significant. In such cases, p-values were frequently not reported at all. 
 
This review of a sample of general and topic-specific lighting research papers highlights 
three issues that may compromise the evidential value of research literature within the 
lighting field. The first is the widespread but potentially inappropriate use of parametric 
statistical testing, given that only a minority of studies confirm that test assumptions have 



7 
 

been assessed and met. The second is the failure of lighting papers to report measures of 
effect sizes. The third issue is the relatively small sample sizes used in experiments. 
 
 
3. Assessment of assumptions required by parametric tests 
 
3.1 Statistical test assumptions 
 
The review of lighting papers described in Section 2 highlighted that parametric tests are the 
most common type of statistical test used. As the name implies, parametric statistical tests 
are based on the assumption of certain parameters about the data being tested and the 
conditions in which it was obtained. However, the review indicated that only 22% of the 50 
papers examined actually reported assessing assumptions related to the use of statistical 
tests. This is concerning as violations of these assumptions can lead to invalid or 
inappropriate conclusions based on the results of the test and we “stop being able to draw 
accurate conclusions about reality” [Field, Miles & Field, 2012, p. 167], although the 
magnitude of the violation will influence the extent to which the conclusions of the test can 
be accepted. Most parametric methods, including those most commonly used in lighting 
research such as ANOVAs, t-tests and regression, require four assumptions to be made 
about the data they are applied to. These relate to the type of data, the independence of the 
data, the normality of the data, and the variance within the data. These four assumptions are 
described in Table 2. Additional assumptions may also be required for some types of tests. 
For example, linear regression has other assumptions such as no perfect linear relationship 
between two or more of the predictors (‘multicollinearity’), and that the relationship between 
predictors and the predicted is linear. See Berry [1993] for further information about 
regression assumptions. 
 
TABLE 2. Assumptions of parametric statistical tests. 

Assumption Description 

Data are measured at 
least at interval level 

The response or property being measured should be recorded using a 
dependent variable on an interval scale, minimum, or on a continuous 
scale. The intervals on the scale should represent differences of equal 
magnitude. For example, if a 1-5 rating scale is used to measure a 
participant’s perceived brightness of a space, the difference in perceived 
brightness between ratings of 1 and 2 should be the same as it is between 
ratings of 4 and 5. 

Data are independent Data from one participant should not influence data from another 
participant, which can be addressed through randomisation in 
experimental design. In within-subjects designs, we do not expect the 
responses from the same participant to be independent, but responses 
between different participants in within-subjects designs should be 
independent. In regression analysis, the errors in the regression model 
should also be uncorrelated. 

Data are normally 
distributed 

The raw data within each condition approximates a normal distribution, or 
the residuals (individual minus the mean value) approximate a normal 
distribution, depending on the type of test being carried out. 
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Variance is the same 
throughout the data 

When comparing more than one group of participants, each of these 
groups should have approximately equal variance. If carrying out a 
correlation, the variance of one of your variables should be stable at all 
levels of the other variable. This is known as homogeneity of variance, or 
homoscedasticity, particularly in relation to regression analysis. In within-
subjects designs with three or more conditions, an assumption of 
sphericity is also made. Sphericity refers to the variances of the 
differences between pairs of conditions being equal across all 
combinations of conditions. 

 
 
Assumptions about whether interval data are used and the independence of data should be 
assessed and confirmed during the experimental design phase of any research, for example 
through appropriate selection of measurement methods and randomisation of conditions. 
Assumptions about the normality and variance of data can only be assessed once data has 
been collected, and it is good practice to demonstrate that data meets these two 
assumptions before parametric statistical tests are used. 
 
 
3.2 Assessment of normality 
 
Confirming whether the data collected within a study sufficiently meets the assumption of a 
normal distribution should be seen as an informed judgement based on a series of 
diagnostic checks, rather than a definitive black and white decision. Note also that in 
regression analyses, it is the residuals (errors between the predicted and actual values) that 
are required to be normally distributed, not the actual variable values themselves. Normality 
of residuals may also be adequate for between-subjects ANOVAs and independent t-tests 
[Williams et al, 2013]. 
 
Three types of checks should be carried out to perform a comprehensive assessment of 
normality: 1) Visual inspection of graphical representations of the data; 2) Assessment of 
descriptive statistics; and 3) Statistical tests of deviation from a normal distribution. These 
methods are illustrated using two sets of simulated data, representing normal and non-
normal distributions. The normally distributed data has been generated using the rnorm 
function within the R software package (version 3.4.0, R Core Team, 2017), with the 
parameters of sample size = 100, mean = 5, standard deviation = 1.5. The non-normal data 
are based on a positively-skewed exGaussian distribution. This type of distribution is 
frequently found in reaction time data [Palmer et al, 2011], and reaction times are commonly 
used as a response measure in lighting research [e.g. He et al, 1997; Fotios et al, 2017; 
Cengiz, Puolakka & Halonen, 2015]. The simulated non-normal data has been produced 
using the retimes package [Massidda, 2013], with the same parameters as for the normal 
data (sample size = 100, mean = 5, standard deviation = 1.5), and with the additional tau 
parameter, representing the exponential decay of the distribution tail, set at 4. 
 
