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Research Article

David Garber, Delaram Kahrobaei and Ha T. Lam

Length-based attacks in polycyclic groups

Abstract: The Anshel–Anshel–Goldfeld (AAG) key-exchange protocol was implemented and studied with

the braid groups as its underlying platform. The length-based attack, introduced by Hughes and Tannen-

baum, has been used to cryptanalyze the AAG protocol in this setting. Eick and Kahrobaei suggest to use the

polycyclic groups as a possible platform for the AAG protocol. In this paper, we apply several known variants

of the length-based attack against the AAG protocol with the polycyclic group as the underlying platform.

The experimental results show that, in these groups, the implemented variants of the length-based attack are

unsuccessful in the case of polycyclic groups having high Hirsch length. This suggests that the length-based

attack is insufficient to cryptanalyze the AAG protocol when implemented over this type of polycyclic groups.

This implies that polycyclic groups could be a potential platform for some cryptosystems based on conjugacy

search problem, such as non-commutative Diffie–Hellman, El Gamal and Cramer–Shoup key-exchange pro-

tocols. Moreover, we compare for the first time the success rates of the different variants of the length-based

attack. These experiments show that, in these groups, thememory length-based attack introduced by Garber,

Kaplan, Teicher, Tsaban and Vishne does better than the other variants proposed thus far in this context.

Keywords: Polycyclic groups, non-commutative public key, length-based attack

MSC 2010: 68-XX, 20-XX

||
David Garber: Department of Applied Mathematics, Faculty of Sciences, Holon Institute of Technology, 52 Golomb st.,

PO Box 305, 58102 Holon, Israel, e-mail: garber@hit.ac.il

Delaram Kahrobaei: PhD Program in Computer Science, CUNY Graduate Center, City University of New York, 365 Fifth Ave,

New York, NY 10016; and Mathematics Department, New York City College of Technology, 300 Jay Street, Brooklyn, NY 11201,

USA, e-mail: dkahrobaei@gc.cuny.edu

Ha T. Lam: Department of Mathematics, CUNY Graduate Center, City University of New York, 365 Fifth Ave, New York, NY 10016,

USA, e-mail: hlam@gc.cuny.edu

Communicated by: Spyros Magliveras

1 Introduction

The Anshel–Anshel–Goldfeld (AAG) key-exchange protocol was introduced in 1999 [1]. Following its intro-

duction, the AAG protocol was extensively studied using different groups as its underlying platform. Ko et al.

[15] used braid groups. Moreover, Myasnikov and Ushakov [18] studied the security of the AAG protocol with

respect to several attacks on any platform groups satisfying some theoretic properties (exponentially generic

free basis property).

Hughes and Tannenbaum [11] introduced the length-based attack (LBA) on the AAG protocol with its

implementation in braid groups. They emphasized the importance of choosing the correct length function.

Later, Garber et al. [6] gave several realizations of this approach, particularly a length function for the braid

group and experimental results suggesting that the attack fails for the parameters suggested in existing pro-

tocols. However, Garber et al. [5] also suggested an extension of the length-based attack which uses memory

which succeeded in cryptanalyzing the AAG protocol. A similar attack was implemented against a system

based on the Thompson group [19]. Most recently, Myasnikov and Ushakov [17] analyzed the reasons behind

the failure of the previous implementations of the LBA, such as the occurrence of commutator-type peaks,

and gave an experimental evidence that the LBA can be modified to cryptanalyze the AAG protocol with high

success rate. However, this work is again done the braid groups as the underlying platform.
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34 | D. Garber, D. Kahrobaei and H. T. Lam, Length-based attacks in polycyclic groups

Eick and Kahrobaei [3] have suggested a different platform for the AAG protocol – the polycyclic group.

In polycyclic groups, the word problem can be solved efficiently [7], but known solutions to the conjugacy

problem are much less efficient. Using experimental results, Eick and Kahrobaei showed that while the con-

jugacy problem can be solvedwithin seconds using polycyclic groupswith small Hirsch length, the conjugacy

problem in polycyclic groups with high Hirsch length requires a much longer time for its solution.

Taking inspiration from this result, we investigate the success rate of the length-based attack on the AAG

protocol, where the underlying platform is the polycyclic groups, especially those with high Hirsch length.

