
This is a repository copy of Refund Attacks on Bitcoin’s Payment Protocol.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/144143/

Version: Submitted Version

Conference or Workshop Item:
McCorry, Patrick, Shahandashti, Siamak F. orcid.org/0000-0002-5284-6847 and Hao,
Feng (2017) Refund Attacks on Bitcoin’s Payment Protocol. In: Financial Cryptography
and Data Security, 22-26 Feb 2016.

https://doi.org/10.1007/978-3-662-54970-4_34

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Refund attacks on Bitcoin’s Payment Protocol

Patrick McCorry, Siamak F. Shahandashti, Feng Hao

School of Computing Science, Newcastle University UK
(patrick.mccorry, siamak.shahandashti, feng.hao)@ncl.ac.uk

Abstract. BIP70 is a community-accepted Payment Protocol standard
that governs how merchants and customers perform payments in Bitcoin.
This standard is supported by most major wallets and the two dominant
Payment Processors: Coinbase and BitPay, who collectively provide the
infrastructure for accepting Bitcoin as a form of payment to more than
100,000 merchants. In this paper, we present new attacks on the Payment
Protocol, which affect all BIP70 merchants. The Silkroad Trader attack
highlights an authentication vulnerability in the Payment Protocol while
the Marketplace Trader attack exploits the refund policies of existing
Payment Processors. Both attacks have been experimentally verified on
real-life merchants using a modified Bitcoin wallet. The attacks have been
acknowledged by both Coinbase and Bitpay with temporary mitigation
measures put in place. However, to fully address the identified issues will
require revising the BIP70 standard. We present a concrete proposal to
revise BIP70 by providing the merchant with publicly verifiable evidence
to prevent both attacks.

1 Introduction

Bitcoin [20], the world’s first successful crypto-currency, is increasingly becom-
ing a popular method of payment for e-commerce due to low transaction fees
and the ease of use supplied by third party Payment Processors. BitPay and
Coinbase are currently the two dominant Payment Processors that handle Bit-
coin payments for more than 100,000 merchants. Their customers include Dell,
Microsoft, Overstock, Shopify, Paypal and CeX. This demonstrates that large
organisations are placing trust in Bitcoin as a viable form of payment. In fact,
Overstock claimed to have made $3 million worth of Bitcoin sales in 2014 [12].
These Payment Processors are attractive due to their ability to convert bitcoins
into fiat currency instantly which removes the risk involved in Bitcoin’s price
volatility on behalf of the merchant.

Both Payment Processors and all merchants are recommended to follow the
community accepted BIP70: Payment Protocol standard that was proposed by
Andresen and Hearn [5] to be used with Bitcoin. The motivation for this proto-
col is to reduce the complexity of Bitcoin payments as customers are no longer
required to handle Bitcoin addresses1. Instead, the customer can verify the mer-
chant’s identity using a human-readable name before authorising a payment.

1 A form of identity (26–35 alphanumeric characters) that is related to a public-private
key pair and is used to send/receive bitcoins.

At the time of a payment authorisation, the customer’s wallet will also send a
refund Bitcoin address to the merchant that should be used in the event of a
future refund.

The Payment Protocol provides two pieces of evidence that can be used in
case of a dispute with an arbitrator. The customer has evidence that they were
requested to authorise a payment if they keep a copy of the signed Payment Re-
quest message. This can be considered evidence as the customer could not have
produced the signature without the co-operation of the merchant. The second
piece of evidence for both the customer and the merchant is the payment trans-
action as the payment is signed by the customer and time-stamped on Bitcoin’s
Blockchain, that is stored by most users of the network. In this paper, we ar-
gue that a third piece of evidence is required to authenticate the refund address
sent from the customer as the protocol recommends the customer’s payment and
refund addresses not be the same. This flexibility leads to the following attacks:

– The Silkroad Trader attack relies on a vulnerability in the Payment Protocol
as the customer can authenticate that messages originate from the merchant,
but not vice-versa. This allows a customer to route payments to an illicit
trader via a merchant and then plausibly deny their own involvement.

– The Marketplace Trader attack focuses on the current refund policies of
Coinbase and BitPay who both accept the refund address over e-mail [26][9].
This allows a rogue trader to use the reputation of a trusted merchant to
entice customers to fall victim to a phishing-style attack.

Without the knowledge of our attacks, Schildbach asked the Bitcoin-Development
mailing list why the refund address in the Payment Protocol was currently un-
protected [24] and one of the original authors responded:

We talked about signing it with one of the keys that’s signing the Bit-
coin transaction as well. But it seems like a bit overkill. Usually it’ll
be submitted over HTTPS or a (secured!) Bluetooth channel though so
tampering with it should not be possible. - Mike Hearn [13]

As seen above, a solution may involve the customer endorsing a refund ad-
dress using one of the public keys that authorised the transaction. However, the
author stated this solution was an overkill as the refund address is currently pro-
tected in an HTTPS communication channel. We demonstrate that the HTTPS
communication channel cannot protect the refund address as it only provides
one-way authentication, the customer can authenticate messages originated from
the merchant, but not vice-versa. At first glance, the ‘overkill’ solution suggested
by Hearn could provide the evidence required for the merchant. Unfortunately,
this solution opens the door to another attack which allows a malicious co-signer
the sole authority to endorse the refund address used by the merchant and thus
steal the bitcoins of other co-signers. We will discuss this in detail in Section 5.

