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B-spline based sharp feature preserving shape

reconstruction approach for electrical impedance

tomography
Dong Liu, Danping Gu, Danny Smyl, Jiansong Deng and Jiangfeng Du

Abstract—This paper presents a B-spline based shape recon-
struction approach for electrical impedance tomography (EIT).
In the proposed approach, the conductivity distribution to be
reconstructed is assumed to be piecewise constant. The geometry
of the inclusions is parameterized using B-spline curves, and
the EIT forward solver is modified as a set of control points
representing the inclusions’ boundary to the data on the domain
boundary. The low order representation decreases the computa-
tional demand and reduces the ill-posedness of the EIT recon-
struction problem. The performance of the proposed B-spline
based approach is tested with simulations which demonstrate
the most popular biomedical application of EIT: lung imaging.
The approach is experimentally validated using water tank
data. In addition, robustness studies of the proposed approach
considering varying initial guesses, inaccurately known contact
impedances, differing numbers of control points, and degree of
B-spline are performed. The simulation and experimental results
show that the B-spline based approach offers improvements in
image quality in comparison to the traditional Fourier series
based reconstruction approach, as measured by quantitative
metrics such as relative size coverage ratio and relative contrast.
Inasmuch, the proposed approach is demonstrated to offer clear
improvement in the ability to preserve the sharp properties of
the inclusions to be imaged.

Index Terms—Electrical impedance tomography, shape recon-
struction, sharp feature, B-spline curve, inverse problems.

I. INTRODUCTION

ELECTRICAL impedance tomography (EIT) is a non-

invasive and radiation-free medical imaging technique.

Based on the application of alternate micro currents along a

set of electrodes placed around the chest wall, EIT allows
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continuous tomographic imaging of the conductivity distribu-

tions inside the chest. EIT technology has been used in a wide

spectrum in medicine ranging from breast imaging, gastric

emptying and brain function to lung function. For a recent

review of EIT technologies, see [1].

EIT reconstruction methods can be divided into statistical

and deterministic methods. Within the statistical methods,

a prior model for the target is written explicitly and the

solution of the image reconstruction problem is sought via

a posterior probability distribution [2], [3]. In deterministic

methods, regularization techniques have usually been adopted

in order to stabilize the inversion [4], [5] Most commonly,

regularization methods impose (explicitly or implicitly) so-

phisticated prior knowledge by appropriately regularizing the

unknown parameters utilizing some matrix norm. For ex-

ample, quadratic regularization methods like the Tikhonov

regularization applied in [6] are popular methods in EIT. Such

methods confer stability to the reconstruction process, but limit

the capability of describing sharp properties in the sought

parameters. Another well-known class of regularization is total

variation (TV) regularization, it specifically addresses the issue

of stability without blurring the required sharp discontinuities

[7], [8].

In many applications, such as medical imaging, it is known

a priori that the target contains piecewise constant conductiv-

ity distribution and sharp features such as organ boundaries

[9], [10], as well as approximate ranges for realistic con-

ductivity values. The aforementioned prior knowledge can be

formulated as a regularity constraint on the solution of EIT.

Methods applied to problems in this way are referred

to as shape-based reconstruction methods. Such processes

usually involve reformulating the problem of conductivity

reconstruction as an inverse problem for a special geometrical

representation of embedded objects. Among the approaches

that have been applied are level sets [11]–[14], truncated

Fourier series [15]–[18], shape perturbation method [19] and

geometric constraint method [20], etc.

Bézier curve (which is a special case of a B-spline curve)

based approaches have also been applied to estimate shape

and phase boundary in EIT [21] and in electrical capacitance

tomography (ECT) [22]. Due to the fact that the Bézier curve

is a global presentation of the shape, it is sensitive to control

point movement and cannot represent very complicated shapes.

This means that changing the position of a single control

point of the Bézier curve causes the entire curve to change.

The Bézier representation has other main disadvantages. ForCopyright (c) 2019 IEEE. Personal use of this material is permitted. However,

permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
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example, the number of control points is directly related to

the degree of the Bézier curve. Therefore, to increase the

complexity of the shape or surface of the curve by adding

control points requires increasing the degree of the curve,

which may result in oscillation and cause numerical instability.

As the degree increases, the complexity and therefore the

computational time increases. Meanwhile, due to the increased

complexity, curves with high degree are more sensitive to

roundoff errors. What’s more, it is fairly difficult to squeeze a

Bézier curve close to an edge with a sufficiently small radius

of the control polygon, e.g., the boundary of the inclusions to

be imaged in EIT. Therefore, their extension to complicated

shapes is notoriously problematic.

Other spherical harmonics and modified B-spline based

approaches are used to parameterize and reconstruct simple

3D inclusion surfaces in EIT [23] using the boundary element

method (BEM), in which only a polar shaped object is consid-

ered, and the extension to non-polar shaped objects might be

problematic. The main reason is that the spherical harmonics

expansion cannot be used to model non-polar shapes, and if

one uses modified B-splines for modeling non-polar shapes,

one has to modify the process of modeling the surface. Despite

this realization, B-splines have also proven robust in use

cases such as the reconstruction of shape boundaries in ECT

applications [24].

Our goal in this paper is to introduce and evaluate a cubic

B-Spline based shape reconstruction approach for absolute

EIT using the finite element method (FEM). The non-global

behavior of B-spline curves provides local control of the

curve shape and avoids changing the shape in a global way,

and thus offers an improved ability to provide more control

flexibility than Bézier curves. The reason for selecting cubic

B-spline curves is that the cubic curve is most commonly used

and it provides enough control for most geometric modeling

applications without the drawbacks of higher-order curves.

For example, a higher order curve is usually considered

unnecessarily complex, making it easy to introduce undesired

wiggles or lead to physical imperfections. On the other hand,

very low-order curves (quadratic and linear) offer too little

flexibility in controlling the curves. Whereas cubic curves

offer an intermediate balance between overly geometrically-

sophisticated and sensitive higher-order curves and low-order

curve representations.