Toward this end, we first construct polycyclic groups of high Hirsch length using a method introduced by

Holt et al. [10]. Then, we implement the different variants of the LBA presented in [5, 6, 17]. The experimental

results that we collect suggest that the LBA is insufficient to cryptanalyze the AAG protocol, when we use the

polycyclic groups with high enough Hirsch length as the underlying platform. Consequently, the polycyclic

group is the first underlying platformwhich the LBA is insufficient for cryptanalyzing theAAGprotocol on this

platform, whereas the solution for the word problem is quite efficient. A suggestion for concrete parameters

appears in the last section.

Moreover, we compare for the first time on any platform the success rates of the different variants of the

LBA.

As a wider application, we note that the conjugacy search problem is the basis for various cryptographic

protocols besides AAG, such as the non-commutative Diffie–Hellman key-exchange [15], the non-commu-

tative ElGamal key-exchange [12], thenon-abelianCramer–Shoupkey-exchange [2] and thenon-commutative

digital signatures [13]. The LBA can be applied to all these protocols; therefore, a platform group which ex-

perimental results show that the LBA is insufficient for cryptanalyzing the AAG protocol over this platform,

such as polycyclic groups, can help instantiate them.

The paper is organized as follows. In Section 2, we introduce the Anshel–Anshel–Goldfeld key-exchange

protocol. In Section 3, we give a short review of polycyclic groups and the construction that we have used. In

Section 4, we review the length-based attack, and in Section 5, we present the experiments, their results and

corresponding conclusions.

2 The Anshel–Anshel–Goldfeld key-exchange protocol

Following [17], we present here theAnshel–Anshel–Goldfeld key-exchange protocol (formore details, see [1]).

As usual, we use two entities, called Alice and Bob, for presenting the two parties which plan to communicate

over an insecure channel.

Let G be a group with generators g1, . . . , gn. First, Alice chooses her public set a = (a1, . . . , aN1 ), where
ai ∈ G, and Bob chooses his public set b = (b1, . . . , bN2 ), where bi ∈ G. They both publish their sets. Alice

then chooses her private key A = aù1s1 ⋅ ⋅ ⋅ a
ùL
sL , where asi ∈ a and ùi ∈ {±1}. Bob also chooses his private key

B = bä1t1 ⋅ ⋅ ⋅ b
äL
tL , where bti ∈ b and äi ∈ {±1}. Alice computes b�i = A−1biA for all bi ∈ b and sends it to Bob. Bob

also computes a�i = B−1aiB for all ai ∈ a and sends it to Alice. Now, the shared secret key is K = A−1B−1AB.
Alice computes this key by

KA = A−1(a�ù1s1 ⋅ ⋅ ⋅ a
�ùL
sL )

= A−1(B−1as1B)
ù1 ⋅ ⋅ ⋅ (B−1asLB)

ùL

= A−1B−1(aù1s1 ⋅ ⋅ ⋅ a
ùL
sL )B

= A−1B−1AB = K.

Similarly, Bob can compute KB = B−1(b
�ä1
t1 ⋅ ⋅ ⋅ b

�äL
tL ) = B

−1A−1BA, and then he knows the shared secret key by

K = K−1B .
In order to findK, it is enough for the eavesdropper either to findA� ∈ ⟨a1, . . . , aN1⟩ such that b� = A

�−1bA�

or to find B� ∈ ⟨b1, . . . , bN2⟩ such that a� = B
�−1aB� (an incompatible sufficient condition can be found in [14]).
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Thus, the security of the AAG protocol is based on the assumption that the subgroup-restricted simultaneous

conjugacy search problem is hard.

3 Polycyclic groups

In this section, we give a short review for polycyclic groups and describe the construction of polycyclic groups

of high Hirsch length. For more details, see [10].