Contributions. Our contributions in this paper are summarised below:

– We present new attacks on Bitcoin’s Payment Protocol and the current prac-
tice of both the Payment Processors,

Transac'on	
 A	

Output	
 Input	

Input	

Transac'on	
 B	

Output	
 Input	

Output	

Transac'on	
 A’s	
 iden'fica'on	
 hash,	
 	

Transac'on	
 A’s	
 output	
 index,	
 	

Script	
 (signature	
 +	
 public	
 key)	

Script	
 (Bitcoin	
 address),	
 	

Number	
 of	
 bitcoins	

Fig. 1. Information stored in the inputs and outputs of Bitcoin transactions

– We present real-world experiments that demonstrate how merchants today
are vulnerable to both attacks using a modified Bitcoin wallet.

– We propose a solution that removes the incentive to perform both attacks
as the merchant is provided with publicly verifiable evidence whose origin
can be verified by an arbitrator.

2 Background

We discuss background information about Bitcoin before presenting the commu-
nity accepted Payment Protocol standard.

2.1 Bitcoin

We discuss three concepts that are needed to understand Bitcoin’s Payment
Protocol. These include Bitcoin addresses that act as a form of identification,
Transactions that are used to send/receive bitcoins and the Blockchain that
stores all transactions on the network.

A Bitcoin address is a form of identification in the Bitcoin community that
is used to receive bitcoins and authorise payments. An address can be described
as the hash of an EC (Elliptic Curve) public key and the accompanying private
key is used to produce ECDSA (Elliptic Curve Digital Signature Algorithm)
signatures to authorise payments.

A Transaction consists of one or more inputs and one or more outputs as
seen in Figure 1. Briefly, an input specifies the source of bitcoins being spent (the
previous transaction’s identification hash and an index to one of its output) and
is accompanied with signature(s) and public key(s) of the sender to authorise the
payment. An output specifies the new owner’s Bitcoin address and the number
of bitcoins being sent. Strictly, these inputs and outputs are controlled using
a Forth-like scripting language to dictate the conditions required to claim the
bitcoins. The dominant script today is the ‘pay-to-pubkey-hash’ which requires

a single signature from a Bitcoin address to authorise the payment. On the
other hand, the ‘pay-to-script-hash’ approach enables a variety of transaction
types and was introduced as a soft-fork in BIP16 [4]. In practice, this ‘pay-to-
script-hash’ script is widely used2 to enable escrow services and multi-signature
authorisation (k of n keys required to claim bitcoins).

The Blockchain is responsible for storing the entire network’s transaction
history with a relatively secure time-stamp [20]. This ledger is an append-only
data structure and is stored by most users of the network. To append new
transactions to this ledger requires a computationally difficult proof of work
puzzle to be solved. ‘Miners’ are responsible for computing this proof of work
and are rewarded in bitcoins for appending a new ‘block’ of transactions to the
ledger.

2.2 Payment Protocol

Andresen and Hearn proposed the Payment Protocol which has been accepted
as a standard in BIP70 [5] and is supported by several prominent wallets. The
goal of this protocol is described in the standard as the following:

“This BIP describes a protocol for communication between a merchant
and their customer, enabling both a better customer experience and better
security against man-in-the-middle attacks on the payment process.”

Communication between the customer and merchant is sent over HTTPS3

and importantly, the customer is also responsible for broadcasting the payment
transaction to the Bitcoin network. In this HTTPS setting, the merchant must
have an X.509 certificate issued by a trusted Certificate Authority. This is nec-
essary to let the customer authenticate messages from the merchant.

Figure 2 outlines the messages exchanged and actions performed for the
protocol. To initiate, the customer clicks the ‘Pay Now’ button on the merchant’s
website to generate a Bitcoin URI. This URI opens the customer’s Bitcoin wallet
and downloads the Payment Request message from the merchant’s website. The
wallet verifies the digital signature for the message using the public key found
in the merchant’s X.509 certificate (and checks the merchant’s certificate for
authenticity using the operating system’s list of root certificate authorities). A
human-readable name for the merchant4 and the number of requested bitcoins is
displayed on-screen and the customer must check this information before clicking
‘Send’. Upon authorisation, the wallet performs two actions:

1. The customer’s wallet sends one or more payment transactions to the Bitcoin
network.

2 Currently 8.9% of all bitcoins are stored using the ‘pay-to-script-hash’ approach [1].
3 The protocol specification allows messages to be sent over HTTP and for the mer-
chant not to have an X.509 certificate, but this is not considered secure.

4 URL from the the X.509 certificate’s ‘common name’ field.

Fig. 2. Overview of the Payment Protocol [5]

2. The Payment message which includes the payment transactions and refund
addresses is sent to the merchant’s website.

The merchant responds to the customer’s Payment message with a Payment
Acknowledgement message which notifies the customer’s wallet to display a con-
firmatory ‘Thank you’ message. Furthermore, once the merchant has detected
the payment transaction on the Bitcoin network, the customer’s web browser is
refreshed to display a confirmation page. For the rest of this paper, we focus on
messages sent over the HTTPS communication channel as seen in Figure 2 and
for simplicity we assume the customer only sends a single payment transaction.
The content for each message is the following:

– The Payment Request message contains a unique payment address M,
requested number of bitcoins B, creation time for request t1, expiry time for
request t2, a memo message mM, a payment URL uM and some merchant-
specific data to link any future payments zM. The contents of this message is
signed using the private key xskM that corresponds to the merchant’s X.509
certificate public key such that σM = SxskM

(M,B, t1, t2,mM, uM, zM) where
S is the signature algorithm.