More precisely, in this paper, we use uniform cubic B-

spline (UCBS) curves for representing inclusions’ boundaries.

In UCBS, once the control points are determined, the shape of

the curve, i.e., the boundary shape of the inclusion, is deter-

mined. Meanwhile, the shape based reconstruction approach

allows for incorporation of prior information on which the

inclusion(s) are likely to be presented in the target, e.g., the

lung position is roughly known in thorax monitoring, which

may be utilized in selecting the initial locations of the control

points. Therefore, UCBS would be a reasonable choice for

shape boundary representation in EIT. In addition, UCBS has

the propensity to produce cusps due to a local maximum of

curvature produced away from the control points, which may

offer opportunities to achieve sharp properties of the inclusions

in EIT. For example, the sharp corner of a triangular-shaped

object may be well tracked based on the ability of UCBS to

produce cusps.

Following the common assumption in shape-based recon-

struction methods, the conductivity distribution to be recon-

structed is assumed to be piecewise constant meaning that

the conductivity of each region is a constant value. We also

assume the number of the inhomogeneities inside the volume

are known a priori but their conductivity properties and their

shape and location are not. The boundary of the object is

parametrically represented by an UCBS curve with a small

number of (unknown) control points, which are treated as

variables. The EIT forward solver is then modified as a set

of control points representing the anomaly boundary to the

data on the domain boundary. The low order representation

decreases the computational demand and reduces the ill-

posedness of the EIT reconstruction problem.

To evaluate the accuracy of the B-spline based approach, we

use numerical and experimental data to show the improvement

of the B-spline based approach over the classical Fourier series

based reconstruction. Simulation data is also used to show

B-spline based reconstruction for EIT lung imaging. Since a

variety of parameters determine the B-spline’s appearance, the

B-spline’s complexity is mostly determined by the number

of control points. Usually, this parameter is chosen by using

intuitive trial-and-error-procedures, aiming to find a balance

between simplicity of the curve and approximation quality.

We have carried out sets of reconstructions to study the

robustness of the proposed approach against different initial

guesses, different number of control points and degree of

B-spline. Moreover, the performance of the B-Spline based

approach is studied with and without modeling error due to

non-homogeneous background and inaccurately known contact

impedances.

The rest of this paper is organized as follows. In Section

II, we briefly review the EIT forward model. We discuss the

shape representation using B-spline curve and Fourier series in

Section III. The numerical simulations, experimental setup, the

implementation details and robustness studies are detailed in

Section IV. We present the results that show the improvement

of the proposed approach over the traditional Fourier series

based approach, and the discussions in Section V. Finally, the

conclusions are drawn in Section VI.

II. FORWARD PROBLEM OF EIT

Let Ω be an open bounded domain in Rq(q = 2, 3) with a

boundary ∂Ω. We denote the set of electrodes by {eℓ}
L
ℓ=1,

which are placed on the boundary ∂Ω and disjoint from

each other. Electric currents Iℓ are injected from L contact

electrodes into the domain, inducing the electric potential u(x)
inside Ω. The forward problem can be modeled using the

complete electrode model (CEM) [25], which consists of the

Poisson equation

∇ · (σ(x)∇u(x)) = 0 , x ∈ Ω, (1)
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and the boundary conditions

u(x) + zℓσ(x)
∂u(x)

∂ν
= Uℓ, x ∈ eℓ, ℓ = 1, ..., L, (2)

∫

eℓ

σ(x)
∂u(x)

∂ν
dS = Iℓ, ℓ = 1, ..., L, (3)

σ(x)
∂u(x)

∂ν
= 0, x ∈ ∂Ω\

L⋃

ℓ=1

eℓ, (4)

where σ(x) is the conductivity distribution, x ∈ Ω is the spatial

coordinate, zℓ is the contact impedance; Uℓ is the measured

electrical potential at electrode eℓ; ν denotes an outward unit

normal.

In addition, in order to ensure the existence and uniqueness

of the solution, the current Iℓ needs to meet the charge

conservation condition

L∑

l=1

Iℓ = 0, (5)

and the potential ground level needs to be fixed, i.e

L∑

l=1

Uℓ = 0. (6)

The numerical solution of the forward model (1-6) is often

based on FEM. Utilizing an additive Gaussian model for the

measurement noise, the observation model becomes

V = U(σ) + ǫ, (7)

where vector V consists all the measured voltages, U(σ) is

the forward solution using FEM, and ǫ is additive Gaussian

noise with mean ǫ∗ and covariance Γǫ. For details of FE

approximation of CEM, see e.g., [26].

III. BOUNDARY EXPRESSION USING B-SPLINE CURVES

AND FOURIER SERIES

In this section, two different boundary expressions using

B-spline curves and Fourier series are briefly introduced. As

illustrated in Fig. 1, let us assume that the domain Ω is divided

into disjoint and simply connected subregions Aj , i.e., Ω =⋃Nj

j=0 Aj , where Nj is the number of subregions.

Fig. 1. Examples of subregion boundaries. C1 and C2 are used to denote
the boundaries of the subregions A1 and A2, respectively. A0 denotes the
background region.

As we mentioned in Section I, the conductivity distribution

in the domain was assumed to be piecewise constant, thus the

conductivity distribution σ in the domain Ω can be written in

the form

σ(x) =

Nj∑

j=0

σjχj(x), (8)

where χj(x) is a characteristic function of subregions Aj . For

simplicity of presentation, we define a vector σpc, including

all the piecewise constant values in σ(x), i.e.,

σpc = [σ0, σ1, · · · , σNj
]T . (9)

As a first step, FE mesh elements are classified into sets of

elements inside the subregion Aj and those elements that inter-

sect the region boundaries Cj , see Fig.2. For the elements that

do not intersect the boundary are assigned their corresponding

conductivity values σj , however, for the elements that lie on

the boundary Cj , the area-weighted conductivity values, see

details in [27], are assigned as

σACD =
σoutSout + σinSin

Sout + Sin

, (10)

where footnotes marked as ‘out’ and ‘in’ denote outside and

inside of the subregion Aj , respectively. S denotes the finite

element area, and S = Sout + Sin, where Sout = S∆ABE and

Sin = SBCDE. We refer the readers to Fig. 2 for a schematic

illustration of the above assignment of conductivity to curve

crossing elements.