3.1 The polycyclic presentation

Recall that G is a polycyclic group if it has a polycyclic series, i.e., a subnormal series

G = G1 ⊲ G2 ⊲ ⋅ ⋅ ⋅ ⊲ Gn+1 = {1},

with non-trivial cyclic factors. The polycyclic generating sequence of G is the n-tuple (g1, . . . , gn), such that

Gi = ⟨gi, Gi+1⟩ for 1 ≤ i ≤ n.
Any polycyclic group has a finite presentation of the form

⟨g1, . . . , gn | g
gi
j = wij, g

g−1
i

j = vij, g
rk
k = ukk for 1 ≤ i < j ≤ n and k ∈ I⟩,

where wij, vij, ukk are words in the generators gi+1, . . . , gn and I is the set of indices i ∈ {1, . . . , n} such that

ri = [Gi : Gi+1] is finite. Here ab stands for b−1ab.
It is known by induction that each element of G defined by this presentation can be uniquely written as

g = ge11 ⋅ ⋅ ⋅ genn where ei ∈ ℤ for 1 ≤ i ≤ n, and 0 ≤ ei < ri for i ∈ I. We call g = ge11 ⋅ ⋅ ⋅ genn the normal form of an

element inG. If every element in the group can be uniquely presented in the normal form, then the polycyclic

presentation is called consistent. Note that every polycyclic group has a consistent polycyclic presentation

(see [10]).

The Hirsch length of a polycyclic group is the number of indices i such that ri = [Gi : Gi+1] is infinite. This
number is invariant of the chosen polycyclic sequence.

3.2 Constructing polycyclic groups using number fields

There are several ways for constructing polycyclic groups. For the purpose of this paper, we construct poly-

cyclic groups by semidirect products of the maximal order and the unit group of a number field. This con-

struction follows [10].

Let f(x) ∈ ℤ[x] be an irreducible polynomial. The polynomial f defines a field extension F over ℚ. The
maximal order or the ring of integers OF of the number field F is the set of algebraic integers in F,

OF = {a ∈ F | there exists a monic polynomial fa(x) ∈ ℤ[x] such that fa(a) = 0}.

The unit group of F is
UF = {a ∈ OF | a ̸= 0 and a−1 ∈ OF}.

For constructing the polycyclic group by themaximal order and the unit group of a number field Fwhere
[F : ℚ] = n, we recall two results. First, themaximal orderOF forms a ringwhose additive group is isomorphic

to ℤn (see [20]). Second, Dirichlet’s unit theorem states that given n = s + 2t, where s and 2t are the numbers

of real field monomorphisms F → ℝ and complex field monomorphisms F → ℂ respectively, then the unit

group UF is a finitely-generated abelian group of the form UF ≅ ℤs+t−1 × ℤm for some evenm (see [20]). Here,
we use the fact that the unit group is a finitely-generated abelian group and hence UF is also polycyclic.
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Let G be a group andN E G, it is easy to see that ifN and G/N are both polycyclic, then the group G is
also polycyclic by putting together the polycyclic series ofN and the series induced by the polycyclic series

of G/N. Since the above results guaranteed that the maximal order is a polycyclic group and the unit group,

which is isomorphic toG/OF, is also polycyclic, the groupG = OF ⋊ UF is polycyclic. The actionwhich defines
the semidirect product is a multiplication from the right of UF on OF.

IfN E G, the Hirsch length of a polycyclic group G is ℎ(G) = ℎ(N) + ℎ(G/N); in our case,

ℎ(G) = ℎ(OF) + ℎ(UF),

where ℎ(OF) is n, which is the degree of the generating polynomial f. Hence, for constructing a polycyclic
group of high Hirsch length, we have to find an irreducible polynomial of high enough degree, and then

the polycyclic group constructed by the above method will have Hirsch length larger than the degree of the

polynomial.

3.3 Polycyclic groups as platform groups for the AAG protocol

Polycyclic groups are suitable as platform groups for the AAG protocol for several reasons. First, the word

problem can be solved efficiently using the collection algorithm [7], see also [3]. Second, the conjugacy search

problem has no efficient solution in general polycyclic groups. This assessment is due to Eick and Kahro-

baei [3], using the following experiment: Let K = ℚ[x]/(fw) be an algebraic number field for a cyclotomic

polynomial fw, where w is a primitive r-th root of unity. Let G(w) = O ⋊ U, where O is the maximal order

and U the unit group of K, r the order of w and ℎ(G(w)) the Hirsch length. The average time used for 100
applications of the collection algorithm on random words and the average time used for 100 applications of
the conjugacy algorithm on random conjugates is

r ℎ(G(w)) Collection Conjugation

3 2 0.00 seconds 9.96 seconds
4 2 0.00 seconds 9.37 seconds
7 6 0.01 seconds 10.16 seconds
11 14 0.05 seconds > 100 hours

We can see that the collection algorithmworks very fast even for polycyclic groups of high Hirsch length,

and therefore the word problem has an efficient solution. On the other hand, the solution to the conjugacy

problem is not efficient for polycyclic groups having high Hirsch length.

