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Highlights

• Grounding natural language is required for question answering but the con-

tribution remains unmeasured.

• We provide a standalone evaluation and propose a method to ground propo-

sitions into a knowledge base.

• Results show how grounding accounts for 78.6

• Simple lexical expansion can improve the results from 0.8
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Abstract

Grounding natural language utterances into semantic representations is crucial for

tasks such as question answering and knowledge base population. However, the

importance of the lexicons that are central to this mapping remains unmeasured

because question answering systems are evaluated as end-to-end systems.

This article proposes a methodology to enable a standalone evaluation of ground-

ing natural language propositions into semantic relations by fixing all the compo-

nents of a question answering system other than the lexicon itself. Thus, we can

explore different configurations trying to conclude which are the ones that con-

tribute better to improve overall system performance.

Our experiments show that grounding accounts with close to 80% of the sys-

tem performance without training, whereas training supposes a relative improve-

ment of 7.6%. Finally we show how lexical expansion using external linguistic

resources can consistently improve the results from 0.8% up to 2.5%.

Keywords: Question Answering, Semantic Parsing, Linked Data, Grounding

1. Introduction

Linked Data refers to a set of best practices for publishing and connecting

structured data on the Web [1]. It establishes the bases for the Web of Data,

an effort from the community of web users to create large amounts structured,

Preprint submitted to Knowledge-Based Systems April 25, 2017
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machine-friendly knowledge, preserving the structure and semantics of the rela-

tions between elements. Although there are plenty of linked data databases (e.g.

Freebase [2], DBPedia [3] or Yago2 [4]), common web users lack of the necessary

know-how to use them.

Question Answering (QA) can be viewed as one human friendly method for

accessing linked data since it alleviates the need to learn query languages such

as SPARQL. QA systems typically employ semantic parsing to map natural lan-

guage into a predicate-argument meaning representation. The map can easily be

translated into knowledge base query languages.

We define grounding as the procedure for expressing natural language in terms

of the target knowledge base language. More specifically, the task is to map an

unbounded number of expressions (natural language) into a small set of entities

and properties (linked data). For example the constructions What does John do

for a living?, What is John’s profession?, and Who is John? are be mapped to the

same property {John - Profession - X}.

Grounding provides two key benefits. On the one hand, it alleviates the prob-

lem of logic form annotation by providing data for indirect supervision [5]. Sec-

ondly, if the logic forms share the same vocabulary with the target knowledge base

the querying step becomes trivial.

Semantic Parsing methods require a lexicon to enable the mapping between

text and the labels of the knowledge base. A lexicon captures and ranks the candi-

date mappings between predicates in natural language and properties in the linked

data database. For instance, solving the previous example would require an en-

try living → profession. However building these lexicons is not trivial and

the contribution to the full system remains unmeasured because the final score

is given by the complete system and involves other processes, e.g. choosing the

appropriate entry of the lexicon.

Recent work proposes a method to build a lexicon by acquiring knowledge

from large text corpora [6]. This process relies on distant supervision to build a

lexicon that then is used to fed a semantic parser. Our goal is to study the contribu-

tion of this process of knowledge acquisition on closing the gap between natural

language and linked data properties. Specifically, it is unclear which syntactic

structures should be aligned and what is the impact of each one.

We use our methods of representation and acquisition to transform natural lan-

guage utterances into logic forms composed by a set of propositions, which are

triples with the form <argument 1 - predicate - argument 2>. A

propositions is mapped into a linked data triple {argument 1 - property

- argument 2} to build a grounded proposition, which is a proposition ex-

3
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pressed with the linked data vocabulary. We build a lexicon that we denote

Grounded Proposition Store (henceforth, GPS) by grounding a large number of

propositions automatically extracted from text. Finally, we combine the GPS with

the method proposed in [6] to create a scenario where grounding can be evaluated

in isolation to study how different grounding configurations affect semantic pars-

ing. Figure 1 shows how the utterance “Carrie Fisher is the actress who played

Princess Leia” is transformed to a logic form composed by two propositions and

then grounded into linked data properties. We explain this process and some re-

lated concepts in Section 4.

Carrie Fisher is the actress who played Princess Leia

arg0hasClass
actress /m/01tnbn(Fisher) play /m/0ddqw (Leia)

arg1

Utterance

Graphical

Representation

Logic Form

Grounded

Propositions

argument 1 /m/01tnbn /m/01tnbn

predicate hasClass play

argument 2 actress /m/0ddqw

Semantic class proposition Predicate proposition

argument 1 /m/01tnbn /m/01tnbn

property rdf-syntax-ns#type performance.actor.character

argument 2 film.actor /m/0ddqw

Grounding

Figure 1: Example of acquisition of a grounded proposition. For simplicity, we represent the

property performance.actor.character as a single triplet. In Freebase, this property is

expressed with two triplets related by an intermediate entity.