Fig. 2. Illustration of assignment of conductivity to curve crossing elements.

A. Uniform cubic B-spline based boundary representation

Given n+1 control points p0, p1, . . . , pn, the uniform cubic

B-spline can be represented as a linear combination of basis

functions, namely

C(t) =
n∑

i=0

piNi,k(t), (11)

where Ni,k(t) is the i-th B-spline basis function of degree k

(which is set as 3 in the paper), defined recursively as

Ni,k(t) =
t− ti

ti+k − ti
Ni,k−1(t) +

ti+k+1 − t

ti+k+1 − ti+1
Ni+1,k−1(t),

(12)

Ni,0(t) =

{
1, ti ≤ t < ti + 1,

0, otherwise.
(13)
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where i = 0, 1, . . . , n and {ti}
m
i=0 is a uniform knot vector

with m = n+ k + 1, defined as

ti =
i

m
, i = 0, 1, . . . ,m. (14)

Equation (11) can be re-expressed in matrix form as

C = NP, (15)

where N is a matrix composed of B-spline basis functions

N =




N0,k(q0) N1,k(q0) · · · Nn,k(q0)
N0,k(q1) N1,k(q1) · · · Nn,k(q1)

...
...

. . .
...

N0,k(qM ) N1,k(qM ) · · · Nn,k(qM )


 , (16)

where {qi}
M
i=0 is a set of parameter values with 0 ≤ q0 <

q1 < · · · < qM ≤ 1 and M is a positive integer. Matrix P

contains the (unknown) coordinates of control points, i.e.

P =




p0,x p0,y
p1,x p1,y

...
...

pn,x pn,y


 . (17)

To construct a closed B-Spline curve, we need to wrap the

first k and last k control points. More precisely, let P0 =
Pn−k+1, P1 = Pn−k+2, · · · , Pk−2 = Pn−1 and Pk−1 = Pn.

Now, perturbing the control points will result in a change

of conductivity distribution, so the space of unknown regions

Cj is mapped into the space of unknown control points’

coordinates P . Then, the observation model in (7) can be

expressed as

V = U(σ(x, P )) + ǫ. (18)

Now, the problem of reconstructing the region boundary and

estimating the piecewise constant conductivity vector σpc is

equivalent to solving the following least square based mini-

mization problem

[P̂ , σ̂pc] = argmin{‖Lǫ(V − U(σ))‖2 + ‖Lp(P − P ∗)‖2

+ ‖σpc − σpc
∗‖2}.

(19)

Here, Lǫ is the Cholesky factor of the inverted noise

covariance matrix Γ−1
ǫ (i.e., LT

ǫ Lǫ = Γ−1
ǫ ), the regularization

matrix Lp is the Cholesky factorization of the matrix Γ−1
p (i.e.,

LT
p Lp = Γ−1

p ). P ∗ is a vector of a priori value of P and σpc
∗

are predetermined constant values, see details in Section IV-C.

B. Fourier representation

An alternative representation of a sufficiently smooth and

closed boundary is to use the Fourier series [27], in which the

boundary can be approximated in the form

Cj(s) =

(
xj(s)
yj(s)

)
=

Nθ∑

ω=1

(
γ
xj
ω θxω(s)

γ
yj
ω θyω(s)

)
j = 1, · · · , Nj ,

(20)

where Cj(s) is the boundary of the jth object (see Fig. 1).

θω(s) are periodic differential basis functions and Nθ is the

number of basis functions.

θαω = 1, ω = 1, (21)

θαω = sin
(
2π

ω

2
s
)
, ω = 2, 4, 6, . . . , Nθ − 1, (22)

θαω = cos
(
2π

(ω − 1

2

)
s
)
, ω = 3, 5, 7, · · · , Nθ. (23)

Here s ∈ [0, 1] and α refers to x or y. It follows from (20) to

(23) that the boundaries Cj is identified with the vector γ of

the shape coefficient, that is

γ =




γx1

1 , · · · , γx1

Nθ

γ
y1

1 , · · · , γy1

Nθ

· · ·

γ
xNj

1 , · · · , γ
xNj

Nθ

γ
yNj

1 , · · · , γ
yNj

Nθ



, (24)

where γ ∈ R2NjNθ .

The inverse problem, therefore, becomes the estimation of

2NjNθ Fourier coefficients γ together with the piecewise

constant conductivity estimation

[γ̂, σ̂pc] = argmin{‖Lǫ(V − U(σ))‖2 + ‖Lγ(γ − γ∗)‖2

+ ‖σpc − σpc
∗‖2}.

(25)

Here, the regularization matrix Lγ is the Cholesky factor-

ization of the matrix Γ−1
γ (i.e., LT

γ Lγ = Γ−1
γ ) and γ∗ is a

vector of a priori value of γ, see details in Section IV-C.

IV. METHODS

In this section, the performance of the B-spine based

approach is tested with numerical simulations and experi-

mental data. The test cases, estimates, implementation details,

parameter selection used in the computational methods and

the experimental setup are explained. For the results and

discussion, see Section V.

A. Simulation of EIT Measurements

To study the performance of the B-spline based approach,

a circular domain with a radius of 14 cm and a chest-like

domain were used for numerical studies. Sixteen electrodes

were placed equidistantly on the boundary of the target

domain. Currents were injected between electrodes i and j,

i = 1, 5, 9, 13, j = 1, . . . , 16\i, thereby generating a total of

54 pairwise current injections. The amplitude of the current

was 1 mA, and the contact impedances zℓ were set to 5

Ω·cm for all the electrodes. The simulated conductivities of the

tissues were set as 0.5 mS/cm for inflated lung, 1 mS/cm for

deflated lung, 3 mS/cm for heart and 2 mS/cm for background.