The distribution of a dataset can be visually inspected using three types of plot - a histogram, 
a quantile-quantile (Q-Q) plot, and a boxplot. The simulated normal and non-normal data 
have been plotted using these three types of visualisation in Figs. 1, 2 and 3. 
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The histogram represents a dataset by showing the counts of values within equally-sized 
ranges or ‘bins’. The size of these ranges, the ‘binwidth’, that is chosen for the histogram can 
have a large impact on the appearance of the data and its distribution. The binwidths chosen 
for the normal and non-normal data in Fig. 1 respectively were 0.81 and 1.47. These were 
selected using the Freedman-Diaconis rule of determining optimal bin size (see Equation 1). 
Other methods are also available for selecting the optimal binwidth, such as Sturges’ Rule 
and Bayesian optimal binning. 
 
 
Equation 1     (2 x IQR) / n1/3 

IQR = Interquartile range of data 
n = sample size 
 
 
 
 
<<< INSERT FIGURE 1 HERE >>> 
Fig. 1. Histograms of simulated data with a normal (left) and non-normal (right) distribution. 
 
Quantile-quantile plots compare actual data against data that would be expected if they were 
from a particular distribution (in this case, the normal distribution). Normally-distributed data 
would represent a straight line on the Q-Q plot and deviations away from this straight line 
indicate deviations away from a normal distribution. The nature of any divergence from a 
straight line can also reveal something about how the data fails to conform with normality. 
Figure 2 illustrates how the normal data follow a relatively straight line, whereas the non-
normal data curve upwards at the larger response values, confirming the positive skew that 
is evident from the histogram. 
 
 
 
<<< INSERT FIGURE 2 HERE >>> 
Fig. 2. Quantile-quantile plots of simulated data with a normal (left) and non-normal (right) distribution. 
 
A further method for visually inspecting the distribution of data is the box plot. The median 
value is indicated by the solid horizontal line within the box. The box itself represents values 
that are between the 25th and 75th quartiles. The vertical lines or whiskers show the extent 
of values that are within 1.5 times the IQR from each end of the box (greater than upper 
quartile + 1.5 IQR or less than lower quartile - 1.5 IQR). Values that are beyond this are 
shown as outliers and represented by individual data points. The boxplot would suggest a 
normal distribution if it was approximately symmetric overall, the median line was at the 
centre of the interquartile box, the whiskers are symmetric and slightly longer than the 
subsections of the interquartile box above and below the median line, and the number of 
outlying data points is small [Ghasemi & Zahediasl, 2012]. How small the number of outlying 
data points should be depends on the sample size. In a normal distribution, 0.8% of values 
would be expected to be more extreme than the upper or lower quartile ± 1.5 IQR and 
therefore flagged as an outlying value in the boxplot [Dawson, 2011]. Figure 3 shows 
boxplots for the simulated normal and non-normal datasets. 
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<<< INSERT FIGURE 3 HERE >>> 
Fig. 3. Boxplot visualisations of the simulated normal (left) and non-normal (right) datasets. 
 
Alongside visual inspections of the data, it is also useful to quantify any potential deviations 
from a normal distribution. A first approach to this is to quantify levels of skewness (how 
symmetrical the distribution is, and whether it has a number of extreme values that produce 
a long ‘tail’ to the distribution) and kurtosis (the relative thickness of the tails of the 
distribution, compared to a normal distribution). Statistical packages such as SPSS and R 
include simple methods for calculating skewness and kurtosis values. However the exact 
methods used in different packages may vary [Joanes & Gill, 1998]. Whatever method is 
used, a dataset with a pure normal distribution will have skewness and kurtosis values of 
zero. 
 
To adequately assess deviations from normality it is necessary to convert the skewness or 
kurtosis statistic to a z-score by dividing it by its standard error. These transformed values 
can be compared against values you would expect to get by chance alone, based on a 
normal distribution. A z-score of ±1.96 is significant at p < .05, at ±2.58 it is significant at p < 
.01, and ±3.29 is significant at p < .001. A significant z-score may indicate the distribution 
has significant levels of skewness / kurtosis, although the threshold to use is a matter of 
judgement. As the sample size increases, the standard error becomes smaller, resulting in a 
larger z-score. Large samples are therefore more likely to provide transformed skewness 
and kurtosis statistics that appear significant, and it may therefore be appropriate to use a 
larger threshold to indicate whether the distribution of a large sample of data shows 
significant skewness or kurtosis. Field, Miles and Field [2012] suggest it is not appropriate to 
utilise z-score values of kurtosis and skewness for samples larger than 200. The z-score 
values of skewness and kurtosis for the simulated normal set of data are -0.30 and 0.23 
respectively, indicating no evidence of skewness or kurtosis. The values for the non-normal 
dataset were 7.91 and 10.44, confirming significant skewness and kurtosis. These values 
have been calculated using the stats.desc function in the pastecs R package [Grosjean & 
Ibanez, 2014]. 
 