We structure our research around the following research questions. In the

context of a Semantic Parser trained using raw text for distant supervision:

• What are the methodological steps to build a GPS?

• What is the impact of the GPS when used to fed a semantic parser for ques-

tion answering?

• What linguistic phenomena (syntactic-semantic relations) should be consid-

ered in the knowledge acquisition step?

• Are external linguistic resources useful for enriching the GPS?

4
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This article is structured as follows: In Section 2 we motivate the choice of

distant supervision using raw text for QA over LD. Section 3 details the architec-

ture of the semantic parser, Section 4 studies the grounding step and presents our

approach to build a GPS. In Section 5 we evaluate the effect of GPS in QA over

LD and we present the results in Section 6. We finish with some conclusions in

Section 7 and propose some future work in Section 8.

2. Semantic Parsing over Linked Data

Early works on semantic parsing for question answering were done on do-

mains with controlled language and small predefined domains such as baseball

[7] and geography [8]. However, these approaches cannot be scaled to general-

domain knowledge bases.

As semantic parsers scaled to answer a wider range of queries, several prob-

lems arise. Firstly, systems have to deal with the lexical variability of the utter-

ances, a problem that grows as domains become less restricted. Secondly, knowl-

edge bases become bigger and richer, so the potential to give wrong answers in-

creases.

Finally, dealing with the variability of knowledge bases also introduces ad-

ditional challenges since semantic parsers have to adapt to different structures

and vocabularies. Currently, many efforts point to linked data databases like DB-

Pedia or Freebase as a source of general domain knowledge. The main reason

is that they are a compromise solution between the high quality data that pro-

vide the hand-labelled databases and the extension of the automatically generated

databases. Linked data databases are often structured in triples that denote rela-

tions between two entities, which are named properties. Properties are labelled

with a name close to natural language. For example, an instance of the database

may be {John - profession - teacher}, although these labels are ar-

bitrary and, in fact, properties are defined extensively by their members.

Early approaches were too dependent on hand-labelled logic forms [8, 9, 10],

and hence were unable to scale up. More recent work aims to alleviate the super-

vision problem by using forms of distant supervision, i.e. observation of system

behaviour [11], conversations from dialog systems [12], schema matching [13],

questions [5] and question-answer pairs [14, 15, 16, 17, 18].

GraphParser [6] is a method for distant supervision that hypothesizes that a

natural language predicate found in a text expresses a Freebase property. The

idea is to identify pairs of entities connected through a predicate in a large doc-

ument collection and look for the Freebase properties that connect both entities.

5
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For example, given the sentence s = Cameron is the director of Titanic one of

the properties in Freebase between e1 = Cameron and e2 = Titanic is r =
film.directed by. Thus, we assume that {e1 - r - e2} corresponds to

the natural language expression s.

Distant supervision provides a noisy method to learn weights for each predicate-

property pairs. For this purpose, the starting point is to take as prior the frequen-

cies observed in a large text collection to build a lexicon and use it to feed the

learning process.

GraphParser tackles this task by pairing reified logic forms derived from a

Combinatory Categorial Grammar (CCG) parser [19] with Freebase properties.

Each logic form corresponds in turn to a predicate-argument relation. Instead, we

show how to obtain similar logic forms from a standard dependency parser. De-

pendency trees are transformed into graphs, which are then used to extract propo-

sitions. Then, propositions are aligned with Freebase to produce a new lexicon.

This setting allows us to measure the effect that different configurations of our

Propositions Stores produce on semantic parsing when they are grounded to build

the lexicon the system requires.

3. System Architecture

In this section we revise the architecture of the Question Answering system.

The system is divided in three main layers: Text Processing, Learning and Infer-

ence. Figure 2 illustrates the architecture diagram.

3.1. Text Processing

The purpose of text processing is to structure each document into a machine-

friendly representation. This includes both sentences from the document collec-

tion and questions for the test. Questions are further analysed to extract the focus.

The main tasks are the following:

1. Entity Linking: The entity linking component maps natural language enti-

ties to their canonical form in the linked data database, which is often done

with a software tuned for the target database.

For our experimentation we use the ClueWeb09 Corpus [20], which is al-

ready automatically tagged with Freebase entities [21]. This is an automatic

process whose authors estimate that has between 80-85% precision and 70-

85% recall.