The discretization details of the measurement domain Ω in

each of the test cases are given in Table I. In order to simulate

real conditions, Gaussian noise with 0.1% standard deviation

of the difference between the maximum and minimum value

of the noiseless measurement data was added to the simulated

data. The selected noise level corresponds to the signal to noise
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TABLE I
DISCRETIZATION DETAILS OF THE MEASUREMENT AND

RECONSTRUCTION DOMAINS IN THE TEST CASES. SECOND ORDER

MESHES WERE USED FOR APPROXIMATING THE POTENTIAL u(x), Nu AND

Ne ARE THE NUMBER OF NODE POINTS AND ELEMENTS, RESPECTIVELY.
Ne WAS ALSO USED FOR APPROXIMATION OF σ(x).

Simulated data Reconstruction
Nu Ne Nu Ne

Cases 1&2 9109 4466 6309 3082
Cases 3&4 7759 3764 7406 3587

Experimental data Reconstruction
Nu Ne

Cases 5-7 6309 3082

ratio SNR = 42dB, which represents well the noise level of

modern EIT systems [28].

It is important to remark that, in the simulations, we did

not use B-spline or Fourier series to represent the boundary

of regions for assigning conductivity distributions. Rather, the

regions of objects were manually located with a MATLAB

script.

B. Experimental setup

In the experiments, a cylindrical tank with a diameter of

28 cm was filled with a saline solution having a conductivity

of 0.543mS/cm. Four different target conductivities were con-

ducted by inserting non-conductive (plastic objects in Cases

4-6) and conductive inclusions (pumpkin and rutabaga in

Case 7) with different shapes into the tank. All objects were

translationally invariant in the vertical direction. Photos of

all four targets are shown in Figs. 5&6(left column). The

experiments were carried out using KIT4 measurement system

[29]. The current patterns described in Section IV-A and

adjacent measurement patterns were used in the measurements.

C. Implementation details

In the reconstructions, the initial guess of the region bound-

aries was manually set as circle or ellipse. More specifically,

in the Fourier based reconstruction, we set the number of

basis functions Nθ as 5, leading to a total of 10 Fourier

coefficients, i.e., γ ∈ R10, for describing the initial curve

Cj(s) for each subregion Aj . In the B-spline based method,

the number of control points Np of each initial curve was

set to Np = n + 1 = 15 for each inclusion, except in the

robustness study of the proposed approach with respect to

different number of control points in Section IV-D. That is,

the dimension of unknown parameter P ∈ R2∗Np∗Nj , i.e.,

P ∈ R30 for a single subregion. Note that, here, the number

of control points does not include the number of duplicate

points, as mentioned in Section III-A. Then, we choose 15

equal angular spacing points along the curve Cj(s) as the

control points to determine the B-spline curve. Within this

strategy, the B-spline curve and the Fourier curve are almost

identical. For this reason, we only show the initial B-spline

curve in the reconstructed images.

The minimization problems in (19) and (25) were solved

with an iterative Gauss-Newton optimization regime, which is

equipped with a line-search algorithm to determine the step

size λk in the solution θ̂k = θ̂k−1 + λkθ̄. Here, θ̂k is the

current estimate and θ̄ is the least square update. Such an

approach requires the Jacobian JU (P,σpc) = ∂U
∂(P,σpc)

for

solving (19) and Jacobian JU (γ,σpc) = ∂U
∂(γ,σpc)

for solving

(25). According to the chain rule,

JU (P ) =
∂U

∂σ

∂σ

∂P
, (26)

and

JU (γ) =
∂U

∂σ

∂σ

∂γ
. (27)

Here, the term ∂U
∂σ

corresponds to the Jacobian computed using

the standard method [6]. What needs to be determined is the

second part ∂σ
∂P

and ∂σ
∂γ

.

Since having a complex shape representation makes deriva-

tion of the Jacobian a tedious task, and for easy implemen-

tation purpose, the Jacobian matrix ∂σ
∂P

in the B-spline based

reconstruction is computed using perturbation method [30].

That is, each control point is perturbed in turn by a small value

of epsilon and the corresponding change of voltage on each

electrode is evaluated for approximation of Jacobian ∂σ
∂P

. The

Jacobian matrix ∂σ
∂γ

of the Fourier series based reconstruction

was computed using a well-established method proposed in

[27]. Finally, Jacobian matrix JU (σpc) for both approaches

can be easily computed using the standard method [6].

To determine the value of σpc
∗ in the penalty term, we

firstly computed the best homogeneous estimation σ̂∗

hom ∈ R

by solving

[σ̂∗

hom] = argmin{‖Lǫ(V − U(σ∗

hom))‖
2}, (28)

and then we set σ∗

0 = σ∗

hom for the background conductivity,

object conductivity σ∗

obj = σ∗

hom for simulated studies and low-

contrast experimental study, except in the robustness study

of the proposed approach with respect to different initial

piecewise constant conductivity values in Section IV-D. It

should be noted, the EIT measurements are not sensitive to

conductivity contrast above some limit [31], meaning that in

a background of 0.1 mS/cm we may unable to distinguish

between 1 mS/cm and 10 mS/cm. However, we may able to

detect a conductivity 10 mS/cm in a 1 mS/cm background.

For this reason, in the high-contrast experimental studies, we

set σ∗

obj =
1
10σ

∗

hom, given the fact that the plastic objects have

almost zero conductivity.