4 The length-based attack

The length-based attack (LBA) is a probabilistic attack against the conjugacy search problem in general, and

against the AAG protocol in particular, with the goal of finding Alice’s (or Bob’s) private key. It is based on

the idea that a conjugation of the correct element should decrease the length of the captured package. Using

the notations of Section 2, the captured package is b� = (b�1, . . . , b�N2 ), where b
�
i = A−1biA. If we conjugate b�

with elements from the group ⟨a1, . . . , aN1⟩ and the length of the resulting tuple has been decreased, then

we have found a candidate for the conjugating factor. The process of conjugation is then repeated with the

decreased-length tuple until a longer candidate for the conjugating factor is found. The process ends when

the conjugated captured package is the same as b = (b1, . . . , bN2 ), which is known. Then, the conjugate can be
recovered by reversing the sequence of conjugating factors. For more details on the LBA, see [5, 6, 9, 16, 17].
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4.1 Variants of the LBA

In [5, 6, 17, 19], several variants of the LBA are presented. Here, we give four variants of the LBA that we

implemented against the AAG protocol having the polycyclic group as its underlying platform. In all these

variants, the following input and output are expected:

∙ Input: a = (a1, . . . , aN1 ), b = (b1, . . . , bN2 ) and b� = (b
�
1, . . . , b�N2 ), such that b

�
i = bAi for i = 1, . . . , N2.

∙ Output: An element A� ∈ ⟨a1, . . . , aN1⟩ such that b
�
i = bA

�

i for i = 1, . . . , N2, or FAIL if the algorithm cannot

find such A�.
We will use the following notation: if c = (c1, . . . , ck), then its total length |c| is∑ki=1 |ci| (the length of ci, |ci|,

will be discussed in Section 4.2).

4.1.1 LBA with backtracking

Themost straight-forward variant of LBA (see Algorithm 1) conjugates b� directly with a±1i ∈ {a1, . . . , aN1 }. This
is termed “LBA with backtracking” by Myasnikov and Ushakov [17].

4.1.2 LBA with a dynamic set

Through analysis, Myasnikov and Ushakov [17] concluded that different types of peaks make LBA unsuccess-

ful. To overcome this, they suggested a new version of the algorithm, which they termed “LBAwith a dynamic

set”. Here (see Algorithm 2), if a generator ai causes a length reduction, only the conjugates and products in-
volving ai are added to the dynamic set. On the other hand, if no generator causes a length reduction, all

conjugates and two generators products are added. Their experimental results suggest that this algorithm

works especially well in the case of keys composed from long generators, but it is not worse than the naive

algorithm in the other cases. The algorithm presented here is a modified version of their algorithm, which we

implemented to attack the AAG protocol having the polycyclic group as its underlying platform.

4.1.3 Memory-LBA

Another variant, presented in [5], is also considered. In this variant (see Algorithm 3), we allocate an array S
of a fixed sizeM. The array S holdsM tuples every round. In every round, all elements of S are conjugated, but
only theM smallest conjugated tuples (with respect to their length) are inserted back into S. For the halting
condition, we use a predefined time-out.

4.1.4 LBA* (with memory)

We present a different variant of memory-LBA which is again based on a fixed-size array allocated for the

algorithm. Here (see Algorithm 4), S holds M tuples every round and is sorted by the first element (with

respect to the length of conjugated element) of each tuple. In every round, only the smallest element of S is
removed and conjugated by all the generators and their inverses. The conjugated tuples are inserted back into

S depending on whether there is a free place in S. If there is no more places in S, and the conjugated tuple is
smaller than the largest element in S, swap them and re-sort S. Since S is always kept sorted, any operation
to find the “smallest element” costs constant time. As in the previous variant, we use a predefined time-out

as the halting condition.
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Algorithm 1. LBA with backtracking