Performance on this step has a double impact: On the one hand, unlinked

entities are lost for the grounding step. This is a small problem, because the

6
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Linked 

Data 

database 

Document 

collection 

Questions 

(test set) 

Inference 

Text Processing 

Input 

Learning 

Entity Linking 

Text Analysis and Representation 

Generation of Logical Forms 

Question 

Analysis 

Grounding 

Training 

Mapping 

Query Composition 

Answer Retrieval 

Figure 2: Architecture of the Question Answering system.

goal of the grounding step is to collect a wide sample of linguistic phenom-

ena, not to ground every entity. On the other hand, mistakes on this phase

introduce noise on the system, which we cannot detect on posterior steps.

2. Text Analysis and Representation: In this step, the system takes a sentence

annotated with entities and produces a structured representation. It is ex-

pected that the structured representation is closer to the meaning of the sen-

tence, and therefore mapping it to a property should be easier. GraphParser

uses in this step a CCG parser. In our case, we rely on dependency parsing

to create a graph representation.

3. Generation of Logic Forms: This step is devoted to flatten the graphical

representation. In GraphParser, this step is equivalent to generate a set of

predicates denoted as ungrounded graphs. In our approach we obtain neo-

7
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davidsonian reified logic forms from dependency trees, and from them we

select predicate structures in the form of propositions. Section 4 gives more

details about this processing.

4. Question Analysis: In question analysis, the main goal is to find the question

focus, which is the part of the question that, if replaced by the answer, makes

the question a single statement. For example, in the question Who is the

director of Titanic?, the focus is given by Who, as it can be replaced by

David Cameron to produce the affirmative statement David Cameron is the

director of Titanic.

Moreover, special operators like count and argmax are created by search-

ing for special keywords like How many and most respectively.

3.2. Learning

The learning layer creates a model that evaluates a proposition to produce the

most probable grounded proposition.

1. Grounding: In Grounding we take the pre-processed documents in order to

build the GPS. In GraphParser, this step corresponds to the building of the

alignment lexicon. We explain this step in detail in Section 4.

2. Training: We use the Maximum Weighted Graph (MWG) of GraphParser

[6] to replace each new proposition with the highest weighted grounded

proposition given by the GPS.

The default configuration of GraphParser for training is far more complex.

It uses a Structured Perceptron that employs several kinds of features from

the alignment between logic forms and properties. Features weights are

tuned using denotation as a form of distant supervision. In GraphParser,

training pushes the results from 36.5% to 39.3%.

3.3. Inference

The inference layer applies the model generated in the learning layer to the

questions of the test set in order to generate an answer. Our configuration follows

[6]. This process is subdivided in three components: Mapping, Query Composi-

tion and Answer Retrieval.

1. Mapping: Mapping is devoted to adapt the vocabulary and structure of the

logic forms of the text processing step into the logic forms grounded on

Freebase. It uses the model created in the learning step to decide which the

most promising grounded proposition is.

8
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2. Query Composition: The query composition step combines the informa-

tion given by question analysis with the logic forms in order to create an

executable SPARQL query. As grounded propositions are expressed with

Freebase vocabulary, the composition is straightforward. Besides, it adds

extra metadata about prefixes, domains and optional language filters.

3. Answer Retrieval: The last step is to retrieve the answer given the SPARQL

query. We use Virtuoso1 as an open source, free-available server to allocate

the database and enable querying.

4. Grounding

Despite the need of a full QA system, our goal is to get insights on the effects

of the grounding step in overall system performance. The challenge is to build

a map between natural language utterances and the properties in a linked data

database and measure the effect on the QA task.

In our case, we turn natural language utterances into propositions in the acqui-

sition step and then we build a map from propositions to properties, which is the

Grounded Proposition Store. The generation of GPSs is divided into three steps:

Proposition Store Building, Proposition Store Grounding and Lexical Expansion.

4.1. Proposition Store Building

Sentences from the ClueWeb09 Corpus are processed with Stanford CoreNLP

[22] to obtain dependency trees which are also annotated with part-of-speech and

coreferences [23]. We collapse multi-words nodes such as named entities into sin-

gle nodes. Coreferences are also used to replace pronouns with the correspondent

named entity. We depart from the Stanford syntactic dependencies [24], and then

we perform a naive semantic role labelling to normalize subjects, direct objects,

indirect objects, copulatives, genitives and class-instance relations with a new set

of semantic dependencies (See Table 1). This is an automatic process that relies

on a predefined set of patterns. As a matter of example, we show some patterns in

Table 2. We aim for two advantages: First it allows us to define a simple set of pat-

terns to extract propositions, and second, this normalization reduces the sparsity

of the extraction.