To quantitatively access the recovery of the shape using

both B-spline and Fourier based methods, we computed the

relative size coverage ratio (RCR), shown in Tables II&III,

for the inclusions in the reconstructed images:

RCR =
CR

CRTrue
, (29)

where CR denotes the coverage ratio defined as the ratio of the

size of the recovered inclusions to the total size of the mea-

surement target, i.e., the experimental tank. Correspondingly,

CRTrue is the CR of the true object. Value one would indicate

exact match of size of the recovered and true inclusions, while

a value less or greater than one would indicate underestimation

or overestimation, respectively.
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For quantitating the estimates of the binary conductivity

values of both B-spline and Fourier based methods, a relative

contrast (RCo) was calculated, shown in Tables II&III.

RCoσj =
σ̂j

σTrue
j

. (30)

For RCo, similarly to RCR, value one would indicate exact

match of the true and estimated constant conductivity values,

while a value greater or less than one would indicate overes-

timation or underestimation, respectively.

Note that in the experimental studies, we only computed

the RCo for the background, i.e., saline, since the exact

conductivity values of the inclusions are not known accurately.

D. Robustness studies of B-spline based approach in the

presence of non-homogeneous background, different initial

guesses, inaccurately known contact impedances, varying

number of control points and degree

1) Non-homogeneous background: In practical applica-

tions, it is unrealistic to assume that the considered background

are truly homogeneous. Instead of being constant, for exam-

ple, the conductivity of heart is completely different to the

background. For this reason, a more realistic value for the

heart is assigned in Case 8, leading to a non-homogeneous

background. As a result, Cases 3&8 offer a nice chance to

study the performance of proposed approach with and without

modeling errors due to the non-homogeneous background.

It is important to remark that it is possible to apply one

more B-spline curve or one more set of Fourier series for

representing the region of heart. However, as our primary

interest in this study is to investigate the performance of the

proposed approach for persevering the sharp features in the

potential EIT application– lung imaging, we defer this work

to the future.

2) Differing locations of the initial curve: In solving non-

linear inverse problems, selection of proper initial guess for

the curve’s location and initial piecewise constant conductivity

values are essential in achieving a stable and acceptable solu-

tion. To assess the robustness of the B-spline based approach

to differing initial curve locations, we considered a set of

reconstructions using the same data of Case 1, as shown in Fig.

8. In this test, the initial curve progressively moved towards

the object in the target. To quantitatively describe the position

of initial curve, we define a distance parameter dcc between

the centers of the initial curve and the rectangle, i.e., large dcc

means the initial curve far from the object, and vice versa. We

refer the readers to Fig. 8 for a schematic illustration of the

change of initial curve’s location.

3) Different initial piecewise constant conductivity values:

To explore the effect of initial piecewise constant conductivity

values for the proposed approach, we performed a set of

reconstructions of Case 3 (as shown in Fig. 10) by assigning

different values to σ∗

1 . For this purpose, we define

σ∗

1 = ησ∗

hom, (31)

where η is the initial conductivity coefficient. With η =
[0.1, · · · , 1], a total of 10 images were obtained. The eval-

uation parameters versus η were computed for all the images

and are shown in Fig.9(middle).

4) Inaccurately known contact impedances: To study the

effect of the B-spline based approach with respect to modeling

errors caused by inaccurately known contact impedances,

we considered a set of simulations by varying the contact

impedances. To this end, the true contact impedances {zℓ}
were generated by adding random Gaussian perturbations

zℓ = |z0 + εℓ|, εℓ ∼ N (0, (κz0)
2) (32)

to the nominal value z0 = 5Ω·cm. The contact impedances

were simulated for 11 values of κ, κ = 0, 0.1, 0.2, . . . , 1 and

then these contact impedances were used to simulate EIT data

from the target conductivity shown in top left of Fig. 11. An

absolute value function was used to guarantee positivity of the

contact impedances. The realization of zℓ in the case κ = 0.4
is shown in the bottom left of Fig.11. In the reconstruction,

the contact impedances at all electrodes were assumed to be

constant, i.e., zℓ ≡ z0 = 5Ω·cm. The estimates for the case

κ = 0.4 and the corresponding evaluation parameters RCRs

and RCos for all the tests with κ = 0, 0.1, 0.2, . . . , 1 are shown

in the top right and bottom right of Fig.11, respectively.

5) Number of control points: The B-spline’s appearance is

largely determined by the control points, and consequently its

complexity is determined by the number of control points,

which is usually chosen quite arbitrarily by intuitive trial-and-

error-procedures. To investigate the robustness of the proposed

approach considering variability of the number of control

points (Np), we computed a set of reconstructions for Case

5 with Np = 4, · · · , 27 (as shown in Fig. 12). Note that for

cubic curve, at least four control points are required to define

a cubic curve. It is worth remarking that there are some other

alternative ways for choosing the optimal number of control

points, e.g., in [32], the task of choosing the optimal number

was interpreted as a model selection problem based on the

Bayesian information criterion. However, choosing the optimal

number of control point in B-spline is out of the scope of this

paper, hence it was left as a future research topic.

6) Degree: In this work, uniform cubic B-spline was used

for representing object’s boundary. An interesting question

arises here: what is the performance of B-spline based re-

constitution when the degree k of B-spline increases? For

example, in some cases one might also be interested to check

the performance with B-spline of degree higher than three.

To get insight to this question, we carried out a set of

reconstructions of Case 6 using odd-degree k = 3, · · · , 13,

shown in Fig.13. Note that, traditionally, odd-degree B-spline

is more appropriate for interpolation problems, while even-

degree B-spline is less suitable for it. Indeed, B-spline with

even-degree leads to low quality interpolation and extreme

sensitivity to data noise [33].

V. RESULTS & DISCUSSION

In this section, we first show the comparison results for

estimates based on B-spline and Fourier series, using numer-

ical and experimental data. Then, we show the robustness

studies of the B-spline based approach in the presence of
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non-homogeneous background, different initial guesses, inac-

curately known contact impedances, varying number of control

points and degree.

