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Abstract— Electrophysiological recordings from human 

muscles can serve as control signals for robotic rehabilitation 
devices. Given that many diseases affecting the human 
sensorimotor system are associated with abnormal patterns 
of muscle activation, such biofeedback can optimize human-
robot interaction and ultimately enhance motor recovery. To 
understand how mechanical constraints and forces imposed 
by a robot affect muscle synergies, we mapped the muscle 
activity of 7 major arm muscles in healthy individuals 
performing goal-directed discrete wrist movements 
constrained by a wrist robot. We tested 6 movement 
directions and 4 force conditions typically experienced during 
robotic rehabilitation. We analyzed electromyographic 
(EMG) signals using a space-by-time decomposition and we 
identified a set of spatial and temporal modules that 
compactly described the EMG activity and were robust 
across subjects. For each trial, coefficients expressing the 
strength of each combination of modules and representing the 
underlying muscle recruitment, allowed for a highly reliable 
decoding of all experimental conditions. The decomposition 
provides compact representations of the observable muscle 
activation constrained by a robotic device. Results indicate 
that a low-dimensional control scheme incorporating EMG 
biofeedback could be an effective add-on for robotic 
rehabilitative protocols seeking to improve impaired motor 
function in humans. 

 
Index Terms— Biofeedback, electromyography, muscle 

synergies, robotic rehabilitation. 

 

I. INTRODUCTION 

obotic rehabilitation has been proposed as a valuable 
tool to aid the recovery of motor function after 

neurological damage [1]. Several approaches on how best 
to control robotic assistive devices have been described. 
Traditionally, such assistance is based on the subject’s 
ability to voluntarily control movements [2]. More 
recently, biofeedback from the user has been included into 
rehabilitative protocols and in these cases 
electromyographic (EMG) signals were typically 
employed and displayed to the subject as visual feedback 
[3]. Previous research demonstrated the advantage of 
biofeedback in suppressing abnormal muscle activation 

                                                           

M.S. and S.P. are with the Neural Computation Laboratory, Istituto 
Italiano di Tecnologia, Rovereto, Italy (e-mails: 
marianna.semprini@iit.it, stefano.panzeri@iit.it). 

A.V.C. and V.S. are with the Robotics Brain and Cognitive Science 
Department, Istituto Italiano di Tecnologia, Genova, Italy (e-mails: 
anna.cuppone@iit.it, valentina.squeri@iit.it).  

and promoting motor recovery [4], and consequently the 
incorporation of biofeedback has been promoted for 
robotic rehabilitation [5-7]. However, when considering 
the interaction of a human patient with a rehabilitation 
robotic device, muscle activation patterns are going to be 
different from the activation patterns during functional and 
unconstrained movements. We have advocated that such 
differences should be taken into account when designing a 
rehabilitation protocol that includes the use of biofeedback 
[8]. Moreover, EMG signals of neurologic patients show a 
wide range of abnormalities due to the underlying 
pathophysiology and the larger between-patient variability 
inherent to disease states [9]. When designing a 
rehabilitation protocol, it is therefore necessary to take into 
account the differences in muscular activation due to the 
human-robot interaction together with the known 
electrophysiological abnormalities of the EMG signals 
associated with the disease.  

In order to use such biofeedback signals during robotic 
rehabilitation of patients that are known to have 
abnormalities in muscular activation, it is paramount to 
document in detail the patterns of EMGs in healthy 
subjects using robotic rehabilitation devices. Once the 
characteristic patterns of muscle activation imposed by a 
robotic rehabilitation device are known, these patterns can 
be used to produce standardized muscle innervation 
profiles for each task in which a patient shall engage as part 
of a rehabilitation protocol. That, in turn, will allow to 
quantify the degree of abnormality for each patient as the 
difference between a prototypical and a pathological EMG 
signal.  