Then, we extract a set of propositions applying patterns based on semantic

dependencies. A proposition is composed by a predicate with two arguments,

1http://virtuoso.openlinksw.com/

9
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Role Semantic dependency

Subject subject

Direct object dobject

Indirect object iobject

Copulative is

Genitive has

Semantic class hasClass

Prepositions prep

Table 1: Semantic dependencies introduced by the semantic role labelling.

Input Output

ne(N1), N1 −→ nn −→ N2 N1 −→ hasClass −→ N2

ne(N2), N1 −→ poss −→ N2 N2 −→ has −→ N1

V −→ subj −→ N V −→ subject −→ N

V −→ agent −→ N V −→ subject −→ N

N1 −→ nsubj −→ N2 N1 −→ is −→ N2

Table 2: Examples of patterns for naive semantic role labelling. N represent nouns and V are

verbs. ne(N) means that the noun N is a named entity.

and is denoted as <arg1 - predicate - arg2>. We distinguish two kinds

of propositions: Semantic class propositions, where the predicate denotes a type

relationship (See Table 3), and predicate propositions, where the predicate denotes

any other relationship (See Table 4).

Pattern Example Proposition

NhasClassN Beatty scored a double-win by casting

Madonna as chanteuse Breathless Ma-

honey.

<Madonna - hasClass

- chanteuse>

NisN War of the Worlds is a movie with Tom

Cruise.

<War of the Worlds -

is - movie>

Table 3: Syntactic patterns used to extract semantic classes from the graphical representation.

4.2. Proposition Store Grounding

We ground propositions in the following manner:

10
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Pattern Example Proposition

NhasClassN+NPN Robby Benson, a surprising choice for

The Beast, is excellent.

<Robby Benson -

choice:for - The

Beast>

NisN+NPN War of the Worlds is a movie with Tom

Cruise.

<War of the Worlds

- movie:with - Tom

Cruise>

NhasN Likewise, Jackman’s Drover is a surpris-

ing bore.

<Jackman - has -

Drover>

NhasN+NPN Main Hoon Na is a Bollywood’s film

of 2004 starring Shahrukh and Sushmita

Sen.

<Main Hoon - film:of

- 2004>

NPN Frank Welker was the voice of Megatron. <voice - voice:of -

Megatron>

NNV Nichols and Koenig played Uhura and

Chekhov, respectively.

<Nichols - play -

Koening>

NVN Four Rooms was released by Miramax in

December, 1995.

<Miramax - release -

Four Rooms>

NVPN Don Knotts won five Emmys as Barney

Fife.

<Don Knotts - win -

Barney Five>

VNN The Incredible Hulk also starring Liv

Tyler, Tim Roth and William Hurt.

<Liv Tyler - star -

Tim Roth>

VNPN Tarantino is scheduled to begin shooting

Death Proof in Austin in August.

<Death Proof -

shoot:in - Austin>

VPNPN Under Berg, Hancock was filmed in Los

Angeles.

<Los Angeles -

film:in:under -

Berg>

Table 4: Syntactic patterns used to extract propositions from the graphical representation. NVNPN

is equivalent to Subject - Verb - Direct Object -Indirect Object

1. Select sentences with two or more entities present in Freebase.

2. Extract the set of propositions from the sentence that involve the entities

present in Freebase.

3. Retrieve all possible types and properties from Freebase that link the entities

found.

4. Pair propositions and retrieved properties to build the mapping lexicon. Se-

mantic classes are mapped to types, and predicate propositions are mapped

to properties.

5. Compute the join probability of each pairing between a predicate r with a

property p as a way to rank the most probable properties for a given predi-

cate. The joint probability is calculated as:

11
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p(r, p) =
∑

(arg1,arg2)∈ARG

p(p | arg1, arg2) · p(arg1, arg2 | r) · p(r) (1)

where p(p | arg1, arg2) is estimated as 1
|P |arg1,arg2

being |P |arg1,arg2 the

number of distinct properties retrieved for a pair of arguments arg1 and

arg2 that belong to the set of all arguments ARG if p is retrieved, and 0 oth-

erwise, p(arg1, arg2 | r) is estimated as
#r(arg1,arg2)

#r
where #r(arg1, arg2)

corresponds to the number of times where a proposition <arg1 - r -

arg2> is derived from the corpus and #r is the number of times that the

predicate r is derived from the corpus, and p(r) is estimated as #r

|R|
where

|R| is the total number of propositions.

The result is a GPS with a total of 3,416 semantic classes aligned to an average

of 40.52 types, plus 10,799 predicates aligned to an average of 3.82 properties.

Tables 5 and 6 show some of the most frequent pairs extracted for semantic classes

and predicates respectively.