– The Payment message contains a repeat of the merchant-specific data zM,
a payment transactions τC

5, a list of refund addresses (RC1
, ..., RCn

) and
the number of bitcoins B that should be refunded to each address such that
((RC1

,B1), ..., (RCn
,Bn)) and a memo from the customer mC. There is no

restriction to the number of refund addresses sent to the merchant and the

5 A single payment transaction τC is considered for simplicity. The protocol supports
one or more payment transactions, and our results still apply in this case.

Customer Merchant

Click ‘Pay Now’
Send Payment Request

M,B, t1, t2,mM, uM, zM, σM
←−−−−−−−−−−−−−−−−−−−−−

Authorise?
Send Payment

zM, τC, ((RC1
,BC1

), ..., (RCn
,BCn

)),mC

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Broadcast τC
Send Payment

Acknowledgement
Payment,m′

M
←−−−−−−−−−−

Notified

Fig. 3. Message contents for the Payment Protocol

customer is responsible for deciding how the bitcoins are refunded amongst
the refund addresses provided. Merchants expect one or more Payment mes-
sages until all requested bitcoins have been received.

– The Payment Acknowledgement message is a repeat of the customer’s
Payment message and includes an optional memo m′

M
from the merchant.

As seen in Figure 2, the refund address sent in the Payment message is not
digitally signed by the customer and its integrity relies on the HTTPS commu-
nication channel established between the customer and the merchant to prevent
man-in-the middle attacks. This lack of mutual authentication in the Payment
Protocol and the refund policy of both Payment Processors to accept refund
addresses over e-mail enables the attacks outlined in the next section.

3 Attacking the Payment Protocol

In this section, we outline attacks which are feasible due to an authentication
vulnerability in the Payment Protocol and the refund policy of both Payment
Processors. Fundamentally, our attacks rely on the merchant’s inability to dis-
tinguish if the refund address originated from the same pseudonymous customer
that authorised the payment. As well, these attacks are successful even when all
messages are sent over an HTTPS communication channel.

3.1 Silkroad Trader Attack

This attack allows a customer to route payments to an illicit trader via an
honest merchant and then plausibly deny their own involvement in the refund
transaction. The main idea behind this attack relies on the customer’s ability to
swap the refund address in their Payment message with a Bitcoin address under
the control of an illicit trader. Most importantly, the customer is not required
to endorse the illicit trader’s Bitcoin address with a digital signature.

Messages sent over an HTTPS communication channel
Silkroad Trader Customer Merchant

Send Payment
Request

T,B, t1T, t2T,
mT, uT, zT, σT
−−−−−−−−−−−→

Find Merchant
Click: Pay Now
−−−−−−−−−−−→

Send Payment
Request

M,B, t1M, t2M,

mM, uM, zM, σM
←−−−−−−−−−−−−

Authorise?
Broadcast τC
Send Payment

zM, τC, (T,B),mC

−−−−−−−−−−−−−→

Detect τC
Send Payment

Acknowledgement
Payment,m′

M
←−−−−−−−−−−

Cancel order
Refund request
−−−−−−−−−−−→

Broadcast τM
Detect τM Detect τM
Ships item

Fig. 4. Silkroad Trader attack allows a customer to route bitcoins to an illicit trader
via an honest merchant and then plausibly deny their involvement.

Figure 4 is an outline of the Silkroad Trader attack. It begins with the cus-
tomer visiting the website of an illicit trader. The customer downloads a Pay-
ment Request message for the desired ‘illicit goods’ they wish to purchase before
searching for a merchant who supports the Payment Protocol and is selling an
item approximately equal (or greater) in price. Once a merchant and item has
been found, the customer clicks ‘Pay now’ to start the payment process and
downloads a Payment Request message from the merchant’s website. To com-
mence the attack, the customer’s wallet authorises the payment transaction τC
and inserts the illicit trader’s payment address T in the Payment message as the
refund address (instead of their own refund address) and then sends the message
to the merchant.

The customer must request a refund to finish the attack once their Bitcoin
wallet has received the Payment Acknowledgement message alongside a confir-
mation e-mail from the merchant. Assuming the merchant follows the Payment
Protocol faithfully, the refunded bitcoins in τM are sent to the illicit trader’s
payment address T. Also, the customer can detect the refund transaction (mer-

chant sending bitcoins to the illicit trader) τM on the Bitcoin network before
contacting the illicit trader for an acknowledgement that the ‘illicit goods’ have
been dispatched.

Ideally, if this attack happened in practice, the merchant could provide the
Payment message as publicly verifiable evidence that the bitcoins were sent to
the refund address provided by the pseudonymous customer. Unfortunately, the
customer may plausibly deny having supplied the illicit trader’s payment address
due to their lack of endorsement, and hence claim that the merchant has forged
the message single-handedly.

3.2 Marketplace Trader attack

In practice, the policy of Coinbase and BitPay encourages customers to provide
refund addresses using an external method of communication such as e-mail
[9][26] which ignores the refund address sent in the Payment Protocol. This
deviation from the protocol is the basis of a new phishing style attack as a ‘rogue
trader’ can use the reputation of a ‘trusted’ merchant to encourage potential
customers to purchase an item from their website.

