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Abstract—MrsP is a FIFO spin-based protocol that adopts
a helping mechanism, where a resource holder can migrate to
a remote processor to keep executing if it is preempted. In
practice, allowing resource-holding tasks to migrate can raise
implementation issues and run-time corner cases. In this paper,
we present an investigation of the correctness and efficiency of
implementing MrsP in fully partitioned systems. We identify
potential race conditions and corner cases of the protocol due to
the use of migrations. Then, new facilities are proposed to pre-
vent the issues and to provide more efficient resource-accessing
behaviours. Finally, evaluations are performed to demonstrate
the impact of the run-time issues and to testify the effect of
proposed facilities.

I. INTRODUCTION

A. Background and Motivation

Resource control technology for multiprocessors has re-

ceived much attention in recent years to cope with the transi-

tion from uniprocessors to multiprocessors. Among the exist-

ing protocols, Burns and Wellings proposed the Multiprocessor

resource sharing Protocol (MrsP) [7], which adopts a helping

mechanism whereby a preempted resource-holding task can

migrate to a processor that is executing a task that is spin-

waiting for the same resource. With the helping mechanism,

this protocol is attractive in theory as the resource holder can

keep making progress when preempted.

However, in practice, the realisation of the helping mecha-

nism can be problematic. The migration targets for a resource-

holding task are not constant as remote spinning tasks can also

be preempted. Thus, the migration target decision made by

the protocol may conflict with the scheduling decisions, and

thereby results in incorrect and useless migration behaviours.

In addition, a resource-holding task could incur frequent

preemptions on each migration target, and therefore results

in too frequent migrations so that the task spends more

time on migrating rather than executing. These issues can

cause unpredictable task behaviours with considerable run-

time overheads, which directly undermine the efficiency of

the protocol.

In this paper we address the above concerns of MrsP in

practice. We start by describing the potential race condi-

tions and corner cases when applying MrsP in real-world

fully partitioned systems. New mechanisms and facilities are

then proposed with design details to provide correct and

efficient run-time task behaviour under MrsP. Finally, a set

of evaluations are conducted to demonstrate the impact of

such migration issues and an improved efficiency of MrsP

implementation with proposed facilities.

B. Related Work

Locking protocols on uniprocessor uniprocessor systems

have been well practised for years. Among them, the Pri-

ority Ceiling Protocol (PCP) [15], Stack Resource Proto-

col (SRP) [1] and Deadline Floor Protocol [6] are agreed

as the best approach, which minimise the blocking time

while avoiding deadlocks with low run-time overheads [9].

On multiprocessors, MPCP [14] requires resource-requesting

tasks to explicitly migrate to a predefined processor before

they get the resource. However, this mandatory migration

approach can impose considerable overheads to the system

and hence, undermines the performance of the protocol [16].

In MSRP [11], resources are protected by non-preemptive spin

locks in a FIFO order, where access to global resources can be

granted locally without the need of migrations. In FMLP [2],

resources are grouped by their length, where long resources are

protected by semaphores and short resources are controlled by

FIFO spin locks to achieve a better performance. The notion

of helping is also applied in M-BWI [10] and SPEPP [17],

where the resource holder can be helped when being prevented

from executing. More recent, RNLP [18] is developed to be

the first protocol that supports fine grained nested resource

access through a token mechanism and request-satisfaction

mechanism. In [13], a task partitioning and resource allocating

algorithm is proposed to offer a guaranteed speedup.

Besides protocols, the Holistic Analysis by Brandenburg [4]

provides a new approach to account for blocking, which is

less pessimistic than the approach applied in MSRP’s original

analysis [11]. Later, Wieder and Brandenburg developed an

analysis framework with Integer Linear Programming tech-

nique, which provides more accurate and less pessimistic

analysis than that of the holistic approach and can be applied

to 8 protocols [19]. In practice, [3] and [5] have implemented

SRP, PCP, DPCP, MPCP and FMLP into LitmusRT [4] with

their performance investigated and compared.