Semantic class Type p(r, p)

president

organization.organization founder 5.96E-4

business.board member 4.23E-4

people.person 3.43E-4

son

people.person 6.63E-4

people.deceased person 2.84E-4

people.family member 5.20E-5

founder

organization.organization founder 1.68E-3

business.board member 1.54E-4

people.person 1.37E-4

Table 5: Highest probability pairings between semantic classes and types in Freebase.

4.3. Lexical Expansion

Alignment through examples is very sensitive to lexical variability. For in-

stance, we may not find the verb film in a proposition like <Cameron - film

- Titanic>. However, if instead we have found the verb direct like in <Cameron

- direct - Titanic> we could easily expand our lexicon by replacing the

12



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

Predicate Property Argument 1 Property Argument 2 p(r, p)

bear

person.place of birth.1 person.place of birth.2 0.014

place lived.person place lived.location 0.008

person.nationality.1 person.nationality.2 0.006

has

person.nationality.1 person.nationality.2 0.005

employment tenure.person employment tenure.company 0.004

organization.geographic scope.1 organization.geographic scope.2 0.001

die:in

deceased person.place of death.1 deceased person.place of death.2 0.007

deceased person.date of death.1 deceased person.date of death.2 0.001

person.date of birth.1 person.date of birth.2 0.001

Table 6: Higher probability pairings between predicates and properties. We removed the domains

of the properties for readability.

verb direct with the related verb film. We explore the use of synonyms in WordNet

[25], a hand-made lexical database. Lexical expansion through external resources

has proven to be useful in Semantic Parsing both with WordNet [26] and other

sources [14].

The lexical expansion process takes a predicate paired with the properties and

obtains every synonym given by WordNet, including the original word. Then, the

final weight of each predicate is divided among the number of synonyms retrieved.

We compute the joint probability of each pairing between a synonym s with a

property p, that is:

p′(s, p) =
∑

r

p(s, r, p) =
∑

r

p(s | r, p) · p(r, p) (2)

where p(s | r, p) is estimated as 1
|S|r

being |S|r the number of synonyms re-

trieved for the predicate r and p(r, p) is calculated as in Equation 1.

The resulting expanded GPS extends the predicates up to 72,130, with an av-

erage of 5.42 properties paired.

4.4. Working example

We illustrate the full process through a working example. Consider the sen-

tence Spurlock is the creator of the film Supersize Me, extracted from the ClueWeb09

Corpus. Our method is decomposed in the following steps:

1. Proposition Store Building

(a) Select a sentence s: The working example is selected because it con-

tains two Freebase entities, Spurlock and Supersize Me. Entities are

13
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annotated with their Freebase id, which is m.035sc2 and m.022prxf

respectively.

(b) Transform the sentence into a graph gs: Figure 3 shows the resulting

graph.

DESC: creator 

POS: NN 

DESC: Supersize Me 

NER: Misc 

POS: NNP 

ID: m.022prxf 

DESC: Spurlock 

NER: Person 

POS: NNP 

ID: m.035sc2 

Spurlock is 

the creator of 

the film 
Supersize 

Me. 

prep_of 

is 

nn DESC: film 

POS: NN 

Regular node 
Entity 
Syntactic dependence 
Semantic dependence 

Figure 3: Graph extracted from the sentence Spurlock is the creator of the film Supersize Me.

(c) Extract propositions <arg1-r-arg2>: We flatten the graph rep-

resentation applying syntactic patterns to extract propositions, com-

posed by a predicate r and a pair of arguments arg1, arg2. Table 7

shows the patterns found in the working example and the resulting

propositions.

Pattern Proposition

NPN <creator - of - m.022prxf>

NisN <m.035sc2 - is -creator>

NisN+NPN <m.035sc2 - creator:of - m.022prxf>

Table 7: Propositions extracted from the sentence Spurlock is the creator of the film Supersize Me.

Note that entities are replaced with their Freebase id.

2. Grounding Proposition Stores

(a) Ground propositions: A grounded proposition {arg1 - p - arg2}
is built by replacing the original predicate r of a proposition with a

property p. We search for the properties Parg1,arg2 = p0, . . . , pn that

connect the entities arg1, arg2 in Freebase.
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(b) Build final lexicon: Compute the probability p(r, p). Tables 8 and 9

show the result of p(”creator”, p) for semantic class propositions and

predicate propositions, respectively. For instance, the probability of

the semantic class ”creator” with the type film.writer, that is:

p(”creator”, ”film.writer”) = p(”film.writer” | m.035sc2)·

· p(m.035sc2 | ”creator”) · p(”creator”)+

+ p(”film.writer” | m.02sbwl) · p(m.02sbwl | ”creator”)·

· p(”creator”) + . . . =

=
1

8
·

1

35022
·
35022

193163
+

1

4
·

1

35022
·
35022

193163
+ . . . = 3.45E − 5

Semantic Class Type p(r, p)

creator

organization.organization founder 3.45E-5

business.board member 7.30E-6

people.person 6.68E-6

film.writer 5.90E-6

film.director 4.30E-6

. . .