Because such prototypical muscle activation profiles for 
robot-constrained interactions are largely not available, we 
here study muscular synergistic control during human-
robot interaction by mapping the EMG patterns of healthy 
adults interacting with a wrist robotic device. We tested 12 
healthy subjects performing goal-directed wrist 
movements using a 3 degrees-of-freedom (DoFs) wrist 
robot. Simultaneously, we recorded EMG activity of 7 
major arm and forearm muscles that rotate the wrist/hand 
complex in each of its three DoFs (flexion/extension, 
abduction/adduction, and supination/pronation). For each 
subject we extracted the underlying modules of muscle 
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activity using a novel space-by-time decomposition 
method [10] and then averaged them across subjects in 
order to obtain the typical temporal and spatial muscle 
activation patterns constrained by robotic devices. Finally, 
this analysis allowed representing each EMG signal as a 
set of coefficients in the modular space. 

II.  MATERIALS AND METHODS 

A. Participants 

12 right-handed subjects (age: 29 ± 4 years) with no 
known neuromuscular disorders and naïve to the tasks 
participated to the study. All participants gave their 
informed consent prior to testing. The study was approved 
by the local ethics committee, Comitato Etico of the ASL3 
of Genova (Italy). 

B. Experimental Setup 

The robotic device was a wrist robot and consisted of a 
completely back drivable manipulandum with 3 DoFs [11]. 
The robot was powered by 4 brushless motors that provide 
an accurate haptic rendering and compensate for the 
weight and inertia of the device. Displacement at each DoF 
was measured by means of a high-resolution incremental 
optical encoder (2048 bits/rev). The haptic robot could 
apply forces during task execution (running frequency 1 
kHz). The system was integrated with a virtual reality 
environment that runs at 60 Hz and represented the visual 

feedback to the subject during the motor tasks. A computer 
screen, positioned in front of the subject about 1 m away, 
displayed the current positions of hand and target. Fig.  1 
shows the experimental setup. 

The robot system communicated with the EMG 
acquisition system (EMG USB2 OT BIOelettronica 64 
channels) using an Analog and Digital I/O PCI card 
(Sensoray, 626) that allowed the robot to send a digital 
signal to the EMG system in such a way as to synchronize 
the two systems. During recording, the EMG acquisition 
system was battery-powered in order to avoid electrical-
supply noise. The raw EMG signals were sampled at 2048 
Hz sampling rate with selectable amplification gain and 
high-/low-pass bandwidths. For EMG signals acquisition 
during the task execution, we selected a gain of 2000. 
While collecting for maximum voluntary contraction 
(MVC) data the gain was set to 1000, in order to avoid 
signal saturation. 

C. Experimental Protocol 

Participants sat on a chair, placed their right arm on the 
support of the robot and grabbed the end effector (Fig.  1). 
Subjects performed a center-out task with their wrist in one 
of the three DoFs, Flexion-Extension (FE), Abduction-
Adduction (AA) and Pronation-Supination (PS). The task 
consisted of a sequence of 6 discrete movements: wrist 
flexion, extension, abduction, adduction, and forearm 
pronation and supination. Subjects were restricted to move 
only along one DoF per movement with the other DoFs 
being dynamically blocked by the robot. Each movement 
was repeated 5 times, without any time constraint. Subjects 
received visual feedback about the current wrist position. 
On a computer screen movement along FE was visualized 
as a linear movement of a cursor on the x-axis, AA on the 
y-axis and PS as a rotation around the z-axis; the target and 
end effector were displayed as round circles (2 cm 
diameter) in FE and AA movements and as two vertical 
bars (2x5 cm2) of different colors during PS movements. 
The reaching task was executed in a workspace considering 
the 75% of the joint maximum active range of motion 
(RoM) in heathy adults, which we approximated to be 
respectively equal to ±70° for flexion and extension, ±20° 
for abduction and adduction and ±80° for pronation and 
supination [12]. The 0° corresponded to the central position 
where the robot axes are aligned with the wrist rotational 
axis.  