The research addressing MrsP covers both theory and

practice. In [21], a new schedulability analysis for MrsP is

proposed, including a new migration cost analysis. In [12], a

complete approach to support nested resource access in MrsP

is presented with sufficient analysis. In [8], Catellani et al..

demonstrated that MrsP can be effectively implemented in

RTEMS and provided a simple prototype implementation of



MrsP in LitmusRT. More recently, Shi et al provided a fully

functional MrsP implementation in LitmusRT and compared

the performance of MrsP, MPCP, DPCP and DNPP (Dis-

tributed Non-Preemptive Protocol) [16]. However, both work

focus on the functionality of the protocol and does not discuss

the potential issues introduced by migrations in MrsP.

II. MRSP

MrsP [7] is a multiprocessor locking protocol for fully

partitioned systems with fixed priorities. Under MrsP, spin

locks are adopted and resources are served in a FIFO order.

However, MrsP defines that tasks should only spin at the local

ceiling priority (i.e., they are preemptable) to benefit high

priority tasks. In MrsP, each resource has a ceiling priority

on each processor that contains tasks requesting it, which is

the highest priority among the requesting tasks. Once a task

requests a resource, it raises its priority to the local ceiling of

the resource and spins if the resource is not free.

With FIFO spin, MrsP sets a fixed bounded length of

the waiting queue, which is the number of processors that

contain tasks that request the resource. However, spinning at

the local ceiling level can lead to a prolonged blocking time

as the resource holder can be preempted by higher priority

local tasks. To reduce the blocking, a helping mechanism is

introduced in MrsP to help the preempted resource holder. The

helping mechanism allows the preempted resource holder to

migrate to a remote processor with a running task spinning

for the same resource. If preempted again, the holder can

migration to its initially assigned processor (if the preemptor is

finished) or to another valid processor (if any). After releasing

the resource, the task migrates back to its designated processor

(if necessary).

With the helping mechanism, the holder can keep making

progress by using the wasted cycles of the spinning task. In

the worst case, a resource-requesting task needs to help all

tasks before it in the FIFO queue each time it tries to access

the resource, which leads to a worst case blocking time of the

length of the FIFO queue multiplied by the cost for accessing

the resource.

III. ISSUES OF MIGRATIONS IN MRSP

The migration target for a resource holder in MrsP is

dynamically decided by whether the remote processor has

a running task spinning for the same resource. Thus, the

migration target identified can become invalid if the spinning

task itself is preempted so that the holder migrates but cannot

execute at all (i.e., false migrations). In addition, as briefly de-

scribed in [21], a resource holder may be preempted frequently

in systems with high priority tasks with short periods, which

can lead to frequent migrations with considerable overheads.

A. False Migrations

With the generic Linux kernel, task migrations are handled

by a set of push and pull operations, as part of the scheduling

routine. The push operation is triggered after a scheduling

decision to migrate the previous scheduled task (i.e., the task

that was executing before this scheduled task) to a remote

processor. The pull operation is preformed before a scheduling

decision to migrate a remote task to the local processor. Ac-

cording to [4], the fact that both push and pull operations need

to manipulate multiple run queues can cause concurrent state

changes and it is not possible to have a consistent snapshot

without locking all the run queues. Thus, the migration facility

in Linux may either trigger superfluous migrations or fail

to trigger required migrations due to such race conditions,

resulting in unbounded priority inversion. Similar migration

failures can occur when adopting MrsP into such a partitioned

run queue structure. We identify two major migration problems

of MrsP with such push and pull migration operations.

The first migration problem is caused by race conditions

between run queues and can happen in both push and pull

operations. Once a resource holder is preempted and a mi-

gration target is identified, the holder will be placed into the

remote run queue. However, before the next scheduling point,

a higher priority task can be released immediately so that

the migrated task is not considered by the scheduler at all.

Such migration can be regarded as a futile attempt as it only

provides extra overheads with the need for further migrations

rather than offering the task a real chance to execute.
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Fig. 1. False Migrations Due to Race Condition.