Table 8: Relevant probabilities for the semantic class creator. Probabilities are obtained after

processing the whole collection.

Predicate Property Argument 1 Property Argument 2 p(r, p)

creator

film.written by.1 film.written by.2 9.06E-6

organization.founders.1 organization.founders.2 7.77E-6

employment tenure.person employment tenure.company 7.77E-6

film.directed by.1 film.directed by.2 6.47E-6

. . .

Table 9: Relevant probabilities for a proposition with the predicate creator. We removed the

domains of the properties for readability. Probabilities are obtained after processing the whole

collection.

3. Lexical Expansion

(a) Create new pairs: Search in WordNet for synonyms of a predicate.

For example, for the predicate create we find the synonyms make and
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produce. Properties that would be paired with the original predicate

are paired with the synonyms Sr = {s0 = make, s1 = produce, s2 =
create}.

(b) Compute the probability p′(s, p). For instance, the probability p′(”creator”, p)
is computed as:

p′(”creator”, p) =
p(”make”, p)

3
+

p(”produce”, p)

3
+

p(”create”, p)

3

5. Experiment Design

In this section we explain the semantic parsing task and the datasets that we

have used both for the creation of the GPS and for testing them for the task of

semantic parsing.

Formally, our goal is to learn a function to map an utterance u to a query q

over a database D. The database is defined by a schema that contains properties

p ∈ P and entities e ∈ E. Both properties and entities are human-readable strings

like film.directed by or David Cameron. The database contains a set of

triples {e1−p−e2}. For each utterance (natural language question) the system gets

set of SPARQL queries Qu = q0 . . . qn. Each query executed over the database

obtains a set of answers Aq = a0, . . . , am.

5.1. Implementation

We took advantage of GraphParser to evaluate our approach against the test

collections. We use the Maximum Weighted Graph (MWG) configuration, a base-

line that replaces each predicate with the property with the highest probability

without any further training. With the goal of measuring the contribution of each

syntactic pattern, we perform an ablation test where we remove one by one a syn-

tactic pattern in the GPS building process and compare the resulting GPS with

the full building process. Moreover, we experiment with the expansion of propo-

sitions using WordNet and perform an additional ablation test on the expanded

GPS. Then, we try to maximise our results by removing the harmful patterns, and

finally, we perform a comparison with an state of the art system.

5.2. Evaluation Measures

Following [14, 15, 6] and many others, the system is evaluated using precision,

recall and F1-measure.
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Precision =
number of correct system answers

number of system answers
(3)

Recall =
number of correct system answers

number of questions
(4)

These measures consider only the first answer of the ranking. An answer of

a query is correct if contains exactly the same responses that the gold standard.

Partial answers are considered mistakes. Results are ranked according to the F1-

measure.

5.3. Dataset

Our dataset is a subset of WebQuestions [15] as defined in [6]. The scope is

reduced to three domains: film, business and people. The final dataset is com-

posed by 200 questions devoted for development and 570 questions for testing.

Note that, with the MWG configuration, the development dataset is not used.

6. Results

We compare the effect of our lexicon against having no lexicon at all to high-

light how determinant is the grounding step. With a GPS, results are pushed 25.3

points with respect to the empty lexicon, showing the high impact that knowledge

acquisition has in the task (Table 10). We also show that the baseline proposed in

GraphParser is already informed. MWG uses the default lexicon of GraphParser

to ground logic forms without any training. Compared with the empty lexicon,

results are pushed 28.7 points, which indicates that the lexicon contributes with

a 78.6% of the total result of MWG. When compared to our regular GPS, the

contribution is similar, with a 76.4% of the total result.

Prec Rec F1 difference

Empty lexicon 8.40 7.30 7.80

GPS 35.74 30.95 33.14 +25.34 (76.46%)

GraphParser - MWG 39,4 34,0 36,5 +28.70 (78.63%)

Table 10: Comparison between an empty lexicon, the regular GPS and GraphParser’s baseline.