A further method for quantitatively assessing whether a distribution is normal or not is 
through use of a statistical test assessing a distribution for deviations from normality. The 
most commonly-used two tests are the Shapiro-Wilk test and the Kolmogorov-Smirnov test 
(other tests of normality are also available, such as the Anderson-Darling test, D’Agostino-
Pearson omnibus test, and Jarque-Bera test). If the test produces a significant p-value, this 
indicates the data significantly deviates from a normal distribution. The Shapiro-Wilk may be 
a more sensitive and powerful test than other normality tests [Razali & Wah, 2011; Yap & 
Sim, 2011], although it is often assumed it is best used with samples less than 50 as the 
original development of the test by Shapiro and Wilk was limited to samples of this size or 
less [Shapiro & Wilk, 1965]. 
 
Statistical tests of deviation from normality suffer from over-sensitivity as the sample size 
increases, and may indicate even very minor deviations from normality as being significant 
with larger samples. This is illustrated in Fig. 4. This plots the probability that a Shapiro-Wilk 
test will give a significant result depending on the sample size, when the sample is taken 
from a population that shows marginal normality (ex-Gaussian distribution, n = 10,000, mean 
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= 5, standard deviation = 1.5, tau = 1). These probabilities were calculated using a Monte 
Carlo method in which 100 samples were drawn from the marginally-normal population for 
each sample size between 10 and 500. The calculated probability for each sample size was 
based on the proportion of Shapiro-Wilk tests that produced a significant (p < .05) result. As 
the Shapiro-Wilk test will produce a significant result even with a near-normal distribution, 
given a large enough sample, it may be appropriate to use a more stringent alpha with larger 
samples. When large samples are involved, consideration of the W statistic calculated by the 
Shapiro-Wilk test may also be useful in assessing whether any deviation from normality is 
problematic. Minor deviations from normality in a large sample will still produce a significant 
p-value, but if the W statistic is still large (e.g. greater than 0.98), the deviation could be 
considered to be minor and make little difference to the validity of a parametric statistical 
test.  
 
<<< INSERT FIGURE 4 HERE >>> 
Fig. 4. Probability that Shapiro-Wilk test will be significant for a sample taken from marginally-normal 
population, by sample size. 
 
 
3.3 Assessment of equal variance 
 
Parametric tests assume that the variance within different parts of your data are equal. If you 
are using a factorial design and have collected data across different groups, this means the 
variance within each of those groups should be approximately equal. If your data are not 
grouped but are continuous, for example in a design that uses regression, then the variance 
in data for one variable should be equal across all levels of the other variable [Field, Miles & 
Field, 2012]. 
 
When data are collected in different groups, for example recording ratings of spatial 
brightness for two or more different lamp types, the variance within these groups should be 
equal. Levene’s test can be used to test whether this assumption of homogeneity of variance 
is true. A significant result on this test (p < .05) indicates that the variances of the different 
groups do significantly differ, and the assumption of equal variance is violated. However, as 
the sample size increases, Levene’s test is more likely to flag even minor differences in 
variance as significant, and this may be inappropriate. Field, Miles & Field [2012] suggest 
also assessing homogeneity of variance using the Hartley’s Fmax statistic. This is the ratio of 
variance in the group with the largest variance to the group with the smallest variance. If this 
ratio is greater than a critical value for a given sample size, then the variances within the 
data are unlikely to be equal. The critical values are given in Pearson and Hartley [1954], but 
as a rule of thumb, a sample size of 10 per group would require an Fmax of less than 10 to 
demonstrate equal variance, for a sample size of 15-20 per group Fmax should be less than 5, 
and for sample sizes of 30-60 per group Fmax should be less than 3 [Field, Miles & Field, 
2012]. 
 
When a correlational design is used and data collected are continuous, for example as in 
linear regression, the assumption of equal variance (the variance on one variable is equal 
across all levels of another variable) should be checked using visual inspection methods, 
plotting the predicted value against its residual. Figure 5 gives an example of two such plots, 
one showing data that meets the assumption of equal variance the other showing data that 
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does not meet this assumption. Data from variables that have equal variance should present 
a random array of data points dispersed around zero. The data points form a funnel shape if 
the data comes from variables with unequal variance, indicating that the predictive power of 
the regression model systematically changes as the fitted value changes. 
 
 
<<< INSERT FIGURE 5 HERE >>> 
Fig. 5. Example plots of fitted values compared with residuals for linear regression model, showing 
data with equal variance (left) and unequal variance (right). 
 
In within-subjects designs with more than three conditions, it is also important to check the 
assumption of sphericity. This assumes that the variances of the differences between pairs 
of conditions are the same across all possible pairs of conditions. Mauchly’s test of sphericity 
is usually used to test this assumption. A significant result suggests a violation of the 
sphericity assumption. 
 
 
3.4 Consequences of violating statistical test assumptions 
 
To demonstrate the consequences of using parametric tests on data that does not meet test 
assumptions, a Monte Carlo procedure was used to identify the likelihood that a parametric 
test will produce a different conclusion to a non-parametric test when used on samples 
drawn from populations that are not normally distributed. 
 