Figure 1 illustrates this problem with a four core system,

where task 1 to 4 request the same resource with low pri-

orities while task 5 to 7 are irrelevant high priority tasks. In

Figure 1(a), task 1 (τ1) is preempted at processor 0 (P0) while

holding the resource so that it migrates to P1, where τ2 is

spinning for the resource. However, after τ1 is inserted into the

run queue of P1 (Rq1), τ6 is released and is then scheduled

to execute. Thus, τ1 remains in Rq1 without any chance to

execute so that it seeks another processor (Figure 1(b)). In

Figure 1(c), the same issue occurs when τ1 migrates to P2 so

that τ1 is placed in Rq2 with no chance to execute. Finally, it

migrates to P3 (Figure 1(d)), where it preempts the spinning

task and executes. In this example, 3 migrations are preformed

in order to migrate τ1 to a valid processor, yet two of them

are invalid due to immediate updates of run queues.

The second issue is caused by the push operation, which

is usually configured with a fixed number of attempts to
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Fig. 2. Missing Necessary Migration due to Limited Attempts.

control overheads. Figure 2 demonstrates this issue with a

system of five processors and 3 push attempts. As shown in

Figure 2(a), after τ1 is preempted, the push operation firstly

attempts to migrate τ1 to P1. However, due to the release

of τ7 in Figure 2(b), the first attempt fails. In Figure 2(c)

and 2(d), the second and third attempts fail as well due to

the same reason. Thus, the push operation finishes without

checking P4, which is a valid migration target. Such failure

can cause a longer resource accessing time of the holder and

in consequence, a longer blocking time of all waiting tasks.

Admittedly, a migrated resource holder can be preempted

again just after being scheduled, which also requires further

migrations. However, false migrations impose extra incorrect

behaviours and extra run-time overheads to tasks rather than

offering tasks a real chance to execute. In Section V we

demonstrate the impact of this issue with experiments.

B. Frequent Migrations

Even if the migrations are correctly performed, the protocol

can still be pessimistic due to the helping mechanism. In MrsP,

a migrated resource holder can be preempted again so that the

task needs to seek further migrations. Thus, in the situation

where there exist a large number of migration targets and

each of them contains one or more high priority tasks with

very short periods, the holder can incur frequent preemptions

immediately after being migrated and scheduled. As a result,

the resource holder requires more migrations to execute with

the resource (revealed by tests in Section V). In addition, it is

possible that the holder spends much more time on migrating

rather than executing, which greatly undermines the efficiency

of the protocol.

IV. SOLUTIONS OF MIGRATION ISSUES

To prevent the migration issues identified in Section III,

new facilities are introduced for correct and efficient migration

behaviours in MrsP. The new facilities are integrated into a

MrsP implementation under LitmusRT [4], which provides a

real-time testbed for Linux with several pluggable real-time

schedulers. The details of the MrsP implementation1 with new

facilities adopted is presented in [20].

A. False-migration-free Mechanism

To avoid false migrations we propose that (1) the helping

mechanism should be realised by pull operations only and (2)

the migration decisions of the protocol should be made as a

part of the scheduling decisions.

With a partitioned run queue structure, the push operation

suffers from inescapable race conditions unless obtaining all

run-queue locks. As scheduling decisions are made indepen-

dently on each processor, it is not possible to guarantee that

there will not be any release of high priority tasks on the

target processor during the migrations by push. In addition, as

explained in III-A, necessary migrations can be omitted due

to a limited number of attempts. Therefore, push operations

should not be adopted for the MrsP implementation to prevent

race conditions.

In addition, to prevent race conditions in pull operations,

we require that the pull operation needs to be modelled inside

the scheduler and as a part of scheduling decisions. During

each scheduling point, the pull operation will be triggered if

the to-be-scheduled task is spinning for a resource while the

resource holder is being preempted on a remote processor.

The scheduler then replaces the to-be-scheduled task with the

preempted resource holder as the next task to schedule. Thus,

the migrated task is always eligible to execute while any newly

released high priority tasks need to invoke the scheduler to

preempt.

To realise the false-migration-free mechanism, a preemption

queue (Pq) and a Pq lock are introduced for each processor.