Ablation Test: Table 11 shows the results of the ablation test, divided between

regular and expanded system. The GPS row corresponds to the full system, while
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the remaining rows correspond to individual ablations where a single proposition

type is removed. We observe that in both cases the F1-measure of the full sys-

tem is close to the highest result. Moreover, the difference between these systems

and most of ablations is small, a range of [-0,31,+0,16] in the regular case and

[-0,35,+0,12] for the expanded case. The VNPN, NVN y NVPN patterns are the

exception, with higher loses, up to 12.64 points. This means that these structures

are essential to acquire knowledge in the context of linked data, as they gather in-

formation that is unavailable for other patterns. Considering individual ablations,

the best result for the regular case is to ignore hasClass+NPN structures and for

the expanded case the best results are obtained by ignoring NNV or VNN struc-

tures in the construction of the proposition stores. These results show that these

patterns introduce more noise than useful information.

Regular Expanded

Prec Rec F1 Prec Rec F1

GPS 35.74 30.95 33.14 38.08 32.99 35.38

-NNV 35.82 31.02 33.22 (+0.08) 38.20 33.10 35.50 (+0.12)

-VNN 35.68 30.89 33.09 (-0.05) 38.16 33.06 35.46 (+0.08)

-NPN 35.46 30.7 32.88 (-0.26) 38.08 32.98 35.38 (0.00)

-NisN 35.48 30.71 32.90 (-0.24) 38.06 32.97 35.36 (-0.02)

-NhasClassN+NPN 35.90 31.10 33.30 (+0.16) 38.04 32.94 35.34 (-0.04)

-NhasN+NPN 35.82 31.02 33.22 (+0.08) 38.04 32.94 35.34 (-0.04)

-NhasN 35.82 31.02 33.22 (+0.08) 38.02 32.93 35.32 (-0.06)

-VPNPN 35.74 30.94 33.14 (0.00) 37.84 32.77 35.15 (-0.23)

-NisN+NPN 35.67 30.46 32.83 (-0.31) 37.8 32.74 35.11 (-0.27)

-NhasClassN 35.48 30.71 32.89 (-0.25) 37.96 33.39 35.03 (-0.35)

-VNPN 28.58 24.69 26.48 (-6.66) 30.92 26.76 28.72 (-6.66)

-NVN 26.74 23.14 24.74 (-8.40) 27.54 23.84 25.54 (-9.84)

-NVPN 23.48 20.38 21.78 (-11.36) 25.10 20.97 22.74 (-12.64)

Table 11: Experimental results for the ablation test. We report the difference between the ablation

and the GPS with and without expansion.

Lexical Expansion: Table 12 shows that the expanded GPS consistently out-

perform the regular GPS both in the full system and in every ablation, with a

contribution of 0.8% in the worst case and 2.5% in the best. This confirms that

GPS can be effectively expanded using WordNet synonyms in order to reduce

the lexical gap, and points out that external resources can be a good complement

to distant-supervised methods to acquire knowledge. In other words, the more

knowledge we inject into the system the better performance it shows.
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Regular Expanded Difference

GPS 33.14 35.38 +2.24

-NPN 32.88 32.98 +2.50

-NisN 32.90 32.97 +2.46

-VNN 33.09 33.06 +2.37

-NNV 33.22 33.10 +2.28

-NisN+NPN 32.83 32.74 +2.28

-VNPN 26.48 26.76 +2.24

-NhasClassN 32.89 33.39 +2.14

-NhasN+NPN 33.22 32.94 +2.12

-NhasN 33.22 32.93 +2.10

-NhasClassN+NPN 33.30 32.94 +2.04

-VPNPN 33.14 32.77 +2.01

-NVPN 21.78 20.97 +0.96

-NVN 24.74 23.84 +0.80

Table 12: Comparison between F1 measure for the Regular and Expanded GPS.

Best Configuration: Table 13 shows the results of the configurations that

remove harmful patterns, which are NhasClassN+NPN, NhasN, NhasN+NPN and

NNV for the regular configuration and NNV and VNN for the expansion. Results

indicate that these patterns can be omitted with a further small boost on the results.

More significant, we can achieve the same performance with less patterns, which

in turn means less computational cost of building the lexicons.

Regular Expanded

Prec Rec F1 Prec Rec F1

GPS 35.74 30.95 33.14 38.08 32.99 35.38

(1) 35.86 31.06 33.26 (+0.12) 38.22 33.12 35.52 (+0.14)

(2) 35.86 31.06 33.26 (+0.12) 38.18 33.08 35.48 (+0.1)

Table 13: Experimental results removing the harmful ablations. (1) Corresponds to NNV and

VNN patterns which are harmful for the expanded GPS and (2) corresponds to NhasClassN+NPN,

NhasN, NhasN+NPN and NNV, which are harmful for the regular GPS.