The above protocol was repeated under 4 different task 
conditions, differing on the force level applied by the 
robot: Null Field, Resistive Field (field of constant force 
opposite to the target direction), Assistive Field (field of 
constant force in target direction) and Passive Field (the 
robot moves the target end effector while subject closed 
the eyes). In Resistive and Assistive Field condition the 
amount of constant force was the same but the direction was 
opposite (against target movement in the Resistive Field 
condition) and it corresponded to the 70% of a maximum 
torque used in the Passive condition. Equation (1) describes 
the applied force: 繋 噺 罰 ど┻ば 茅 倦 茅 穴 茅 岫隙帳帳 伐 隙脹弔岻】隙帳帳 伐 隙脹弔】  (1) 

, where 倦 = 0.3 N·m/rad in FE and PS movements and 
0.6 N·m/rad in AA movements), 穴 = 0.05 rad, 隙帳帳 is the 
position of the end effector and  隙脹弔 the position of the 
target.  

In the Passive Field condition, we used an elastic force 
proportional to the distance between the end effector and a 

Fig.  1: Experimental setup. (a) Participants placed the wrist on the 
wrist robot and grasped the robot handle. Surface EMG electrodes 
were placed on the arm and forearm. A computer screen displayed 
the target and the wrist end effector position. (b) Robot allowed 
movements along three different DoFs: flexion/extension (top), 
abduction/adduction (middle) and pronation/supination (bottom). 
Fle = flexion, Ext = extension, Abd = abduction, Add = adduction, 
Sup = supination, Pro = pronation. (c) Typical recording of one 
single subject during extension: left panel shows 1 DoF target 
trajectory, middle panel target velocity and right panel EMG 
activation of Flexor Carpi Ulnaris muscle aligned in time; red 
dashed lines indicate target onset. 

Fle/Ext

Sup/Pro

Abd/Add

(a) (b)

(c)
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moving target from the initial position and the final 
position, expressed by equation (2):  繋 噺 倦 岫隙帳帳 伐 隙脹弔岻 (2) 

, where 倦 = 0.3 N·m/rad. In this case, the target moved 
along a minimum jerk trajectory.  

EMG surface electrodes (Ag/AgCl with a diameter of 26 
mm) were placed on the arm and forearm with a center 
distance less than 2 cm to record the activity of 7 muscles 
involved in wrist movement. EMG recording was 
performed in single differential mode. Correct electrode 
placement was verified by observing the activation of each 
muscle during specific movements known to involve it 
[12]. During this procedure, EMG signals were monitored 
in order to optimize recording quality and minimize cross-
talk from adjacent muscles during isometric contractions. 
TABLE I lists the muscles we recorded from and the 
movement involving them. 

D.  Extraction of Synergistic EMG Activation 
Patterns 

To extract invariant activation patterns (or “modules”) 
of muscle activity from the EMG recordings we used a 
Non-Negative Matrix Factorization (NMF) method 
factorizable in space and time, which we call the space-by-
time NMF decomposition [13, 14]. This method 
decomposes the original dataset into 軽 non-negative 
spatial modules (describing the stereotypical patterns of 
simultaneous EMG activations of groups of muscles) and 鶏 non-negative temporal modules (describing the 
stereotypical patterns of activation over time of these 
groups of muscles) such that single trial EMG recordings 
can be represented as a set of 軽 抜 鶏 non-negative 
activation coefficients describing the strength of 
recruitment of each of these modules in each single trial. 
The decomposition is defined by the following equation:  仕史(t) = 布 布 拳沈岫建岻朝

珍退怠 欠沈珍鎚 始斬牒
沈退怠 髪 堅結嫌件穴憲欠健  

3) 

, where 仕史(t) denote the EMG dataset, な 伴 嫌 伴 鯨 is the 
number of samples (鯨 being the total number of samples), な 伴 建 伴 劇 is the number of discrete time frames (劇 = 1000 
in our implementation), 拳沈岫建岻 are the temporal modules, 始斬 are the spatial modules,  欠沈珍  are the activation 
coefficients and 堅結嫌件穴憲欠健 indicates the reconstruction 
error. The decomposition algorithm uses an iterative 
procedure based on multiplicative update rules that 
minimize the total reconstruction error, therefore the 
algorithm is guaranteed to converge to a local minimum. 
The optimization problem is not convex, so the local 

minimum is not necessarily global. This also implies that 
the modules found are not unique. To address this, here for 
each module extraction we ran the algorithm 10 times and 
chose the decomposition that gave the lowest 
reconstruction error. Empirically, however, the modules 
were almost identical from one algorithm run to the next, 
which suggests that even one algorithm run would be 
sufficient to yield the reported results.  