Two populations of simulated reaction times measured in milliseconds with ex-Gaussian 
distributions were generated using the pastecs R package. Both populations had N = 1000, 
and parameters of standard deviation = 250 and tau = 500. Population 1 were given a mean 
parameter of 500, and population 2 a mean parameter of 850. The distributions of 
populations 1 and 2 are shown in Fig. 6, illustrating a clear difference in reaction times 
between the two populations. Two random samples of n = 15, one from each of these 
populations, were drawn and tested for normality using the Shapiro-Wilk test. As the aim 
was to ensure one of these paired samples were not normally distributed, if neither of the 
samples produced a significant result (p < .05) on the normality test, the samples were 
discarded and new samples drawn from each of the populations. This process was stopped 
when a thousand pairs of samples from each of the populations were obtained. The 
parametric independent t-test and the non-parametric Mann-Whitney U-test were used to 
compare the samples in each of these pairs. These tests provided discrepant conclusions for 
17% of the sample pairs, defined as disagreement about whether the samples were 
significantly different at p < .05. The large majority of these disagreements (82%) occurred 
because the Mann-Whitney test indicated a significant difference whereas the t-test did not. 
This simple demonstration highlights the potential that use of parametric methods will 
provide inappropriate conclusions when used on non-normal data, in comparison to 
conclusions drawn from appropriately used non-parametric methods. This illustration 
highlights the potential for increased risk of incorrectly accepting the null hypothesis (Type II 
error) when using parametric methods on non-normal data. However, in different 
circumstances there is also potential for an increased risk of making a Type I error [Wilcox, 
1998]. 
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<<< INSERT FIGURE 6 HERE >>> 
Fig. 6. Density plots showing distributions of two populations of simulated reaction time data, 
generated using the pastecs package in R. 
 
3.5 Addressing violations of assumptions 
 
If data are assessed as violating one or more of the assumptions required by parametric 
tests, there are three options: 
1) Accept the violation and proceed with using a parametric test anyway. The magnitude of 

the violation should be considered. If small, it may be acceptable to use a parametric test 
such as an ANOVA. For example, Field, Miles and Field [2012] suggest the ANOVA is 
reasonably robust to violations of homogeneity of variance when group sizes are equal, 
and minor violations of the normal distribution can also still produce results that are 
similar to those when the data are normally distributed [Schmider et al, 2010]. The 
assumption of normality can be ignored with increasing confidence as the sample size 
rises above 30. This is due to the Central Limit Theorem, which states that the means of 
a random set of samples from a population (the sampling distribution) approaches 
normality as the size of the sample increases. Sample sizes of N ≥ 30 generally produce 
a normal distribution of sample means for all but the most extreme non-normal 
distributions. For such distributions, a sample size greater than 30 may be required for 
the sampling distribution to approach normality, but such extreme distributions are rare in 
most research. If the sampling distribution is normal, the assumption of normality is met 
and we can proceed with using a parametric test even if the distribution of our sample is 
not normal. However, with group samples of N < 30 that do not follow a normal 
distribution, or if other parametric test assumptions are violated, the implications of 
proceeding with parametric testing, as highlighted in section 4.4, should be carefully 
considered. 

2) Transform the data to make it meet the violated assumption. Most dependent variables 
are measured on a linear scale, but the use of a linear scale is arbitrary and data can be 
legitimately transformed using some function to address the violation of a parametric 
assumption whilst maintaining the informational integrity of the data. Transforms can be 
used to address violations of different assumptions, for example to produce a normally-
distributed set of data, or to increase homogeneity of variance. It is important to be 
aware that although transforming data does not change the relationship between 
different variables, it does change the differences between variables. This means when 
comparing differences within the same variable (e.g. responses on each level of a within-
subjects factor), you should transform all levels of that variable, not just those that violate 
one of the assumptions you are assessing [Field, Miles & Field, 2012]. The type of data 
transformation used will depend on how an assumption is violated. For example, log, 
square root or reciprocal transformations can correct for positive skew and unequal 
variances, whilst a reverse score transformation can correct for a negative skew. Further 
details about transformations can be found in Field, Miles & Field (2012) and McDonald 
[2014]. 

3) Use an alternative non-parametric statistical test that is robust to the violation. A range of 
statistical tests exist that do not rely on parametric assumptions. A summary of some 
non-parametric alternatives to commonly used parametric tests is given in Table 3. 
Before deciding to use a non-parametric test, it is worth noting that they generally have 
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less power than parametric tests, leading to an increased risk of making a Type II error 
(falsely retaining the null hypothesis). Other methods that are robust to violations of 
parametric assumptions but not listed in Table 3 are also available. For example, if 
variance within groups is not equal, Welch’s separate variances t-test (for comparing two 
groups of data) or Welch’s F test (for comparing three or more groups of data) are 
available. Some researchers have even suggested abandoning the traditional Student’s 
t-test in favour of Welch’s t-test, as it performs better when sample sizes and variances 
are unequal between groups, or just as well when they are equal [Delacre, Lakens & 
Leys, 2017]. Bootstrapping procedures, and generalised linear mixed models also 
provide alternative approaches if data fail to meet parametric assumptions. Some tests 
also provide corrected statistics to account for violated assumptions. For example, if 
sphericity is not present in the data, a correction can be applied to produce a valid F-
ratio. Options include the Greenhouse-Geisser correction and the Huynh-Feldt 
correction. Further details about applying these corrections can be found in most 
statistics text books, e.g. Field, Miles & Field (2012). Further information about non-
parametric statistics is available in Conover [1999] and Siegel and Castellan [1988]. 