1: Initialize S = {(b�, idG)}.
2: while S ̸= 0 do
3: Choose (c, x) ∈ S such that |c| is minimal. Remove (c, x).
4: for i = 1, . . . , N1 and ù = ±1 do
5: Compute äi,ù = |c| − |ca

ù

i |.
6: if ca

ù

i = b then output inverse of xaùi and stop.
7: if äi,ù > 0 then ⊳ length has been decreased
8: Add (ca

ù

i , xaùi ) to S.
9: end if

10: end for

11: end while

12: Otherwise, output FAIL. ⊳ no more elements to conjugate

Algorithm 2. LBA with a dynamic set

1: Initialize S = {(b�, idG)}.
2: while S ̸= 0 do
3: Choose (c, x) ∈ S such that |c| is minimal. Remove (c, x).
4: for i = 1, . . . , N1 and ù = ±1 do
5: Compute äi,ù = |c| − |ca

ù

i |
6: end for

7: if äi,ù ≤ 0 for all i then
8: Define aext = a ∪ {xixjx−1i , xixj, x2i | xi, xj ∈ a±1, i ̸= j}.
9: else Define aext = a ∪ {xjxmx−1j , xmxj, xjxm, x2m | xj ∈ a±1, m ̸= j}
10: where xm is such that äm = max{äi,ù | i = 1, . . . , N1}.
11: end if

12: for all w ∈ aext do
13: Compute äw = |c| − |cw|.
14: end for

15: if cw = b then output inverse of xw and stop.
16: if äw > 0 then ⊳ length has been decreased
17: Add (cw, xw) to S.
18: end if

19: end while

20: Otherwise, output FAIL. ⊳ no more elements to conjugate

Algorithm 3.Memory-LBA

1: Initialize S = {(|b�|, b�, idG)}.
2: while not time-out do

3: for (|c|, c, x) ∈ S do
4: Remove (|c|, c, x) from S.
5: Compute ca

ù

i for all i ∈ {1 . . . N1} and ù ∈ {±1}.
6: if ca

ù

i = b then output inverse of xaùi and stop.
7: Save (|ca

ù

i |, ca
ù

i , xaùi ) in S�.
8: end for

9: After finished all conjugations, sort S� by the first element of every tuple.

10: Copy the smallestM elements into S and delete the rest of S�.
11: end while

12: Otherwise, output FAIL.
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Algorithm 4. LBA* (with memory)

1: Initialize S = {(|b�|, b�, idG)}.
2: while not time-out do

3: Choose (|c|, c, x) ∈ S such that |c| is minimal. Remove (|c|, c, x).
4: for i = 1, . . . , N1 and ù = ±1 do
5: Compute ca

ù

i .

6: if ca
ù

i = b then output inverse of xaùi and stop.
7: if Size(S) <M then

8: Add (!!!!!c
aù
i
!!!!! , c
aù
i , xaùi ) to S and sort S by first element of every tuple.

9: else ⊳ no more space in S

10: if
!!!!!c
aù
i
!!!!! is smaller than first element of all tuples in S then swap them

11: end if

12: end for

13: end while

14: Otherwise, output FAIL. ⊳ no more elements to conjugate

The name LBA* comes from the general idea of A* search algorithm [8], which uses a best-first search (as

we are doing here – taking the smallest element of S and conjugated it). We should note that a very similar

algorithm was independently introduced by Tsaban [21], and the difference between the two variants is that

our variant starts the search from b�, while Tsaban’s variant starts the search from both directions: b� and b�
(using the idea of “meet in the middle”).

4.2 The length function

In the implementation of the LBA, the choice of the length function is important (see [5, 9]). In our case,

the length of a word is chosen to be the sum of the absolute values of the exponents in its normal form. We

choose this function because the experimental results presented below show that it satisfies the requirement

ℓ(a−1ba) ≫ ℓ(b) (as needed for a length function used for LBA).
The first step of the experiments is the construction of a polycyclic group G of a given Hirsch length

ℎ(G), following the construction in Sections 3.2 and 5.1. Then, an element b of length between 10 and 13
is randomly chosen; we choose elements of this length for consistency with the LBA parameters. Another

random element a satisfying the same length interval is chosen and ba is computed, and finally, we compute

|ba| − |b|. We performed 100 tests for each group and the average difference is recorded.