Figure 5 outlines this attack. It begins with the rogue trader establishing
a website that sells the latest products well below the market rate to attract
customers to their store. Most customers may be suspicious that the rogue trader
can offer these prices and may wisely think it is a scam. To encourage customers
to proceed with a purchase, the rogue trader can advertise that all payments are
sent to a trusted merchant such as CeX and there is little reason not to trust
them. When a customer proceeds to checkout on the rogue trader’s website and
clicks ‘Pay now’, the rogue trader’s website can automatically fetch a Payment
Request message from the trusted merchant’s website and forward this to the
customer. The customer’s wallet opens the genuine Payment Request message
and displays a human-readable name for the trusted merchant alongside the
number of requested bitcoins. This can boost the customer’s confidence that the
rogue trader is legitimate as the payment is sent to the ‘trusted’ merchant.

Unfortunately, the customer falls victim to the attack upon authorising the
payment as they are unwittingly paying for a purchase on behalf of the rogue
trader to the trusted merchant. The rogue trader detects the payment6 transac-
tion on the Bitcoin network and refreshes the victim’s web browser to display a
fake confirmation page (remember, the customer’s web browser is connected to
the rogue trader’s website). The rogue trader can proceed to cancel the order
and send a new refund address over e-mail to the trusted merchant. As the mer-
chant’s policy is to use an external method of communication to authenticate
customers and deviate from the Payment Protocol standard - then the refund
address sent by the rogue trader over e-mail should receive the bitcoins.

Furthermore, the customer cannot be aware this attack has occurred as they
lack enough information to identify the refund transaction on the Bitcoin net-
work. More importantly, this attack is deployable single-handedly by a rogue

6 Currently 50% of nodes on the network receive a new transaction within 5 seconds [2].

Messages sent over an HTTPS communication channel
Merchant Rogue Trader Customer

Send Payment
Request

M,B, t1M, t2M,

mM, uM, zM, σM
−−−−−−−−−−−−→

Forward
Payment Request

M,B, t1M, t2M,

mM, uM, zM, σM
−−−−−−−−−−−−→

Authorise?
Send Payment

zM, τC, ((RC1
,BC1

), ..., (RCn
,BCn

)),mC

←−−−

Broadcast τC
Detect τC Detect τC and

refresh customer’s
web browser

Fake
Confirmation Page
−−−−−−−−−−−−−−→

Send Payment
Acknowledgement

Payment,m′

M
−−−→

Cancel order
(T,B) sent
over e-mail
←−−−−−−−−

Send Refund
τM refund to T
−−−−−−−−−−−→

Fig. 5. Marketplace Trader attack involves a rogue trader using the reputation of a
‘trusted’ merchant to encourage customers to fall victim to a phishing-style attack.

trader and does not require the co-operation of a ‘trusted’ merchant. In fact, the
trusted merchant may only become aware of this scam if contacted in the future
by the customer.

4 Real-world experiments

Our experiments aim to verify the current practice of processing refunds by
merchants, and assess the feasibility of the attacks. We purchased items from
real-life merchants using a modified Bitcoin wallet before requesting for the order
to be cancelled and a refund processed. The attack is considered successful if the
refunded bitcoins are received by the adversary’s wallet. The merchants used
during these experiments are based in the UK and are supported by BitPay
or Coinbase. The bitcoins used for the experiments are owned by the authors

and no money is sent to any illicit trader. All experiments have been ethnically
approved by Newcastle University’s ethical committee.

4.1 Proof of concept wallet

We have developed a wallet which supports the Payment Protocol and automates
the Silkroad Trader attack. We explain how our wallet works step-by-step:

1. The customer inserts the illicit trader’s Payment Request URI into the wallet
which stores both the request and Bitcoin address for later use.

2. The customer finds an item equal (or greater) in value as the ‘illicit goods’
and inserts the merchant’s Payment Request URI into their wallet.

3. The wallet provides a list of refund addresses that can be chosen for the
Payment message that is sent to the merchant and the customer can choose
the illicit trader’s Bitcoin address.

4. Assuming a refund has been authorised by the merchant, the wallet can
detect the merchant’s refund transaction on the network and include it in a
Payment message that is sent to the illicit trader.

5. The wallet is notified by a Payment Acknowledgement message from the
illicit trader that the payment has been received.

4.2 Simulation of attacks

We discuss our experience carrying out a simulation of both attacks against real
world merchants using arbitrary identities (i.e., random name, e-mail address,
telephone number, delivery/billing addresses created for experiments only). Only
e-mail is used to communicate with each merchant. Our results for the Silkroad
Trader attack are as follows:

Cex refunded the bitcoins within 3 hours of cancelling the order and used
the refund address from the Payment Protocol.

Pimoroni Ltd refunded the bitcoins within a single business day and used
the refund address from the Payment Protocol.

Scan refunded the bitcoins after 26 days and used the refund address from
the Payment Protocol. The delay was due to Scan initially requesting us to
provide a refund address over e-mail, but we insisted using the one specified in
the original payment message.

Dell were unable to process the refund due to ‘technical difficulties’ and re-
quested our bank details. We informed them that we did not own a bank account
and Dell suggested sending the refund as a cheque. While not the experiment’s
aim, this potentially opens Dell as an exchange for laundering tainted bitcoins.

To simulate the Marketplace Trader attacks we sent the refund address in an
e-mail to the merchants. Assuming the merchants accepted e-mail as a good form
of authentication and ignored the refund address sent in the Payment Protocol,
then the phishing-style attack we described earlier could happen in practice. Our
results were the following:

Something Geeky refunded the bitcoins within a single business day to a
refund address sent over e-mail.