 
 
 
 
TABLE 3. Non-parametric alternatives to commonly used parametric tests (see Motulsky, 1995). 

Assessment being made Parametric test Non-parametric test 
Compare one group to a 
hypothetical value 

One-sample t-test Wilcoxon signed-rank test 

Compare two independent 
groups 

Independent t-test Mann-Whitney test 

Compare three or more 
independent groups 

One-way ANOVA Kruskal-Wallis test 

Compare two dependent 
groups (within-subjects) 

Dependent t-test Wilcoxon signed-rank test 

Compare three or more 
dependent groups 

Repeated-measures 
ANOVA 

Friedman test 

Association between two 
variables 

Pearson correlation Spearman correlation 

Predict value based on 
another value 

Linear / Nonlinear 
regression 

Nonparametric regression / 
logistic regression 

 
  
 
4. Reporting of effect sizes 
 
When conducting research, we are generally interested in discovering whether our variables 
of interest have some effect on what we are studying. This effect may relate to a difference 
between groups, for example hazard detection rates under different lighting conditions. 
Alternatively, it may relate to associations between variables, for example whether outdoor 
illuminance levels are associated with perceived safety. If applied appropriately (see Section 
3), Null Hypothesis Statistical Testing and the p-value produced can provide evidence 
towards an effect being present (or at least that no effect, the null hypothesis, is implausible). 
As well as knowing whether an effect may be present, we are also interested in how big this 



15 
 

effect is – do our variables have a big influence on what we are measuring, or only a trivial 
influence? A range of methods are available to calculate the size of an effect, some of these 
are listed in Table 4. Measures of effect size often produce a standardised value which 
allows comparison between studies using different metrics and a consistent ‘language’ of 
effect magnitudes. Further information about effect sizes and their calculation is available 
elsewhere (e.g. Lakens, 2013; Cohen, 1988, 1992; Sullivan & Feinn, 2012). 
 
The size of any effect revealed within a study is a valuable piece of information when results 
are reported, for three reasons [Lakens, 2013]. First it provides information about the 
magnitude of the effect found, allowing its practical importance to be considered. This 
information cannot be adequately gleaned from only a p-value [Durlak, 2009]. Second, it can 
be incorporated into meta-analyses that combine the findings from multiple studies to 
provide holistic evidence and more definitive conclusions about a research question or area. 
Third, it can be used in the design of future related research to estimate required samples 
sizes, through a priori power analyses, as discussed above. However, despite the evidential 
and scientific value of reporting effect sizes, this is rarely done in lighting research. The 
review of recent lighting research papers, and papers related to spatial brightness (Section 
2), showed that only 24% of the 50 studies included in the review reported effect sizes of 
some kind, with the majority of effect size measures being R2 values from a linear 
regression. 
 
It may be possible for the reader of a study article to calculate for themselves some 
measures of effect size using commonly reported data such as the means and standard 
deviations (Cohen’s d can be estimated using the difference between group means and the 
pooled standard deviation, for example). However most readers are unlikely to make such 
calculations for every study they read about, or may not have sufficient information available 
to make the calculations correctly. It is also unwise to rely on the reader’s intuitions about 
statistical effect sizes or power achieved by a study, even if they are highly statistically 
literate, as they are likely to be incorrect [Tversky & Kahneman, 1971; Bakker et al, 2016].  
Authors of lighting research papers should therefore be encouraged to explicitly report effect 
sizes within their results. The type of effect size measure that should be reported will depend 
on the statistical test used and the experimental design (e.g. see Table 4 for effect size 
measures associated with statistical tests reported in lighting research papers included in the 
review). The range of possible effect size measures limits any discussion of how to calculate 
and report effect sizes in this paper, but a number of relevant guides exist (e.g. see Lakens, 
2013, and Durlak, 2009). G*Power [Erdfelder et al, 1996] is also recommended as a 
convenient and powerful open-source application that can calculate effect sizes for a range 
of tests and designs. 
 
The limited reporting of effect sizes within lighting research literature may reflect wider 
inconsistencies in how statistical information is reported, as indicated by the review carried 
out in Section 2. Variations were found in the reporting of summary statistics, including 
whether measures of variance such as standard deviations or standard errors were 
presented. There were also inconsistencies in the reporting of test statistics - some papers 
provided the test statistic, such as t or F, the degrees of freedom, and the p-value, whilst 
others provided only the p-value. In many circumstances, p-values were not even provided, 
particularly when a test was not-significant. There were also variations in the precision of 
statistical reporting and whether exact p-values were given, with the broad statement of ‘p < 
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.05’ being frequently used. Whether a statistical test was one- or two-tailed was rarely 
stated. 
 