A. Reconstructions from simulated data

Fig. 3 shows the results of Cases 1-3, where simulated

data was studied, demonstrate that both B-spline and Fourier

series based approaches successfully detect the locations of

the inclusions. However, the quality of the estimates obtained

with the proposed B-spline based approach is superior to the

quality of Fourier series based estimate, especially for tracking

the inclusions’ shape. Further, the B-spline based approach is

able to track the sharp corners of the inclusions, resulting the

coverage ratios and relative contrasts closest to the true value

for most of the test cases, see details in Table II. The Fourier

series based estimate cannot recover the sharp corners, which

is an expected result. The main reason is that the basis set

of Fourier series is the smooth sinusoidal functions, which

is optimized for expressing smooth rounded shapes. In other

words, the use of (low order) Fourier series is not feasible in

expressing the boundary with sharp corners.

Fig. 3. Reconstructions with both B-spline based approach and Fourier series
based approach from simulated data. The initial curves for each case are
plotted as dashed line in the first column.

To explore the sensitivity to initial guesses of both ap-

proaches, we computed another set of reconstructions for Case

1 using different initial guess, as shown in Fig. 4. It can

be seen that the Fourier series based reconstruction is highly

sensitive to the initial guess, leading a poor reconstruction for

the inclusion with a rectangle shape, see details in the first row

of Fig. 4. On the other hand, the B-spline based reconstruction

recovers the rectangle very well, and also appears to be

relatively insensitive to the initial guess. Moreover, by visual

inspection, the recovered value of the conductivity from the

B-spline based approach is more accurate.

Note that for rectangular-shape estimation in Case 1, given

a feasible selection of parameters in the anisotropic total

variation regularization based reconstruction method, it is also

possible to get reasonable reconstructions, see e.g., [8]. How-

ever, as pointed out in [8], the anisotropic TV regularization

based approach strongly forces the inclusions’ boundaries in

the reconstructions to align along the coordinate axes, and

thus, it may be a suitable choice in EIT only when the

conductivity distribution is known a priori to feature such

directional structures.

Fig. 4. Sensitivity study of the B-spline and Fourier series based approaches
using different initial guesses. The initial guesses are plotted in the first column
as dashed line. The same data set as Case 1 was used for the reconstruction
and the second row is a repetition of the first row from Fig. 3.

B. Reconstructions from experimental data

Next, we proceed to reconstructions from water tank data.

Fig. 5 depicts the results of both approaches on three high-

contrast experimental test Cases 4-6. The resulting reconstruc-

tion images show better corner detection in the triangular and

rectangular-shaped objects using the B-spline based approach.

It can also be seen that the B-spline based approach produces

a better reconstruction for a circular object in Case 5 than

the Fourier series based approach, even though the uniform

cubic B-spline is known to be unable to exactly represent

a circle shape [34]. These findings are also supported by

the evaluation parameters listed in Table III, the B-spline

based approach leads most of those parameters closest to

the true values. It is worth noting that reconstructing sharp

angular boundaries of the triangular and rectangular-shaped

objects is quite challenging in EIT, which has also been

observed in [7], [12], [35]. Despite this reality, sharp angular

boundaries can be more accurately detected by using the B-

spline based approach, which encourages applying B-spline

based shape reconstruction method to EIT reconstruction. For

a comparison to isotropic and anisotropic TV regularization

based reconstructions, performed on similar EIT data, we refer

the readers to Fig. 8 in the recent work [8].

Fig. 6 shows the results of both approaches on one low-

contrast experimental test Case 7. Again, both methods are

able to detect the inclusions, although the contrast of the

inclusions w.r.t the background is much smaller than Cases

4-6. Based on a visual assessment, B-spline based approach

gives the better reconstruction, leading to a coverage ratio

closer to the true value, RCRU and RCRD being 1.55 and

0.93, respectively.

C. Results of robustness studies

1) Effect of non-homogeneous background: Fig. 7 shows

that the performance of both approaches in Case 8 compared

to each other remains similar to the more ideal Case 3; the B-

spline based approach gives again successful reconstructions
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TABLE II
THE RCRS AND THE RELATIVE CONTRAST VALUE (RCO) OF THE RECONSTRUCTED σj IN THE SIMULATED STUDIES.

Case 1 Case 2 Case 3 Case 8

RCR RCoσ0 RCoσ1 RCRL RCRR RCoσ0 RCoσ1 RCRL RCRR RCoσ0 RCoσ1 RCRL RCRR RCoσ0 RCoσ1

True 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fourier 1.02 1.00 1.05 0.99 0.96 0.98 0.97 0.89 0.92 0.98 0.82 0.86 0.87 0.98 0.86
B-spline 0.97 0.99 0.99 0.98 0.99 0.99 1.00 0.96 0.99 1.00 0.95 0.88 0.91 1.00 0.88
∗ The subscript letters ‘L’ and ‘R’ under the parameter RCR denote the left and right side objects in the domain, respectively.

TABLE III
THE RCRS AND THE RELATIVE CONTRAST VALUE (RCO) OF THE

RECONSTRUCTED σj IN THE EXPERIMENTAL STUDIES.

Case 4 Case 5 Case 6 Case 7

RCR RCoσ0 RCRL RCRR RCoσ0 RCRL RCRR RCoσ0 RCRU RCRD RCoσ0

True 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fourier 1.12 0.99 1.14 1.91 1.00 1.10 1.67 1.00 2.04 2.64 0.99
B-spline 1.07 0.99 1.05 0.99 1.01 1.14 0.92 1.01 1.55 0.93 0.99
∗ The subscript letters ‘U’ and ‘D’ under the parameter RCR denote the upside and downside objects in
the low-contrast case, respectively.

Fig. 5. Reconstructions with both B-spline based approach and Fourier series
based approach from high-contrast experimental data. The initial curves for
each case are plotted as dashed line in the second column.

of the shape of lungs and the sharp corners, leading to the

RCR and RCo index closest to the true value, see Table. II.