Before applying the space-by-time NMF 
decomposition, EMG data were preprocessed as follows. 
EMG signals were filtered offline with a 6th order 
Butterworth band pass filter between 30 and 400 Hz, 
subsequently rectified and smoothed with a moving 
average filter using a window length of 150 ms. The 
filtered EMG was scaled by the relative maximum 
voluntary contraction (MVC) value, enabling inter-
subjects comparison of EMG data. We considered the 
portion of signal from target onset to target reach and 
resampled each signal using a linear interpolation for 劇 = 
1000 frames. 

1) Assessment of Extracted Modular 
Decompositions 

To evaluate the quality of the resulting modular 
decompositions, we quantified a) how well they 
approximated the original EMG recordings by computing 
the Variance Accounted For and b) how well they 
discriminated the performed motor tasks in single trials by 
computing single-trial task decoding performance [10, 
15]. 

The modular decomposition should approximate the 
recorded EMG signals as accurately as possible. To 
quantify this, we computed the Variance Accounted For 
(VAF) which evaluates the quality of reconstruction of the 
original EMG data from the modular decomposition. Here, 
following [16], VAF was defined as the total 
approximation error divided by the total variance of the 
dataset. The VAF indicates how well the EMG data can be 
reconstructed by combining modules and activation 
coefficients, e.g. if VAF = 0.9 then 90% of the original 
EMG data are reconstructed. 

Importantly, we aimed to identify the modular 
decomposition that explained the highest proportion of 
task-related variability in muscle activity.  To quantify this, 
we computed the single-trial task decoding metric.  We 
used as decoding parameters the activation coefficients of 
the modular decomposition, which encode the level of 
activation of spatial and temporal modules in individual 
trials. Specifically, task decoding was performed using the 
activation coefficients 欠沈珍鎚  as input to a linear discriminant 
algorithm (LDA) combined with a leave-one-out cross-
validation procedure [13]. Decoding performance (DEC) 
was measured as the percentage of correctly decoded trials 
(% correct). Given that 6 movement directions were tested 
under 4 different force conditions, the total number of 
experimental conditions was 計 噺 は 抜 ね 噺 にね and the 
chance level of the decoder was な 計エ 噺 ど┻どねな. Hence, a 
decoding performance value greater than 0.041 indicated 
that the decoder reliably discriminated across conditions. 
We assessed the statistical significance of decoding 
performance using the Bernoulli test [17]. In brief, 

TABLE I 
RECORDED MUSCLES AND THEIR ACTION. 

Muscle Action 
Flexor Carpi Radialis (FCR) Wrist flexion, abduction 
Flexor Carpi Ulnaris (FCU) Wrist flexion, adduction 
Extensor Carpi Radialis (ECR) Wrist extension, abduction 
Extensor Carpi Ulnaris (ECU) Wrist extension, adduction 
Biceps Brachii (BIC) Shoulder and elbow flexion 
Brachioradialis (BR) Elbow flexion, forearm supination 

or pronation 
Pronator Teres (PT) Forearm pronation 

List of the recorded muscles and the associated joint movement 
during concentric muscle contraction.  
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assuming each stimulus as a sequence of Bernoulli trials 
(independent trials with two possible outcomes: success 
and failure), the probability of successes follows the 
Binomial distribution. Hence, the p-value of K successes 
is computed by adding the probabilities of getting K or 
more successes by chance.  

2) Selecting the Number of Modules in the space-by-
time NMF decomposition 

Given that the number of spatial and temporal modules 
was not known a priori, we iteratively ran the space-by-
time decomposition method assuming all possible 
combinations of 鶏 temporal and 軽 spatial modules, 
with 軽┸ 鶏 噺 な 閥 ば. We chose 7 as the maximum number 
of modules given that we recorded from 7 muscles (7 
temporal and 7 spatial modules would potentially capture 
the activation pattern of each individual muscle).  