 
5. Sample size and power 
 
As discussed in previous sections, key goals of any research study is to discover whether an 
effect exists (which requires appropriate application of statistical tests, see Section 3) and 
the magnitude of any effect (which requires the calculation and reporting of a measure of 
effect size, see Section 4). The sample size used has implications for both these objectives. 
Sample size is an essential determinant of the size of the effect that study will be able to 
reveal. It also contributes to determining the power of the study - the probability that a 
significant effect will be revealed through statistical testing when a true effect does really 
exist (i.e. the probability of avoiding a Type II error). Increasing the sample size increases 
the power of a study thus making it more able to detect an effect of a smaller size, reducing 
the likelihood that the null hypothesis will be incorrectly accepted. Figure 7 shows how power 
changes with sample size, for small, medium and large effects, using independent and 
dependent t-tests. Note that the effect size metric for between-subjects (left plot) is Cohen’s 
d, whilst for within-subjects (right plot) it is Cohen’s dz. 
 
<<< INSERT FIGURE 7 HERE >>> 
 
Fig. 7. Calculated power of one-tailed independent t-test for between-subjects designs (left) and 
dependent t-test for within-subjects designs (right), by sample size and effect size (Cohen’s d for 
between-subjects, Cohen’s dz for within-subjects), assuming an alpha of 0.05. Independent t-test uses 
group sample size, not total sample size. 
 
Within-subjects designs have greater power than between-subjects designs for the same 
sample sizes due to reduced individual variance. A number of effect size measures exist for 
within-subjects designs (e.g. see Lakens, 2013, and Rosnow & Rosenthal, 2003). For 
example, the classical Cohen’s d can be used for two matched groups, however this does 
not take account of the correlations between paired values in within-subjects data. An 
alternative is to calculate Cohen’s dz which accounts for the correlated nature of paired data. 
The greater the correlation between the paired values, the larger dz becomes. Caution 
should be taken in comparing the size of d (for between-subjects designs) and dz (for within-
subjects designs) however. For a given difference between two means and associated 
standard deviations in values, the effect size calculated if the data are treated as within-
subjects (dz) is likely to be considerably larger than if the data are treated as between-
subjects (d). The size of this difference will depend on the strength of the correlations 
between paired values. Lakens (2013, p. 7-8) provided hypothetical analysis to illustrate this, 
showing that when illustrative data were treated as between-subjects, Cohen’s d was 1.13, 
but when the same data were treated as within-subjects, Cohen’s dz was 1.50. Effect sizes 
for within-subjects designs may therefore be “inflated”, relative to the default effect size 
calculations for between-subjects designs [Dunlap et al, 1996]. 
 
If comparing two unrelated groups using an independent t-test, a sample size of 310 
participants in each group would be required to find an effect size of d = 0.2 (a small effect 
according to Cohen’s thresholds), assuming a power of 0.8. If comparing two related groups 



17 
 

using a dependent t-test, a sample size of 156 would be required to find an effect size of dz = 
0.2. The inflated nature of the dz measure means it may be more realistic to seek a larger 
effect size. For illustration purposes, a dz of 0.4 would require a sample size of 41. The 
median sample sizes found in the review of lighting publications (Section 2) were all below 
40, highlighting the potential that ongoing research in the lighting field runs the risk of being 
underpowered, if past sample sizes are indicative of sample sizes used in future research. 
 
To explore this issue in more detail estimates of the power capable of being achieved by the 
sample sizes and statistical tests used in papers included in the review (section 2) were 
calculated for small, medium and large effect sizes. Note that this is not an attempt to 
calculate the observed power within each study. Post hoc calculation of observed power, 
using the observed effect size and sample size used, provides almost no information of 
value. By definition, a study had sufficient power to detect an effect if a significant effect was 
revealed. As Hoenig and Heisey stated: “Power calculations tell us how well we might be 
able to characterize nature in the future given a particular state and statistical study design, 
but they cannot use information in the data to tell us about the likely states of nature” 
[Hoenig & Heisey, 2001, p. 23]. In this analysis, the sample sizes and statistical tests 
reported in a sample of lighting research papers are used as example data in determining 
the power achieved for different effect sizes. This aims to reveal the power capable of being 
achieved by existing research practices within the lighting field. 
 
The effect size criteria used in this analysis were defined by convention for the specific 
statistical test [e.g. Cohen, 1988, 1992; Olivier, May & Bell, 2017] as shown in Table 4. 
Power estimates were calculated for each type of test and sample size used within these 
papers, and for each threshold of effect size (small, medium and large), using the G*Power 
software [Erdfelder et al, 1996]. If the same type of test was used multiple times in the same 
paper, only the test parameters and sample size that would produce the largest power were 
included in this analysis. This meant each paper provided only one set of details per 
category of test carried out, providing a more representative sample of values and avoiding 
some studies that used large numbers of tests dominating the results of this analysis. 
 