We note that the RCR of the proposed approach is slightly un-

derestimated, which doesn’t exceed our expectation, due to the

modeling errors caused by the non-homogeneous background.

It should be noted that there is a cusp (which is not present

in the true images) in the right lung of both Cases 3& 8.

This stems from the fact that the propensity to produce cusps

is due to a local maximum of curvature being produced

away from the control points. One may consider incorporating

curvature constraints, e.g., by setting the maximum curvature

[36], along the B-spline curve to avoid it, and/or to apply

angle-constrained manipulation for the B-spline curve.

2) Effect of initial curve’s location: Two representative

results of dcc = 7 and 9.5 cm are shown in Fig. 8, and all

Fig. 6. Reconstructions with both B-spline based approach and Fourier series
based approach in low-contrast experiments with rutabaga and pumpkin. The
initial curves are plotted as dashed line in the second column.

Fig. 7. Reconstructions with both B-spline based approach and Fourier
series based approach for simulated Lung imaging with and without non-
homogeneous background. The first row is a repetition of the 3rd row from
Fig. 3.

the evaluation parameters RCR and RCos versus the distance

parameter dcc are plotted in Fig. 9 (left column). Based on

these results, we can conclude that the proposed approach is

quite robust to the varying location of initial curve, resulting

very good reconstructions of the rectangular-shape and detec-

tion of the sharp corner.

Fig. 8. Robustness study of the B-spline based approach w.r.t different initial
curve’s location. The same data set as Case 1 was used for the reconstruction.

3) Effect of initial piecewise constant conductivity values:

Two representatives from 10 images are shown in Fig.10, it

can be seen that the lung shapes are well tracked. Further, the

sizes are feasible and the final piecewise conductivity values

are accurately estimated, which is supported by the evaluation

parameters RCR and Rco plotted in Fig.9(middle).

4) Effect of inaccurately known contact impedances: The

results show that, in the presence of a contact impedance bias,

image reconstruction is still feasible with a fixed constant con-

tact impedance. This is a nice feature from a practical point of

view, since medical EIT is always accompanied by modeling

errors caused by inaccurately known contact impedance. As

an example, during thorax monitoring with EIT, the contact

impedance of electrodes may change significantly due to

drying of the electrode gel and sweat on the skin.
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Fig. 9. Evaluation parameters of the robustness studies. Left: parameters versus the distance dcc between the centers of the initial curve and the inclusion
studied Sec. V-C2; Middle: parameters versus the initial conductivity coefficient η of the cases studied in Sec. V-C3; Right: parameters versus the number of
control points of the robustness studies in Sec. V-C5.

Fig. 10. Robustness study of the B-spline based approach w.r.t different initial
piecewise conductivity value. The same data set as Case 3 was used for the
reconstruction.

We note that there has been previous work addressing

the problem of unknown/uncertain contact impedances: In

[37], the contact impedances were simultaneously estimated

with the conductivity distribution; in [38], the uncertainties of

the contact impedances were modeled statistically and then

compensated by employing the so-called approximation error

method (AEM) [3]. For an extensive study of the effect of

time-varying contact impedance in EIT, we refer to the recent

publication in [39].

Fig. 11. Robustness study of the proposed approach w.r.t contact impedance
zℓ. Top left: True conductivity. Top right: B-spline based reconstruction.
Bottom left: simulated contact impedances zℓ in the case of κ = 0.4, the
dashed horizontal line indicates the fixed zℓ ≡ z0 = 5Ω · cm for the
reconstruction shown in the top right. Bottom right: RCR and RCo index
values versus contact impedance coefficient κ, the dashed vertical line denotes
the case shown in the top row.

5) Effect of the number of control points: Fig. 12 shows the

results of robustness of B-spline based reconstructions against

different number of control points Np. It is clear that the B-

spline based approach is quite robust to the number of control

points, where most cases were well reconstructed, especially

for the triangular-shaped object with sharp corners. Note that

distortions are introduced in few cases, e.g., Np = 19, 27,

which might be related to the ill-posedness of the EIT recon-

struction problem. When Np is selected as a small value, e.g.,

Np = 8, the dimension of unknown parameter P is R2∗Np∗Nj ,

i.e., P ∈ R32. When Np turns to be a relatively large value,

e.g., Np = 26, the dimension of unknown parameter P

increases to R104. This implies that the reconstruction problem

becomes increasingly ill posed as the unknowns increase,

comparing to the less ill posed situation where relatively few

control points are used. It is worth remarking that, in this

paper, the selection of Np was done by trial and error and

is therefore not optimal. Better selection of this parameter

may be conducted by taking into account the relative trade-

offs with the data discrepancy norm, convergence rate of the

minimization problem, etc. Further, by visual inspection, the

reconstruction performance to the circular-shaped object is

slightly biased. This may be explained by the fact that uniform

cubic B-splines cannot be used to accurately express common

conic shapes such as circles, ellipses, etc, in principle [34].

Nevertheless, within such a large range of the number of

control points in this test case, the reconstruction performance

is still acceptable, which is also evident from the evaluation

parameters plotted in Fig. 9 (right column).

6) Effect of B-spline’s degree: It can be seen that the

cubic (k = 3) B-spline based reconstruction shows superior

performance and tracks the shape of the inclusions reasonably

well, as evidenced by the evaluation parameters shown in Fig.

14. On the other hand, wiggles are produced when degree

k increases, causing shape distortions to the reconstructed

images. In short, we found that the B-spline of degree k = 3
assure good compromise between the reconstructed image

quality and the computational complexity, while higher degree

splines cause shape distortions and also compromise the lower

computational complexity. This is also consistent with the text

mentioned in Section I.

Note that in Fig. 13, the inclusions are quite simple, but in

real applications, organs are more complex. For this reason,

we also tried one additional set of robustness studies of the

B-spline degree k for the test case with more complicated

inclusions shown in Fig. 11, we found that it was comparable

to the experimental example shown in Fig. 13. Due to the
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Fig. 12. Robustness study of the B-spline based estimate with respect to the number of control points. The same experimental data and initial guesses in
Case 5 were used for the reconstruction.

space limitation, we didn’t show the reconstructed images.