Comparative Evaluation: We compare our salient configurations with Graph-

Parser’s baseline (MWG) and system with training (GraphParser). Table 14 shows
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how we achieve similar results, which is promising considering that we limited

the acquisition to the sentences used in GraphParser. Our representation relies

on syntactic parsing and syntactic rules to process sentences, which is faster than

the CCG parser, so there is potential to increase the acquisition by using a larger

document collection. Note that GraphParser’s default and baseline configuration

have 2.8 points of difference, which represents a 7.6% of relative improvement.

Again, this highlights the importance of the grounding.

Prec Rec F1

GraphParser 41,9 37,0 39,3

GraphParser - MWG 39,4 34,0 36,5

GPS expanded-(1) 38,22 33,12 35,52

GPS expanded 38,08 32,99 35,38

GPS 35,74 30,95 33,14

Table 14: Comparison between GraphParser and the regular and expanded GPS, plus our best

system which is the NNV and VNN ablation of the expanded system (1). MWG refers to Graph-

Parser’s baseline configuration where there is no training.

7. Conclusions

Question Answering systems in the state of the art are evaluated as a mono-

lithic system that involves acquisition, learning and querying without measuring

the contribution of each component. However, such a system level comparison

does not provide any insight into the real contribution of each component, and, in

particular, the effect of the amount of knowledge digested in the final result.

We show here that the main component is the lexicon itself (the GPS in our

case), so we need better ways of creating and evaluating this resource before ad-

dressing the learning and querying steps in deeper and more sophisticated settings.

We have presented both the methodology to generate a GPS linked to a par-

ticular knowledge base, and a study evaluating the effect in QA performance that

different natural language structures produce when they are considered to build

the GPS.

For this reason, we evaluated the construction and grounding of the lexicon

(GPS in our case) per se, without additional training or wiring to the SPARQL

queries generation. This additional evaluation, such as done in [14, 15, 6], is

out of the scope of this work. Different methods for training and querying must
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be evaluated once the GPS is fixed, so we can learn about the effect of different

techniques.

We summarize our conclusions to the following research questions:

• What are the methodological steps to build a GPS?

We have developed a method to map propositions into Freebase properties

using distant supervision that helps in solving both lexical and structural

gaps by finding multiple grammatical structures and lexical realizations of

the same query.

Our method is divided in three steps: (1) Build a proposition store. To do

so, we select relevant sentences, transform them into graphs from which we

extract propositions. (2) Ground each proposition by pairing them with KB

properties considering linked entities, and (3) Compute the global weights

of each pairing.

We consider an optional step, (4) Perform a lexical expansion by creating

new pairs and re-evaluate the weights of the lexicon entries.

• What is the impact of the GPS when used to fed a semantic parser for ques-

tion answering?

Building and grounding the proposition stores is key to the final perfor-

mance of the semantic parser. A system with an empty alignment lexicon

achieves a 7.80% of F1-measure. In baseline systems with lexicon but with-

out training, our experiments show that the lexicon contributes with near

80% of the results, and training only accounts for 7.6% of relative improve-

ment.

• What linguistic phenomena (syntactic-semantic relations) should be consid-

ered in the knowledge acquisition step?

We have analysed different linguistic structures that can be included in the

GPS and what is the contribution on the final result. For this setting, NVN,

NVPN and VNPN patterns have a significant effect in the performance. Our

results suggest that extensive coverage of every possible syntactic pattern is

not as useful as it may be intuitive. Conversely, systems can dispense with

some patterns and reduce the computational cost of building the alignment.

• Are external linguistic resources useful for enriching the GPS?
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We have shown how to enrich the lexicon using linguistic information from

external resources, helping to bridge the lexical gap between utterances and

database queries. Enrichment consistently pushes the results in every case,

in a range from 0.8% to 2.50%.

8. Future work

This work opens many new research questions. With the learned lessons, we

could aim to scale up the system. One option would be to generalize the GPS

using bigger knowledge bases, which now are small because entities are required

to be linked to Freebase. The hypothesis of one sense per collocation defined in

[27] could help to automate entity linking.

We leave also for future work refining the distant supervision process. For

example, we could follow a similar approach as [28], that try to reduce the noise

by jointly modelling instances and labels for relation extraction. This would be

equivalent to our problem, where we could model utterances and labels at the

same time.

Finally, it would be interesting to study how to improve GPS using distributed

representations at word level like Word2Vec [29] or GloVe [30], at relation level

[31, 32], or embeddings for QA [33, 34]. Whereas they have proven to be useful

for training [35, 36], to the best of our knowledge there is not any effort to enrich

the acquisition step.
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