Polynomial ℎ(G) Average difference

x2 − x − 1 3 79.92
x5 − x3 − 1 7 80.17
x11 − x3 − 1 16 44.93

As we can see, the average difference is large; specifically |ba| − |b| is significantly larger than |a|, indicat-
ing that the condition ℓ(a−1ba) ≫ ℓ(b) is indeed satisfied.

5 Experimental results

Our goal is to apply the LBA on the AAG protocol having the polycyclic group as its underlying platform. To

that end, we implemented the four variants of the LBA presented in Section 4 and performed experiments on

several polycyclic groups having different Hirsch lengths.
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5.1 Implementation details

Each polycyclic group is constructed by choosing an irreducible polynomial f overℤ, thus f defines an alge-
braic fieldF overℚ. LetOF be itsmaximal order andUF be its unit group, thusOF ⋊ UF is the desiredpolycyclic
group. This construction follows [10] and is a part of the Polycyclic package of GAP (see [4]).

A random element ai, for Alice’s public set, or bi, for Bob’s public set, is generated by taking either some

random generators of the group or their inverses and multiplying them together, while maintaining that the

length of the element is between a predefinedminimum andmaximum. By this method, we take control over

the length of the element.

Alice’s private key A is generated by taking a fixed number of random elements in a = (a1, . . . , aN1 ) and
multiplying them together. Here we forgo control over length to preserve interesting cases of conjugations

actually decreasing the length of bi, such as a commutator-type peak. Theway for choosing the keys is similar

to what has been used in [17]. This way also reflects the characterization of the polycyclic group.

5.2 Results

We performed several sets of tests, all of which were run on an Intel Core I7 quad-core 2.0GHz computer

with 12GB of RAM, running Ubuntu Version 12.04 with GAP Version 4.5 and 10GB of memory allocation. In

all these tests, the polycyclic group G having Hirsch length ℎ(G) is constructed by the above method using

polynomial f. The sizes of Alice’s and Bob’s public sets are bothN1 = N2 = 20.

5.2.1 The effect of the Hirsch length

In the first set of tests, the length of each randomelement ai or bi is in the interval [L1, L2] = [10, 13] andAlice’s
private key is the product of L = 5 random elements in Alice’s public set. The time for each batch of 100 tests
is recorded together with its success rate. In each case, a time-out of 60minutes is enforced for each test. The

following results are obtained by LBA with a dynamic set

Polynomial ℎ(G) Time Success rate of

LBA with a dynamic set

x2 − x − 1 3 0.20 hours 100%
x5 − x3 − 1 7 76.87 hours 35%
x7 − x3 − 1 10 94.43 hours 8%
x9 − 7x3 − 1 14 95.18 hours 5%
x11 − x3 − 1 16 95.05 hours 5%

From this table, we can see that with a small Hirsch length, the LBA cryptanalyzes the AAG protocol

easily with high success rate. However, as the Hirsch length is increased to 7, the success rate decreases. In

polycyclic groups with higher Hirsch lengths, we can see the effect of the time-out more prominently as the

total time did not increasemuchmore, but the success rate is dropped to 5%. Although a success rate of 5% is

not negligible, note that we use a very small value for L. Based on the current experimental results, we expect

that increasing the value of L will reduce the success rate to 0%.

5.2.2 The effect of the key length

In the second set of tests, we vary the number of elements L that compose Alice’s private key. Myasnikov

and Ushakov [17] suggested that the LBA with a dynamic set has a high success rate with long generators,

i.e. random elements have longer length [L1, L2]. Therefore, we also vary the length of random elements

according to the parameters in [17].
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The following results are obtained by LBA with a dynamic set, with a time-out of 30minutes:

Polynomial ℎ(G) [10, 13] [20, 23] [40, 43]

L = 10 L = 10 L = 20 L = 50

x7 − x3 − 1 10 2% 0% 0% 0%
x9 − 7x3 − 1 14 0% 0% 0% 0%
x11 − 3x3 − 1 17 0% 0% 0% 0%

The results of this set of tests indicate that just by increasing the number of generators of Alice’s private

key from 5 (as in the previous set of tests) to 10, the LBA already fails with polycyclic groups having Hirsch

length as small as 10.