Once a resource-accessing task (either holding or waiting for

a resource) is preempted, it will be placed into the Pq of its

original processor rather than the Rq of the current processor.

Upon a scheduling point, the scheduler looks into its local

Pq and Rq and takes the highest priority task to execute. By

doing so, the resource accessing task is able to resume on its

original processor even though it is preempted on a remote

processor. In addition, if the to-be-scheduled task is waiting

for a resource while the resource-holding task is preempted

(i.e., being placed into Pq), the pull operation removes the

task from the Pq and migrates it to the resource-waiting task’s

processor to execute. To avoid race conditions, the Pq lock

must be obtained in order to access that Pq.

By adopting such a facility, we realise the required function-

alities defined in the helping mechanism. Meanwhile, we can

avoid accessing multiple run queues with the nested access of

Rq locks. As the lock of the Pq needs to be acquired inside

the scheduler, i.e., after obtaining the Rq lock, deadlocks

are prevented because no circular access can be formed.

Yet it seems that the cost for a scheduling decision can be

increased as the scheduler may need to compete for the Pq

locks. However, such competition only occurs if a scheduler

1The implementation can be accessed online at https://github.com/RTSYork/
MrsP Implementation Litmus.



is trying to pull a preempted holder (i.e., the to-be-scheduled

task is waiting for a resource). Hence, in the viewpoint of

cost, there is no difference between spinning for the resource

or spinning for a Pq lock to offer help. With the support

of the false-migration-free mechanism, we eliminate possible

race conditions between processors while migrating so that

each migration is a valid migration: the resource holder is

guaranteed a chance to execute after migrated. In Section V-B,

the evaluation result demonstrates that such a “false-migration-

free” implementation is important to the usability of the

protocol.

B. Non-Preemptive Sections

To avoid frequent migrations of a resource holder and to

improve the efficiency of the helping mechanism, we integrate

MrsP with a short non-preemptive section (NP section) to offer

a trade off between the maximum number of migrations a

holder can suffer and bounding the resulting blocking time on

high priority tasks. Upon each migration, the resource holder

is allowed to execute non-preemptively for a short period

before it inherits the ceiling priority on the current partition.

Accordingly, any newly released high priority tasks have to

cope with the cost of one NP section before it can preempt

the holder and execute. In this paper we set the length of the

NP section to double the cost of migration. However, such a

parameter can be tuned as long as the high priority tasks are

able to meet their deadlines.

With NP sections, a migrated resource-accessing task will

be assigned with the priority 0 (which is reserved by LitmusRT

for priority boosting) so that it can execute effectively non-

preemptively. To restore the corresponding ceiling priority

of the task after the NP section, one high resolution timer

(hrtimer) is introduced for each processor. The hrtimer

will be set each time a resource-accessing task is migrated to

its processor. When the timer triggers, it sets the task’s priority

to the corresponding ceiling priority and invokes the scheduler

to check whether a higher priority task is ready to execute. If

the holder releases the resource during its NP section, the timer

is then cancelled.

V. EVALUATION

With the proposed facilities implemented, experiments are

conducted to (1) gather run-time overheads of the new im-

plementation; (2) demonstrate the impact of the migration

issues and (3) verify the effect of proposed solutions. The

experiments are performed by the implementations in [20] on

a Intel CoreTM i7-6700K with a base frequency of 4.0 GHz.

During evaluation, hyper-threading on each core is disabled;

core 0 is preserved to handle interrupts; core 1, 2, 3 are isolated

from the system and the network is disabled.

A. Primitives Overheads

The first experiment is to reveal the run-time overheads

of the MrsP implementation, including locking a resource,

releasing the lock and migrating a lock holder. In our im-

plementation, obtaining a lock requires the updates of the

task priority, FIFO queue and the data structure of the lock

within maximum observed time of 150 ns. Lock releasing can

be finished within 100 ns, which restores the task priority,

updates the FIFO queue and lock structure. If a task is on a

remote processor after releasing the lock, it will be migrated

back to its original processor by LitmusRT within 2200 ns.