Refund	
 Transac-on	

Output	
 Input	

Payment	
 Transac-on	

Output	
 Input	

Input	

Mallory’s	
 	

public	
 key	
 and	

signature	

Alice’s	
 	

public	
 key	
 and	

signature	

Mallory’s	

refund	

address	

Fig. 6. The malicious co-signer attack allows a co-signer the sole authority to endorse
the refund address used by the merchant and thus steal the bitcoins of other co-signers

Girl meets dress refunded the bitcoins within 11 business days to a refund
address sent over e-mail. The delay was due to the merchant initially thinking
we paid using a bank transfer.

BitRoad refunded the bitcoins within a single business day to a refund
address sent over e-mail. In this experiment, we registered using a non-existing
e-mail address and requested for the order to be cancelled using a variant of
the e-mail address. This demonstrates that even the registered e-mail address to
initiate the purchase is not being used to authenticate the customer.

5 Solution

We propose providing the merchant with publicly verifiable evidence that can
cryptographically prove the refund address received during the protocol was
endorsed by the same pseudonymous customer who authorised the payment.

A solution proposed by Hearn [13] assumes the payment transaction is autho-
rised by a single customer and recommends endorsing the refund address using
any key which authorised the transaction. However, it is not valid to assume
that a transaction has been authorised by a single customer due to the nature
of a Bitcoin transaction. If the adversary is responsible for sending the Payment
message to the merchant, then they have the sole authority to endorse the refund
address used by the merchant as seen in Figure 6.

Our proposed solution prevents this attack by requiring each key that autho-
rised the transaction to also endorse its own refund address. In the event of a
refund the merchant sends the same (or less) number of bitcoins received7 from
each transaction input to an associated refund address.

5.1 Proposed Solution

To achieve a signature solution requires changes to each message sent as part
of the protocol. We outline these changes in Figure 7 and explain each message
separately before discussing their implications.

The Payment Request message considers the memo mM as a mandatory
parameter and should contain enough information for the customer(s) to be

7 A transaction input does not record the number of bitcoins ‘sent’ and instead refer-
ences an output from a previous transaction which specifies the bitcoins.

Messages sent over a secure HTTP communication channel
Customer Merchant

Click ‘Pay Now’
Send Payment

M,B, t1, t2,mM, uM, zM, σM
←−−−−−−−−−−−−−−−−−−−−−

Request

Send Payment
zM, τC, ((RC1

,BC1
,mC1

,σC1
), ..., (RCn

,BCn
,mCn

,σCn
))

−−→

where σCi
= SskCi

(πCi
, RCi

,BCi
,mCi

, PaymentRequest) Broadcast τC
Send Payment

Acknowledgement
Payment,m′

M,σ′

M
←−−−−−−−−−−−−−−

Notified where σ′

M = SxskM
(Payment,m′

M)

Fig. 7. A single customer sends a payment to the merchant

aware that this payment request is only for them, e.g. the registered e-mail
address, delivery address, product information, etc. This memo field should also
include customer-specified instructions to provide evidence that the merchant
followed any instructions provided by the customer. The payment address M
should be unique for each Payment Request and like before, there should be no
restriction on the number of times a customer can download the same Payment
Request to support paying from multiple devices or sharing with others.

The Payment message aims to associate each transaction input πCi
with a

refund address RCi
by endorsing the refund address using the same keys that au-

thorised the transaction input. We assume the customer is no longer responsible
for broadcasting the payment transaction τC to the Bitcoin network; instead,
the responsbility of broadcasting the payment transaction should fall on the
merchant (as recommended by one of the original authors of the Payment Pro-
tocol8). For simplicity, we describe our solution using a single Payment message
and payment transaction τC

9.
Each refund address endorsement signature is σCi

= SskCi
(πCi

, RCi
,BCi

,mCi

Payment Request), where S is the signature algorithm, skCi
is the private key

which corresponds to the key that authorised the transaction input, πCi
is a

concatenation of the elements that constitute the signed transaction input, RCi

is the refund address, BCi
is the number of bitcoins to refund, mCi

is an addi-
tional memo from the customer and Payment Request is the signed message from
the merchant. These parameters were chosen to clarify which transaction input
is associated with the endorsed refund address and to ensure this endorsement
is only valid for this Payment Request message. The concatenated information
πCi

is the data stored inside the transaction input and includes: the previous
transaction identification hash, an index for the output in the referenced trans-

8 https://groups.google.com/forum/#!msg/bitcoinj/ymFRupTSRJQ/zANj2RpslCcJ
9 Our solution continues to allow customers to send one or more Payment messages
to the merchant until all requested bitcoins have been received. Furthermore, these
messages can contain a list payment transactions.

action and the script which contains a signature to authorise the payment and
its corresponding public key.

A new refund policy for the merchant is required as each transaction input is
responsible for endorsing a refund address. We propose the bitcoins associated
with each refund address must be equal to (or less than) the number of bitcoins
sent in the respective transaction input. The merchant must also check that the
total number of bitcoins associated with all refund addresses in this message
is equal to (or less than) the number of bitcoins he received in the payment
transaction. These checks are necessary as the payment transaction can have
additional outputs for change and the merchant needs to ensure he does not
refund more bitcoins than he received from each transaction input. For example,
if the transaction has a single input of B5 (from the customer) and two outputs:
B4 (to the merchant) and B1 (to the customer as change), then the merchant
must ensure the customer is only refunded B4 (and not B5).