For the six papers that did not report inferential statistics, a judgement was made about an 
appropriate statistical test and power estimated based on this. A total of 67 estimates of 
power for each effect size criterion were calculated, from 42 papers. Power estimates were 
unable to be estimated from eight papers due to the type of test used (e.g. Friedman’s 
ANOVA) or insufficient information provided. The distribution of power estimates are shown 
in Fig. 8. These histograms illustrate how current lighting research practice, in terms of the 
sample sizes and statistical tests used, is very unlikely to be capable of revealing a small 
effect, with no statistical tests reaching the recommended power criteria of 0.8. For detection 
of a medium-sized effect, only 42% of studies reported tests that would reach the 0.8 power 
criteria. The situation was better for detection of a large effect, with 75% of reported tests 
capable of reaching a power of 0.8 or more. 
Note also that the power estimates suggested in Fig. 7 and Fig. 8 may be optimistic as they 
are based on use of a one-tailed test. One-tailed tests, in which the direction of an effect is 
explicitly predicted, provide greater power than two-tailed tests. The difference in power is a 
function of a number of factors including the test used, the effect size and the sample size. 
As an example, the power for a group sample size of 20 and an effect size of 0.2 is 0.15 for 
a one-tailed dependent t-test. This reduces to 0.09 when a two-tailed t-test is used. Lighting 
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research papers included in the review rarely reported whether a one- or two-tailed test was 
used. Justification for use of a one-tailed test was also absent in nearly all reviewed papers, 
a finding that is in common with other research areas [e.g. Ruxton & Neuhauser, 2010]. 
 
Although the ability to detect small effect sizes in lighting research appears to be limited, the 
need or desirability of detecting small effects should also be considered. It is reasonable, 
particularly in applied lighting research, for investigators to only be interested in detecting 
effect sizes of a certain magnitude. The practical implications of a small effect may be 
negligible, and this could justify powering studies to only detect larger effect sizes. 
 
 
 
TABLE 4. Small, medium and large effect size criteria conventions, for different effect size measures, 
based on statistical tests used in studies published in Lighting Research & Technology and LEUKOS 
in 2017. 

Effect size 
statistic 

Statistical test/s Small 
effect 

Medium 
effect 

Large 
effect 

Cohen’s d One-sample t-test 0.2 0.5 0.8 

Cohen’s dz Dependent t-test; Wilcoxon 
signed-rank test 

0.2 0.5 0.8 

Cohen’s f Repeated-measures ANOVA; 
Between-subjects ANOVA 

0.1 0.25 0.40 

Cohen’s f2 Regression 0.02 0.15 0.35 

Odds ratio McNemar test 1.22 1.86 3.00 

Kendall’s w Friedman ANOVA 0.1 0.3 0.5 

g Binomial test 0.05 0.15 0.25 

 
 
It is good practice to carry out an a priori power analysis to determine the sample size 
required to be confident in revealing an effect if there is one truly present. Despite its 
benefits, no evidence was found of a priori power analysis in the sample of lighting research 
papers reviewed, suggesting it may not be routine practice in lighting research. 
 
A power analysis requires knowledge of three things. The first is the alpha level, the 
probability of observing the measured effect you are willing to accept, when in reality no true 
effect exists (effectively, the probability of making a Type I error). Common practice usually 
sets the alpha at 0.05, although as highlighted earlier, the choice of alpha to use should not 
be inflexible [Lakens et al, 2017]. The second thing we need to know is the power we aim to 
achieve with our test - the probability of detecting an effect when one truly does exist 
(avoiding making a Type II error). A common minimum required power is 0.8 [Cohen, 1992]. 
The final piece of information required for a power analysis is the effect size that is 
anticipated, or that the test should be capable of revealing. Armed with these three pieces of 
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information we can calculate required sample sizes, using statistical software such as 
G*Power [Erdfelder et al, 1996] or the pwr package in R. 
 
The alpha and power threshold are generally predetermined based on conventions, but a 
potential effect size has to be estimated. One approach to determining an estimated effect 
size is by examining previous related literature to estimate an average effect size for the type 
of effect you are interested in. This may be difficult within lighting research as there are very 
few meta-analyses that summarise effect sizes from a range of studies within a specific 
research topic, and many published studies fail to report effect sizes (as demonstrated in the 
review carried out for this paper) or provide the necessary statistics to calculate an effect 
size. There is also the potential that the effect sizes reported in published literature may not 
reflect the true effect size due to publication bias and the general under-powering of studies 
[e.g. Button et al, 2013; Paterson et al, 2013; Quintana, 2017]. An alternative approach to 
deciding on an effect size for use in a power analysis is to state the minimum effect size you 
are willing to accept as detectable with your study, or assess what the minimum effect size 
would be for it to be meaningful and not trivial (the SESOI – Smallest Effect Size Of Interest. 
Albers & Lakens, 2018). 
 
 
 
 
 
 
 
 
 
 
 
<<< INSERT FIGURE 8 HERE >>> 
 
Fig. 8. Estimated power of statistical tests used in reviewed papers, based on sample size and other 
parameters such as number of measurements (in within-subjects methods), for small (top), medium 
(centre) and large (bottom) effect sizes. Vertical dashed line indicates conventional minimum 
recommended power of 0.8 [Cohen, 1988]. 
 