In order to establish the minimal number of modules 
capturing all the task-discriminating variability of the 
dataset, we computed a joint metric incorporating both 
VAF and decoding performance (撃経警 噺 経継系 抜 撃畦繋, ど 判 撃経警 判 な). 撃経警 is a measure of the goodness of an 
EMG decomposition that takes into account both the data 
approximation (VAF) and the task discrimination power 
(percent correct decoding) of the decomposition [18]. We 
computed 撃経警 as a function of the number of temporal 
and spatial modules (鶏 and 軽 respectively) and averaged 
it across subjects. We then chose the values of 鶏 and 軽 that 
maximized 撃経警. This selection ensured the inclusion of 
all modules that accounted for task differences and the 
exclusion of modules that captured task-irrelevant (noise) 
variations. 

To compare the extracted modules with the ones 
obtained using other modularity models, we also 
implemented separate spatial decompositions [19-21] and 
temporal decompositions [22, 23]. We then calculated, for 
each subject, Pearson correlation between these modules 
and those obtained with the space-by-time NMF 
decomposition. 

3) Module Clustering and Calculation of Mean 
Activation Coefficients 

We then aimed to identify a set of modules (along with 
the corresponding activation coefficients) that describes 
muscle activations across all subjects. This could serve as 
a typical representation of the muscle activity of healthy 
participants for this experimental protocol. We therefore 
performed a clustering analysis and grouped modules from 
different subjects using a measure of similarity based on 
their correlation coefficients. We implemented the 
following procedure: 1) we sorted the modules of each 
subject based on which muscle they activated most 
(muscles were ordered as in Fig.  5); 2) we calculated the 
average modules across subjects and used these as 
reference; 3) we ordered the modules of every subject 
depending on their similarity (correlation coefficient) with 
the reference modules; 4) we clustered together modules 
from different subjects that had the highest similarity; 5) 
we averaged the modules within each cluster and we 
obtained the 敬速 博博博博 mean spatial and w溺博博博岫t岻 temporal modules; 
6) we recomputed the activation coefficients for each 
subject with respect to 敬速 博博博博 and w溺博博博岫t岻 modules, according 
to [10].  

 

Fig.  3: Decoding performance as a function of number of modules. 
Shown is the fraction of correctly discriminated trials for each 
combination of temporal (P) and spatial (N) modules. Decoding 
performances > 0.41 were obtained for module combinations having 
N ≥ 3 and 2 ≤ P ≤ 5.  

 

Fig.  2: Variance Accounted For as a function of the number of spatial 
and temporal modules. VAF expresses the goodness of EMG 
reconstruction from modules and activation coefficients. VAF = 1 
means that the data are perfectly reconstructed. Note that a 
combination of 3 temporal and 4 spatial modules accounts for 93% of 
the EMG data variance. 

 

Fig.  4: Averaged temporal modules. Each subplot represents the mean 
(black trace) and standard deviation (grey shaded area) across subjects 
of temporal modules profile. Note that the three temporal modules 
describe muscular activation best at three different times during the 
movement: first activation of agonist muscles, activation of antagonist 
muscles and second activation of agonist muscles. 
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III.  RESULTS 

A. Temporal and Spatial Modules Underlying 
Recorded Muscle Activity  

To identify the spatial and temporal modules of muscle 
activity underlying performance of wrist movements using 
a robotic device, we applied the space-by-time NMF 
decomposition to the EMG recordings of each of the 12 
subjects we tested. We first aimed to establish the numbers 
of temporal and spatial modules (P and N respectively) that 
described best the recorded muscle activity across subjects. 
To this end, we varied P and N (both from 1 to 7) and 
computed VAF and decoding performance of the modular 
decompositions with these numbers of 
modules.  