In the case where a resource holder is preempted and needs

migration, it is placed into the preemption queue and then

resumes on a remote processor by pull operation. The whole

procedure takes 7000 ns.

B. False Migrations

To investigate the frequency of false migrations, pressure

testing is conducted. The testing program contains three re-

source requesting tasks on each core as well as three high

priority tasks with very short periods (500 µs). Table I gives

the total number of migrations triggered by the helping mecha-

nism and the number of false migrations occurred in 100,000

jobs. The test is conducted by a MrsP implementation with

generic pull and push operations (MrsP-generic) and the new

MrsP implementation (MrsP-new). As shown in the table, the

generic implementation has a failure rate of 2.14%. In addition,

the number of false migrations is theoretically unbounded and

can increase with the increase of parallelism and the number

of releases of high priority tasks on each core. However, no

false migration occurred in the new MrsP implementation and

fewer migrations are triggered as no further migrations are

needed to recover from the false ones.

TABLE I
FALSE MIGRATIONS IN 100,000 EXECUTIONS

Implementation Total Migrations False Migrations Failure Rate

MrsP-Generic 598,107 12,813 2.14%

MrsP-New 428,618 0 0%
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Fig. 3. The impact of false migrations on the critical section execution time

The following experiment demonstrates the impact of false

migrations on the execution time. As the false migration is

caused by race conditions and is difficult to reproduce on

each release, we simulate its affects by preventing the migrated

holder from being scheduled. In this test, the length of critical

section is 3 ms and the computation time of the preemptor

is 10 µs. As shown in Figure 3, the execution time under

MrsP-new (3.007 ms) is not affected by false migrations.



As for MrsP-generic, although it has a lower cost for each

migration, the execution time is prolonged by false migrations

and is higher than that of MrsP-new with more than 2 false

migrations. In addition, its execution time exceeds the time

with the helping mechanism disabled (MrsP-noHelp) with

more than 3 false migrations. Under such situations, MrsP

has a poor efficiency and can be outperformed by protocols

with a simple ceiling priority facility.

C. Frequent Migrations

To illustrate the frequent migration issue, pressure testing is

conducted with a two-core system. On each core, there exist

a high priority task with a computation time of 2 ms and a

resource requesting task with a critical section length of 1 ms.

All tasks will be released again immediately after they finish.

With the generic approach where the holder can be preempted

anytime, we measured the maximum execution time of 8 ms

with an average of 6.1 migrations. Yet by applying the NP

section with a length of 14 µs (a doubled migration cost), the

holder has a lower execution time of 6.5 ms and 2.3 migrations

each time it accesses the resource.

TABLE II
MIGRATIONS AND EXECUTION TIME UNDER MRSP-NP

Migrations Execution Time Standard Deviation

MrsP-Generic 99,807 7.18×10
8
ns 171.76

MrsP-NP 70 1.5×10
6
ns 437.18

To further illustrate the efficiency of the NP section, a test

is performed to preempt the resource holder each time after

it is scheduled. Upon each preemption, the help mechanism

will be triggered and the holder will be pulled to execute on

a remote processor. The results are given in Table II. With

the original MrsP, the resource holder suffers from frequent

migrations, which leads to a huge resource execution time.

Yet with the NP approach, the holder can only be preempted

after it executes for 14,400 ns (the length of the NP section)

so that it only suffers from 70 migrations and has a much

lower resource execution time.

VI. CONCLUSION

In this paper, we conducted an investigation towards the

correctness and efficiency of implementing MrsP in fully

partitioned systems. We identified two major problems due

to its migration-based helping mechanism when applied in

fully partitioned systems : (1) false migrations and (2) frequent

migrations. We demonstrated that each of the issues can cause

excess migrations, which impose a huge amount of run-time

overheads and greatly undermine the efficiency of the protocol.

A false-migration-free facility and NP section are then intro-

duced to prevent such issues and to guarantee the progress

of task execution with resources after each migration. Our

evaluation results demonstrate that the migration issues are

successfully addressed by proposed solutions, which require

less migrations when accessing resources and provide an

improved performance of the protocol in practice.
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