The message content sent to the merchant is outlined in Figure 7 and in-
cludes: the merchant-specific data zM, the complete transaction τC and a list
of refund addresses alongside their associated endorsement signatures and the
number of bitcoins to refund ((RC1

,BC1
,mC1

, σC1
), ..., (RCn

,BCn
,mCn

, σCn
)).

The Payment Acknowledgement message is signed using the merchant’s
X.509 private key and repeats the customer’s Payment message alongside an
additional memo m′

M
. The signature is σ′

M
= SxskM

(Payment,m′

M
) where S

is the signature algorithm and xskM is the private key that corresponds to the
merchant’s public key in their X.509 certificate.

We simplified the notation for σCi
to only show the case when the customer

endorses the ith refund address using a single signing key. However, if the multi-
signature approach is used to authorise the transaction input, then a threshold
of k signing keys should be used to endorse the respective refund address. Each
customer with control of 1 of k keys can independently authorise the transaction
input and the corresponding refund address. Both signatures which endorse the
refund address and authorise transaction input are sent to the other co-signers
to be included in the Payment message.

5.2 Discussion

Our solution provides a proof of endorsement as the refund address received
by the merchant is signed using the same set of keys used to authorise the
transaction. This evidence removes the customer’s plausible deniability for their
involvement in the Silkroad Trader attack and provides an incentive for the
merchant to use the refund address sent during the Payment Protocol which
prevents the Marketplace Trader attack. The merchant does not need to distin-
guish whether or not the payment has been split which preserves the customers
privacy and prevents the malicious co-signer attack as co-signers cannot endorse
the refund addresses of others. These additional signatures are handled by the
wallet on behalf of the user. Also, no connection to the peer to peer net-

work is required for the customer as the merchant is responsible for broadcasting
the payment transaction τC and this prepares the Payment Protocol to support

off-chain transactions such as the Lightning Network [21].

Furthermore, we explored other potential solutions such as requesting the
customer to provide a signature from the refund address at the time of payment
(instead of using the same keys that authorised the transaction) or including
secret data inside the merchant-specific data field zM. The former is not sat-
isfactory as proving ownership of the refund address does not necessarily link
the refund address to the same keys that authorised the transaction and the
latter remains vulnerable to the Marketplace Trader attack as the rogue trader
has access to the Payment Request message. As well, the attacks introduced in
this paper also stem from the fact that merchants have no community-accepted
refund protocol today. While researchers have proposed secure post-payment
communication protocols [15] in the past which could conceivably be used to
support arranging refund in a private and authenticated manner, this remains a
subject for further investigation in future work.

Payment Processors are expected to perform anti-money-laundering poli-
cies on behalf of their merchants [10]. The state of New York recently released
Bitlicense [25] to outline regulation for Bitcoin businesses. Our solution en-
hances the book-keeping required for this license as the signed Payment mes-
sage is cryptographic evidence that the pseudonymous customer has endorsed
the transaction-related information required for auditing by investigators. We
improve the mandatory customer receipt which is currently a static web-page or
an e-mail by using the Payment Acknowledgement message as a cryptographic
receipt as it is signed by the merchant’s X.509 private key. Similar cryptographic
evidence has been explored in the Bitcoin research community and two exam-
ples include: providing a warrant to hold a mixer accountable in the event of any
wrongdoing with Mixcoin/Blindcoin [8][27], and to compute a proof of solvency
[11] that demonstrates the business is financially in good standing to customers.

Clustering techniques have been demonstrated to link a group of Bitcoin ad-
dresses to a single pseudonymous user [6]. Meiklejohn et al. [17] identified that
374.49 BTC stolen from Betcoin in April 2012 and 4,588 BTC from the Bitcoinica
theft in May 2012 were sold at Bitcoin-24, Mt Gox, BTC-e, CampBX and Bit-
stamp. Also, Reid et al. [22] tracked 25k stolen bitcoins and deduced LulSec’s
involvement in the theft. These analysis techniques using the Blockchain are cur-
rently supporting criminal charges in the Silkroad Trial [3]. However, privacy-
enhancing protocols [14][23][16] and altcoins [18][19] are actively reducing the
effectiveness of these analysis techniques. Nevertheless, these techniques provide
a platform for the Silkroad Trader attack as independent observers may discover
merchants sending bitcoins to an illicit trader and then publicly release the ‘ev-
idence’. Our solution provides the merchant with publicly verifiable evidence to
demonstrate a customer’s deception.

5.3 Inherent issues due to Bitcoin

We outline four issues that are inherent due to Bitcoin that need to be considered
for our solution:

First, the proof of endorsement evidence can only authenticate pseudony-
mous customers as the Payment Protocol lacks the type of real-life identity
endorsement that comes with banks. While protecting an honest merchant, our

Step Description Time

Customer in the current protocol

1 Verify merchant’s certificate and chain of certificates authenticity 0.83 ms
2 Verify merchant’s signature on the Payment Request message 0.08 ms
3 Sign a single transaction input 0.08 ms
4a Fetch a list of previously generated refund addresses RC1

, ..., RCk
0.72 ms

4b Generate a new refund address RC from the wallet’s key pool 110.55 ms
5 Update wallet’s address book with the refund address RC 72.68 ms

Total without 4b: 74.39 ms
Total with 4b: 184.94 ms

Merchant in the current protocol

6 Verify the customer’s payment transaction 0.29 ms
Total: 0.29 ms

Additional changes proposed for the customer

7 Produce endorsement signature σC using the private key skC 0.11 ms
New Total without 4b: 74.49 ms
New Total with 4b: 185.04 ms

Additional changes proposed for the merchant

8 Fetch the transaction input’s referenced transaction output 0.01 ms
9 Verify the transaction input’s endorsement signature σC 0.13 ms

New Total: 0.43 ms
Table 1. Time performance for proposed changes to the Payment Protocol

solution cannot prevent a malicious merchant simulating both attacks and in-
sisting they were tricked.