We found that the average VAF 
across subjects showed a steady 
increase when P and N increased (Fig. 
2). Regarding decoding performance 
(Fig. 3), 鶏 半 ぬ temporal modules 
maximized average percent correct 
decoding for any choice of 軽 and the 
decoding curve saturated at 軽 噺 ぬ【ね. 
As a result, 撃経警 was maximized for 鶏 噺 ぬ, 軽 噺 ね, indicating that 3 
temporal and 4 spatial modules 
accounted for all the task-related 
information of the muscle activity and 
any additional modules captured data-
irrelevant variability, i.e. noise, in the 
EMG signal [13]. Hence, we selected 3 
temporal and 4 spatial modules to 
describe muscle activity of all subjects 
for this set of tasks. The resulting 
decompositions yielded 46% correct 
decoding (significantly above chance, 
p<10-4, chance level is 0.04) and 
VAF=0.93 on average across subjects. 

Fig.  4 shows that the three temporal 
modules of the decomposition captured 

the tri-phasic pattern of muscular activation that is known 
to occur for goal-directed, discrete reaching or pointing 
movements [24-26]: the initial activation of agonist 
muscles, the following activation of antagonists to break 
the movement and the second agonist burst to terminate the 
movement at the desired target.  

 Fig.  5 shows the extracted spatial modules averaged 
across subjects. The first synergy describes the 
simultaneous activation of Flexor Carpi Ulnaris and 
Extensor Carpi Ulnaris (mainly found in adduction). The 
second synergy describes the co-activation of extensor 
muscles and Brachioradialis (mainly found in abduction), 
the third synergy the co-activation of extensor muscles 
(mainly found during extension and supination but present 
also in all other movements) and fourth synergy the co-
activation of flexor muscles with Pronator Teres (mainly 
found in flexion and pronation). Biceps Brachii was almost 
never active.  

This result can be explained as a result of the lower 
muscle activity required in the Passive condition which 
results in smaller muscle activation differences across 
movement directions. 

B. Comparison with other Module Extraction 
Techniques 

To validate the robustness of the identified modules 
irrespective of the extraction method, we separately 
computed P=3 temporal modules using the temporal NMF 
decomposition and N=4 spatial modules using the spatial 
NMF decomposition. We then calculated, for each subject, 
Pearson correlation between these modules and those 
obtained with the space-by-time NMF decomposition. We 
found that modules extracted with separate temporal and 
spatial decompositions were highly similar to those 
obtained simultaneously (0.87±0.15 and 0.73±0.11 

TABLE II  
CORRELATION BETWEEN INDIVIDUAL SUBJECT AND AVERAGED MODULES 

 Temporal Spatial 

Subject 
Number 

P1 P2 P3 N1 N2 N3 N4 

1 0.9968* 0.9864* 0.9975* 0.8130* 0.8965* 0.9872* 0.4383 

2 0.9672* 0.9932* 0.9858* 0.2276 -0.0052 0.1645 0.9654* 

3 0.9781* 0.9658* 0.9924* 0.9305* 0.8180* 0.9889* 0.9206* 

4 0.9830* 0.9087* 0.9650* 0.9562* 0.8979* 0.9494* 0.9001* 

5 0.9970* 0.9634* 0.9942* 0.8220* 0.8498* 0.8775* 0.9584* 

6 0.9978* 0.8583* 0.9954* 0.4405 0.9677* 0.7140* 0.1211 

7 0.9927* 0.9975* 0.9951* 0.0159 0.9779* 0.9573* 0.7328 

8 0.9891* 0.9377* 0.9839* 0.8105* 0.9801* 0.9409* 0.9326* 

9 0.9699* 0.9554* 0.9870* 0.3381 0.1308 0.1635 0.7602* 

10 0.9561* 0.9417* 0.9754* -0.2859 0.7891* 0.6357 0.7896 

11 0.9875* 0.9812* 0.9955* 0.5116 0.7688* 0.9534* 0.1259 

12 0.9950* 0.9746* 0.9971* 0.5977 0.9433* 0.953* 0.8966* 

The table shows the value of the correlation coefficient between each module of single subjects and 
the corresponding averaged module. Each table element reports the correlation coefficients of a given 
module (column) of one given subject (row). In the few cases where the correlation was poor (e.g. 
subjects 2 and 9) the optimal number of modules was smaller than the chosen one and therefore some 
of the reference modules were no represented but instead more copies of the same modules were 
extracted. * indicates significant correlations, p-value < 0.05. 