Fig. 13. Robustness study of the B-spline based estimate with respect to the
B-spline degree k. The same experimental data and initial guesses in Case 6
were used for the reconstruction.

D. Discussion on the results

As mentioned in Section IV-C, the Jacobian matrix ∂σ
∂P

in

(26) was computed using the perturbation method. It is well

known that perturbation method can introduce inaccuracies in

the Jacobian computation [40], which may significantly affect

the nonlinear reconstruction problem. However, the results

demonstrate that the B-spline based reconstruction tolerates

such errors well, leading quite reasonable shape reconstruc-

tions and preserving the sharp features. Further, the B-spline

based approach also has good robustness against the initial

guesses and numbers of control points.

Fig. 14. Evaluation parameters of the robustness studies of the B-spline based
estimate with respect to degree k.

At last, it should be noted that for uniform cubic B-spline,

the basis functions depend on a series of knots can just be

set to equally spaced integers, and every control point is

equally weighted. Very often in practical applications, one may

have interest in extremely flexible geometric representations

through estimating or setting the values of associated weights,

adjusting the positions of the control points, choosing the knots

adaptively and modifying the knot vector distribution. This

brings forth the idea of applying non-uniform B-spline [41]

and non-Uniform Rational B-Spline [42] to shape reconstruc-

tion in EIT, which will be investigated in future work.
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E. Limitations and further developments

The present work is limited in that it is based in the context

of absolute imaging. As such, there are several issues that need

mentioning.

• First, the proposed approach is intrinsically sensitive to

modeling errors arising from electrodes’ displacement and

inaccurate knowledge of the domain boundary shape. In

other words, the reconstruction ability is highly dependent

on the a priori information of the electrode positions and

domain boundary shape. One potential solution is to apply

AEM to compensate such modeling errors [43]. Framing the

reconstruction approach in the context of linear difference

imaging or nonlinear difference imaging would be another

potential solution. This is because difference imaging tends

to be quite robust to these sources of modeling errors, which

are largely canceled out in the measurement subtraction and

absorbed by the background estimation using the nonlinear

approach [44], [45].

• Second, the cost in each iteration of the proposed approach,

in terms of time, is slightly more than the Fourier series

based approach. This is because the dimensionality of the

unknowns in the proposed approach is larger than the

Fourier series based approach. As an example, the estimate

of Case 1 was obtained from a MATLAB implementation of

the proposed approach on a desktop PC with an Intel Xeon

E3-1231 processor and 16GB memory within 8 iterations

at average speed of 43 seconds/iteration. As a comparison,

implementation of Fourier series based approach carried out

on the same PC within 6 iterations at average speed of 39

seconds/iteration. To compare the convergence behavior of

both approaches, in Fig. 15 we show the root mean square

error (RMSE) of the estimated conductivity distribution

against the iteration steps for both methods in Case 1. Both

reconstructions terminate when there is no further reduction

on the cost functions. In short, time cost of the proposed

approach is comparable to the Fourier series based approach.

We remark that the computational time required for each test

case would vary depending on a number of factors, including

the number of control points, initial guess and stopping

criteria, etc. Note that, as in traditional finite element based

non-linear iterative methods, a line search is also performed

on the estimation. This process demands repetitive calcula-

tion of the forward problem, and a key challenge in prac-

tical applications is to reduce the computing time without

sacrificing the accuracy of the solution. One possible way

is to apply AEM in the Bayesian framework for solving

inverse problems, since AEM offers a good chance to attain

a feasible resolution in a coarse discretization by treating the

modeling error produced by discretization as an unknown

that is estimated as part of the inverse problem [38].

• In addition, for all the test cases studied in this paper, we

assumed that all the subregions presented in the background

are simply disconnected. However, one may argue that this

assumption is probably unjustified, e.g, in real applications,

some cancers that may appear as a mass in the lungs include

lymphomas and sarcomas, which should be treated as a

nested case. In principle, given the assumption that mass

Fig. 15. Root mean square error reduction through the iterative process of
Case 1 shown in Fig.3.

is known to be nested in the lung, the proposed approach is

able to handle the situation of detecting nested inclusions by

modeling the mass using one B-spline curve and the lung

shape using the other B-spline curve. However, in practice,

the B-spline curve of a nested inclusion often moves outside

of the surrounded inclusion, such that instability is likely to

recur. From a practical point of view, to apply the proposed

approach for reconstructing nested inclusions, we suggest

the incorporation of more prior information to improve

the stability of the iterative inversion. For example, if an

inclusion is known to be nested inside another, this can

be used a priori information for initially setting one B-

spline curve inside another. One may also consider defining

a region-of-interest using an a priori span, then B-splines

can be sculpted to have desirable shapes and can be made

to vanish outside the span. In other words, without such a

priori information, the reconstruction problem is unstable

due to mutual interactions between two B-spline curves.

In addition, another potential solution for nested inclusion

reconstruction is to apply multiple level set functions for

modeling conductivity distribution with nested inclusions.

VI. CONCLUSION

In this paper, we proposed a B-spline based shape re-

construction approach for electrical impedance tomography.

The proposed approach was evaluated using simulations and

phantom studies. We found that the B-spline based approach

provides more accurate reconstructions of the object’s shape

and better preserves sharp features than the conventional

Fourier series based approach. It has been shown that the

proposed approach tolerates modeling error caused by non-

homogeneous backgrounds and inaccurately known contact

impedances, and is relatively insensitive to initial guesses,

number of control points and degree of B-spline. The findings

demonstrate that, given the assumption that the properties of

conductivity distribution are piecewise constant, the proposed

approach is not only robust, but also has significant potential

to be a generalized method for incorporating shape prior

information in EIT image reconstruction.
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