Second, in a similar way to the original protocol, an observer of the Blockchain
may be able to link the payment and refund transactions using the denomina-
tions of bitcoins sent and received.

Third, customers can re-sign the transaction to change the identification
hash and broadcast it to the network. We recommend the merchant keeps a
copy of the payment transaction received in the Payment message as a re-signed
transaction cannot be used to verify the endorsement in the future.

Fourth, we assume merchants maintain the UTXO (Unspent Transaction
Output) set to participate in the Payment Protocol. Without this list of spend-
able outputs, the merchant cannot independently verify transactions or calculate
the number of bitcoins to refund for each transaction input. On the other hand,
customers do not require the UTXO set and can continue to use SPV (Simplified
Payment Verification) wallets for the Payment Protocol.

5.4 Solution performance

All tests are carried out on a MacBook Pro mid-2012 running OS X 10.9.1 with
2.3GHz Intel Core i7 and 16 GB DDR3 RAM. Time performance in Table 1 rep-
resents both the current Payment Protocol implementation and our proposed
modifications for the Bitcoin Core Client while utilising 1 core. Furthermore,
both signing operations in steps 3 and 8, and the verification operation in step
9, are performed using the Secp256k1 implementation which has recently re-

placed OpenSSL in Bitcoin Core [28]. Each step was executed 100 times and the
reported times represent the average.

Steps 1–5 represent the customer’s perspective in the current Payment Proto-
col’s implementation. The wallet verifies the merchant’s certificate authenticity
using the chain of certificates that lead to a trusted root authority and verifies
the merchant’s signature on the Payment Request message before authorising at
least one transaction input to authorise the payment. Then, the wallet fetches a
list of pre-generated refund addresses and Step 4b only occurs if this list is empty
as a new refund address must be generated. This refund address is associated
with the payment for future reference. These steps require 74.39 ms if the list
of pre-generated refund addresses is not empty, otherwise 184.94 ms is required.
Our proposed change in Step 7 takes 0.11 ms and requires the customer’s wallet
to sign an endorsement message for the refund address, obtaining the signature
σC. In total, the time required for the customer is 185.04 ms with Step 4b, and
74.49 ms without Step 4b.

Step 6 represents the merchant’s perspective in the current Payment Proto-
col’s implementation and requires 0.29 ms to check if the payment transaction
with a single input is valid. We propose in Steps 8–9 that the merchant fetches the
transaction output referenced in the payment transaction’s input to let the mer-
chant check the number of bitcoins associated with each refund address. Then,
the transaction input’s public key C is used to verify the endorsement signature.
These proposed changes require 0.14 ms, and in total the time required for the
merchant is 0.43 ms.

6 Payment Processors Response

We privately disclosed our attacks to the Payment Processors and received the
following response:

BitPay acknowledged “the researchers have done their homework” and that
“refunds are definitely a significant money laundering attack vector”. They are
now actively monitoring for refund activity on behalf of their merchants. Fur-
thermore, after we disclosed our results, BitPay released a new refund flow [7]
that recommends using the refund address provided in the Payment Protocol
rather than the one supplied by email.

Coinbase acknowledged the ‘Silkroad Trader’ attack as a good example of
an authentication vulnerability in the Payment Protocol. To prevent the Market-
place Trader attack, Coinbase no longer provides merchants the API to change
the refund address if it has been supplied by the Payment Protocol. Also, they
have updated their user documentation to discourage merchants sending the
refund using their own bitcoins to bypass the API changes.

Bitt is preparing to launch merchant services for the Caribbean and ac-
knowledged both attacks. They believe the endorsement evidence may support
Payment Processors become more ‘airtight’ for future regulation.

These temporary mitigation measures help to address theMarketplace Trader
attack, but not the Silkroad Trader attack. To fully address the latter, the BIP70
standard would need to be revised, as we have discussed in Section 5.

7 Conclusion

This paper presented two attacks that leverage an authentication vulnerability
in Bitcoin’s Payment Protocol and the refund policies of the two largest Pay-
ment Processors: Coinbase and BitPay. We experimentally demonstrated both
attacks on real-life merchants using a proof of concept wallet before proposing a
solution that provides the merchant with cryptographic evidence that the refund
address received during the Payment Protocol has been endorsed from the same
pseudonymous customer who authorised the transaction. Both Payment Proces-
sors have acknowledged our attacks and have implemented mitigation measures.

8 Acknowledgements

The second and third authors are supported by the European Research Council
(ERC) Starting Grant (No. 306994). We would like to thank the original au-
thors of the Payment Protocol; Mike Hearn for his constructive feedback on our
proposed solution and recommendation to include customer-specified instruc-
tions and Gavin Andresen for reviewing this paper and giving feedback. Also,
we thank the anonymous reviewers for their very good feedback.

References

1. Alcio. Monitor pay to script hash adoption. May 2015. http://p2sh.info/, Accessed
on 2015-05-21.

2. S. T. Ali, P. McCorry, P. H.-J. Lee, and F. Hao. Zombiecoin: Powering next-
generation botnets with bitcoin. In Bitcoin Workshop at Financial Cryptography
and Data Security. Springer, 2015.