 

Fig.  5: Mean spatial modules across subjects. Each bar represents the 
mean muscular activation found in each spatial synergy. Error bars 
represent one standard deviation. FCR = Flexor Carpi Radialis, FCU 
= Flexor Carpi Ulnaris, ECR = Extensor Carpi Radialis, ECU = 
Extensor Carpi Ulnaris, BIC = Biceps Brachii, BR = Brachioradialis, 
PT = Pronator Teres. 
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correlation for the temporal and spatial modules 
respectively, p<0.01). This similarity highlights the 
robustness of the modules reported in this study, and shows 
the power of the space-by-time NMF decomposition to 
extract - simultaneously rather than separately - robust 
features of EMG that describe both their spatial structure 
and their dynamics.  

C. Correlation between Modules 

To investigate whether the averaged modules were 
representative of each subject’s muscle activation patterns, 
we computed correlation between a subject’s modules and 
the corresponding averaged modules. The analysis 
revealed high correlation for the temporal modules and 
spatial modules. The individual correlations for each 
subject are shown in TABLE II . Mean correlation 
coefficient of the temporal components were r = 0.984 ± 
0.013 for P1, r = 0.955 ± 0.039 for P2 and r = 0.988 ± 0.010 
for P3 (significant in all cases, p < 10-4). For the spatial 
modules correlations were r = 0.514 ± 0.387 for N1, r = 
0.751 ± 0.330 for N2, r = 0.773 ± 0.305 for N3 and r = 0.711 
± 0.310 for N4. The correlation coefficients of the spatial 
modules for individual subjects (4x12 = 48 in total) ranged 
above 0.8 in 28 cases with p < 0.05, between 0.7 and 0.8 in 
6 cases with p < 0.05 in 4 out of 6 cases, between 0.4 and 
0.7 in 5 cases, and below 0.4 in the remaining 9 cases. 
Correlations below 0.7 were not significant. 

D. Activation coefficients  

The activation coefficients quantify the strength by 
which temporal and spatial modules are recruited in each 
trial in order to perform the task. Fig.  6(a) shows the 
average across repetitions of the same trials and across 
subjects of the activation coefficients calculated from the 
averaged modules. The activation patterns permit to 
discriminate across movement direction and interestingly 
they create complementary configurations for opposite 
movements along the same DoF. Extensor muscles 
(activated by spatial modules N2 and N3) are recruited in 

almost every movement and this is consistent 
with our previous finding that within the wrist 
robot the wrist is extended with respect to the 
neutral position [8] therefore activation of 
extensor muscles is present also in the 
beginning of flexion. Flexion (Fig.  6(a), first 
column) is characterized mainly by an 
activation of the second and third spatial 
modules (coefficients a12 and a13) 
corresponding to the co-activation of extensor 
muscles, and it is followed, especially in the 
Resistive Field condition, by a second 
activation of the fourth spatial module 
(coefficients a24 and a34) corresponding to the 
co-activation of Flexor Carpi Radialis and 
Pronator Teres. Extension (Fig.  6(a), second 
column) reveals a strong activation of the 
extensor muscles, recruited by the second and 
third spatial modules (mainly coefficients a12, 
a23 and a33). Abduction (Fig.  6(a), third 
column) is produced by Flexor Carpi Radialis 
and Extensor Carpi Radialis and indeed are 
recruited the second and third spatial modules 
involving these muscles (coefficients a13, a22 
and a32). Conversely adduction (Fig.  6(a), 

fourth column) is produced by Flexor Carpi Ulnaris and 
Extensor Carpi Ulnaris and indeed starts with an 
activation of the third spatial module (activation of 
Extensor Carpi Ulnaris, coefficient a13) and is followed by 
an activation of the first spatial modules (activation of 
Flexor Carpi Ulnaris, coefficient a21 and a31). Supination 
(Fig.  6(a), fifth column) involves Biceps Brachii and 
Brachioradialis and therefore second and third spatial 
modules are activated by the first and third temporal 
modules (coefficients a12, a13, a32, and a33). Finally 
pronation (Fig.  6(a), sixth column) begins with activation 
of the extensor muscles (a12 and a13) and terminates with 
Pronator Teres (coefficients a34).   