 
 
6. Conclusions 
 
Publication bias and the reproducibility crisis are issues that pose a significant risk to the 
evidential value of research within a number of fields, but particularly within lighting research. 
At the heart of these issues lies the risk of making Type I or Type II errors. The statistical 
methods employed in research are designed to reduce these errors, and their role in 
determining the presence and importance of any effect are critical to the veracity of 
published research. This paper reviewed a sample of general and topic-specific lighting 
research papers. The review highlighted the relatively small samples used in behavioural 
lighting research, and the lack of power this introduces. The sample sizes used in most 
lighting studies may only be capable of revealing medium to large effects. 
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It is important to consider whether an effect of a certain size is of practical significance. 
Depending on the specific research area and question being investigated, a small effect size 
may be insufficiently interesting or noteworthy to warrant investigation, and researchers may 
only be interested in discovering effects equal to or greater than a certain magnitude. With 
limited research funding and resources available, the size of an effect that is worth detecting 
is an important consideration when determining the sample size of a study. Whatever size of 
effect is judged to be sufficiently large to be of interest, it remains important to justify the 
sample size used. However, the justification of sample sizes, based on anticipated or 
targeted effect sizes, was virtually non-existent within the papers reviewed here. 
 
One possible reason for this absence of sample size justification is that the practice of 
reporting effect sizes in lighting research papers is not commonplace, and therefore it may 
be difficult to estimate anticipated effect sizes with any confidence. Only 24% of reviewed 
papers reported any kind of effect size measure. The American Psychological Association 
Task Force on Statistical Inference [Wilkinson, 1999] states that: “...reporting and 
interpreting effect sizes in the context of previously reported effects is essential to good 
research.” (p.599). Increased reporting of effect sizes should be encouraged within lighting 
research, as should detailed, accurate and appropriate statistical analysis and reporting. 
This can help reduce the promotion of unsupported findings within lighting research 
literature. 
 
The review presented in Section 2 highlighted that parametric statistical tests, including t-
tests, ANOVAs and linear regressions, are the dominant type of testing carried out. 
Parametric tests require a number of assumptions to be made about the data, including a 
normal distribution and equality of variances. Despite this very few papers explicitly stated 
these assumptions had been assessed before a statistical test was used. Inappropriate use 
of parametric statistical tests can result in an increase in Type II errors (false negatives), as 
illustrated by the simple example presented in Section 3.4. Wilcox [1998] also demonstrated 
that even a small departure from normality could reduce the power of a t-test from .96 to .28. 
Inappropriate use of parametric tests may also lead to an increase in Type I errors, as stated 
by Erceg-Hurn & Mirosevich [2008]: “... the p values reported by statistical packages such as 
SPSS may be extremely inaccurate if the data being analyzed are non-normal and/or 
heteroscedastic; the inaccuracy may lead researchers to unwittingly make Type I errors” (p. 
593). The evidential value and accuracy of studies within the lighting research literature 
would be improved if the assumptions of the statistical tests proposed for use were assessed 
and reported on. This paper provides guidance on how the assumptions of a normal 
distribution and equal variances can be assessed. 
 
This paper highlights three issues relevant to improving the evidential quality within lighting 
research - determination and justification of sample sizes, assessment of test assumptions, 
and reporting of statistical results particularly effect sizes. Further treatment of these issues 
can also be found in a number of other texts [e.g. Cohen, 2013; Haslam & McGarty, 2018; 
Abelson, 1995; Field, Mils & Field, 2012] 
 
There are other practices and methods that can improve evidential quality that also warrant 
discussion within the lighting research community. For example, preregistration of studies 
may help address publication bias, control for researcher degrees of freedom [Simmons, 
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Nelson & Simonsohn, 2011] and ‘Questionable Research Practices’ [John, Loewenstein & 
Prelec, 2012]. Research quality and transparency can also be improved through justification 
of all research design decisions within a study, including the sample size used, analytical 
methods, and p-value thresholds chosen [Lakens et al, 2017]. Some researchers suggest 
abandoning the term ‘statistically significant’ [Lakens et al, 2017; McShane et al, 2017] as it 
induces a rigid interpretation of a set of results when in reality the interpretation may be 
context-dependent and the meaning of ‘significance’ may vary depending on the topic and 
research field. Discussion of these ideas would be valuable in the context of lighting 
research. However, null hypothesis statistical testing is likely to remain the de rigeur method 
for assessing results in the foreseeable future. All those involved in research publication, 
from researchers to reviewers and editors, should aim to ensure this approach is applied 
appropriately, taking heed of the three issues discussed in this paper. This should include 
accurate and appropriate reporting of the results of such statistical analysis. To support this 
aim lighting journals should consider adopting existing guidelines for reporting quantitative 
results provided by expert organisations such as the American Psychological Association 
[Appelbaum et al, 2018], for studies with outcome measures from the behavioural and social 
sciences. 
 
Appropriate statistical analysis and reporting will help ensure research resources are not 
wasted, participants’ time is not wasted and they are not exposed to undue risk through 
participation in unnecessary or poor research, and readers’ time is not wasted. 
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