3. I. Allison. Silk Road prosecutors talk about Bitcoin, Ripple and money laundering.
International Business Times, Aug. 2015. http://www.ibtimes.co.uk/silk-road-
prosecutors-talk-about-bitcoin-ripple-money-laundering-1517414.

4. G. Andresen. Pay to Script Hash. Bitcoin Improvement Process, 2012.
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki, Accessed on
2015-12-07.

5. G. Andresen and M. Hearn. BIP 70: Payment Protocol. Bitcoin Improve-
ment Process, July 2013. https://github.com/bitcoin/bips/blob/master/bip-
0070.mediawiki, Accessed on 2015-01-15.

6. E. Androulaki, G. Karame, M. Roeschlin, T. Scherer, and S. Capkun. Evaluating
user privacy in bitcoin. In Financial Cryptography and Data Security, pages 34–51.
Springer, 2013.

7. BitPay. New Invoice Adjustment and Refund Flow. Aug. 2015.
https://blog.bitpay.com/new-refund-flow/, Accessed on 2015-09-20.

8. J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W. Felten.
Mixcoin: Anonymity for bitcoin with accountable mixes. In Financial Cryptography
and Data Security, pages 486–504. Springer, 2014.

9. Coinbase. How do I do a customer refund with the API? May
2015. https://support.coinbase.com/customer/portal/articles/ 1521752-how-do-i-
do-a-customer-refund-with-the-api-, Accessed on 2015-05-15.

10. Fincen. Request for Administrative Ruling on the Application of Fin-
CENs Regulations to a Virtual Currency Payment System. 2015.
http://www.fincen.gov/news room/rp/rulings/pdf/FIN-2014-R012.pdf, Accessed
on 2015-09-07.

11. G. Dagher and B. Bunz and J. Bonneau and J. Clarke and D. Boneah. Provisions:
Privacy-preserving Proofs of Solvency for Bitcoin Exchanges. In The 22nd ACM
Conference on Computer and Communications Security. 2015.

12. B. Geiger. Overstock.com offers its staff the option of being paid in Bitcoin.
2015. http://fortune.com/2015/01/09/overstock-com-offers-its-staff-the-option-of-
being-paid-in-bitcoin/ Accessed on 2015-02-26.

13. M. Hearn. Re: [Bitcoin-development] BIP 70 refund field. Bitcoin-Development,
Mar. 2014. http://sourceforge.net/p/bitcoin/mailman/message/ 32157661/, Ac-
cessed on 2015-02-01.

14. G. Maxwell. CoinJoin: Bitcoin privacy for the real world. 2013.
https://bitcointalk.org/index.php?topic=279249, Accessed on 2015-05-20.

15. P. McCorry, S. F. Shahandashti, D. Clarke, and F. Hao. Authenticated key ex-
change over bitcoin. In Security Standardisation Research, pages 3–20. Springer,
2015.

16. S. Meiklejohn and C. Orlandi. Privacy-enhancing overlays in bitcoin. In Bitcoin
Workshop at Financial Cryptography and Data Security. Springer, 2015.

17. S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,
and S. Savage. A fistful of bitcoins: characterizing payments among men with no
names. In Proceedings of the 2013 conference on Internet measurement conference,
pages 127–140. ACM, 2013.

18. I. Miers, C. Garman, M. Green, and A. Rubin. Zerocoin: Anonymous Distributed
E-cash from Bitcoin. In Security and Privacy (SP), 2013 IEEE Symposium on,
pages 397–411. IEEE, 2013.

19. Monero. Monero is a secure, private, untraceable currency. It is open-source and
freely available to all. 2015. https://getmonero.org/home, Accessed on 2015-12-08.

20. S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. November 2008.
https://bitcoin.org/bitcoin.pdf, Accessed on 2015-01-01.

21. Y. Perez. Could the Bitcoin Lightning Network Solve Blockchain Scalabil-
ity? 2015. http://www.coindesk.com/could-the-bitcoin-lightning-network-solve-
blockchain-scalability/, Accessed on 2015-05-15.

22. F. Reid and M. Harrigan. An analysis of anonymity in the bitcoin system. In
Privacy, security, risk and trust (passat), 2011 IEEE Third International Confer-
ence on and 2011 IEEE third international conference on social computing , pages
1318–1326, Oct 2011.

23. T. Ruffing, P. Moreno-Sanchez, and A. Kate. Coinshuffle: Practical decentralized
coin mixing for bitcoin. In Computer Security-ESORICS 2014, pages 345–364.
Springer, 2014.

24. A. Schildbach. Re: [Bitcoin-development] BIP 70 refund field. Bitcoin-
Development, Mar. 2014. http://sourceforge.net/p/bitcoin/mailman/message/
32157651/, Acccessed on 2015-02-1.

25. N. Y. State. Chapter i regulations of the superintendent of financial services, part
200. virtual currencies. Department of finance services, Feb. 2015.

26. M. Tur. Can BitPay refund my order? 2015. https://support.bitpay.com/hc/en-
us/articles/203411523-Can-BitPay-refund-my-order-, Accessed on 2015-04-07.

27. L. Valenta and B. Rowan. Blindcoin: Blinded, accountable mixes for bitcoin. In
Bitcoin Workshop at Financial Cryptography and Data Security, 2015.

28. P. Wuille. Switch to libsecp256k1-based ECDSA validation. Bitcoin Github Reposi-
tory, Nov. 2015. https://github.com/bitcoin/bitcoin/pull/6954, Accessed on 2015-
12-31.