5.2.3 Comparing the four variants of the LBA

In this paper, we compare the success rates of the four variants of the LBA for the first time on any platform.

For comparing the success rates of the four variants of the LBA, we purposely choose the value of the test

parameters to be very small in this set of tests. They are as follows:N1 = N2 = 20, [L1, L2] = [5, 8], L = 5, there
is a time-out of 30minutes and amemory of sizeM = 500. The polynomial used isf = x3 − x − 1, constructing
a polycyclic group of Hirsch length 4.

Algorithm Time Success rate

LBA with backtracking 0.57 hours 58%
LBA with a dynamic set 37.35 hours 95%
Memory-LBA (with memoryM = 500) 4.01 hours 92%
LBA* (with memoryM = 500) 32.00 hours 36%

Algorithm LBA with a dynamic set gives the best success rate but took much longer than Algorithm

Memory-LBA which gives a similar success rate in much shorter time. We conclude that with a sufficient size

of memory, Algorithm Memory-LBA is the best variant of the LBA.

5.2.4 Using the four variants of the LBA on our test parameters

In the fourth set of tests, we want to see the effect of the four different variants of the LBA presented in Sec-

tion 4.1 applied to our test parameters. Therefore, we keep the following parameters for all the algorithms:

the length of each random element is in the interval [L1, L2] = [10, 13], Alice’s private key is the product of 10
elements and the length of both public sets areN1 = N2 = 20. There is a time-out of 30minutes per test and

in the case of the twomemory variants of the LBA, AlgorithmMemory-LBA and Algorithm LBA*, a memory of

sizeM = 1000 is used. The same polycyclic group G having Hirsch length 14 constructed by the polynomial

x9 − 7x3 − 1 is used for all the variants of the LBA.

Algorithm Time Success rate

LBA with backtracking 48.68 hours 0%
LBA with a dynamic set 50.04 hours 0%
Memory-LBA (with memoryM = 1000) 49.35 hours 3%
LBA* (with memoryM = 1000) 50.00 hours 0%

As we can see, Memory-LBA algorithm has the best performance in this set of parameters, but even then,

it has only 3% success rate. To further test Memory-LBA algorithm, we run another set of tests where we

increase the length of random elements to [L1, L2] = [20, 23] and increase the number of factors of the private
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key to L = 20. To give it a chance of success, we increase the size of the memoryM to 40,000. The result is 0%
success rate.

5.2.5 The effect of increasing the time-out

Since it is possible that the time-out of 30minutes for each test is too short, we run another set of tests, where

the time-out is 4 hours for each test. Memory-LBA algorithm showed the most promise, so we chose it with

the following parameters: the length of random elements is in the interval [L1, L2] = [20, 23], the number of

factors of the private key is L = 20 and the size of the memoryM is 1000. The polynomial used is x9 − 7x3 − 1
producing a polycyclic group of Hirsch length 14. Due to the long time-out, we performed only 50 tests. We

still get 0% success rate.

Based on the above experimental results, we conclude that the LBA is insufficient for cryptanalyzing the

polycyclic groups of high enoughHirsch lengths. One can suggest the following parameters: ℎ(G) = 16, L = 20
and [L1, L2] = [20, 23] for achieving anAAGprotocol based on the polycyclic group,which the knownvariants
of the LBA have 0% success rate for cryptanalyzing this protocol.

5.2.6 Additional experimental results concerning LBA with a dynamic set algorithm

Here, we present some additional experimental results for LBAwith a dynamic set. The time-out for each test

is 1 hour. The polynomials used are f and ℎ(G) is the Hirsch length of the corresponding polycyclic group.

The sizes of Alice’s and Bob’s public sets areN1, N2 respectively. Each random element ai or bi has length in
[L1, L2] and Alice’s private key is the product of L = 5 random elements in Alice’s public set. The success rate

of a batch of 100 tests is recorded.

Polynomial ℎ(G) N1 = N2 = 5 N1 = N2 = 20

[5, 8] [15, 18] [10, 13]

x − 1 1 98% 98%
x2 − x − 1 3 98% 96% 100%
x3 − x − 1 4 95% 100%
x5 − x3 − 1 7 35%
x7 − x3 − 1 10 8%
x9 − 7x3 − 1 14 5%
x11 − x3 − 1 16 59% 53% 5%
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