The level of muscular activation is naturally a function of 
the forces imposed by the robot. The coefficients of the 
space-by-time NMF decomposition captured this 
physiological feature, i.e. showed an increase of activation 
from the Passive to the Resistive Field condition (Fig.  

 
Fig.  6: Activation coefficients averaged across subjects. (a) Each panel shows the level of 
activation of the averaged coefficients in different task conditions and for different 
movements and is represented as a matrix of P 噺 ぬ rows and N 噺 ね columns, corresponding 
to the modules each coefficients is related to. Each movement (column panels) is 
characterized by the activation of a different set of coefficients that recruit the modules they 
are referred to. Coefficients also increase their value as a function of task condition 
(horizontal panels). (b) Amount of force field applied to each task condition. (c) Scheme to 
easily address the coefficients of (a). Fle = flexion, Ext = extension, Abd = abduction, Add 
= adduction, Sup = supination, Pro = pronation. 

a12a11 a14a13

a22a21 a24a23

a32a31 a34a33

(a) (c)

(b)
Coefficients

 
Fig.  7: Activation coefficients as a function of force modality. 
Shown are the mean and standard error activation value of 
coefficient a34. Colors represent the different wrist movements. Fle 
= flexion, Ext = extension, Abd = abduction, Add = adduction, Sup 
= supination, Pro = pronation. 
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6(a)). Fig. 7 shows as an example, the average activation 
of coefficient a34 plotted as a function of force level, a34 
bonded the third temporal module with the fourth spatial 
module, corresponding to the co-activation of Flexor  
Carpi Radialis and Pronator Teres. These muscles are 
involved in flexion and pronation and indeed, when these 
movements were performed, the coefficient increased with 
the level of force. When other movements were performed, 
a34 activation was very low. 

Finally, to quantify the dependence of the activation 
coefficients on movement direction and force level, we 
decoded these two experimental variables separately. We 
found that both variables were discriminated significantly 
above chance level (p < 10-4) which indicates that the 
activation coefficients captured reliably the dependence of 
muscle activity on both experimental factors. Percent 
correct decoding of force conditions (i.e. considering only 
trials of one given movement with different force 
conditions) ranged between 50%-70% for the different 
movement directions (decoding values: 57% ± 9% for 
flexion; 50% ± 14% for extension; 59% ± 22% for 
abduction; 63% ±16% for adduction; 70% ± 18% for 
supination and 59% ± 16% for pronation). Percent correct 
decoding of movement directions ranged between 39%-
70% for the different force level conditions (decoding 
values: 0.39 ± 0.16 for Passive motion; 0.63 ± 0.09 for 
Assistive Field; 0.54 ± 0.12 for Null Field and 0.70 ± 0. 17 
for Resistive Field). Movement decoding in the Passive 
condition was significantly lower than for the other force 
conditions (ANOVA test, p < 10-4 with Assistive and 
Resistive condition, p < 0.05 with Null condition) probably 
because of the lower muscle activity required in the 
Passive condition, which results in smaller muscle 
activation differences across movement directions. 

IV.  DISCUSSION 

This study examined the human muscle activation 
patterns underlying wrist movements under different force 
conditions imposed by a wrist robot. Using a space-by-
time NMF decomposition method, we decomposed EMG 
signals into concurrent temporal and spatial modules. We 
then derived a set of activation coefficients that captured 
the recorded EMG patterns of single trials.  

A combination of 鶏 噺 ぬ  temporal and 軽 噺 ね  spatial 
modules yielded an optimal trade-off between data 
approximation and task discrimination while minimizing 
the number of modules representing the observed 
electromyographic activity. Variance Accounted For of the 
selected decomposition was 93% indicating that the 
resulting representation approximated accurately the 
recorded EMG signals. Overall decoding performance was 
46% and was one order of magnitude larger than the 
chance level of 4%. When accounting for differences in 
movement directions and imposed force levels, 
discrimination for both factors was well above chance 
level, yielding decoding performance ranging between 
39%-70%. This clearly indicates that the identified 
decomposition was able to capture information in muscle 
activity relating to both task variables, meaning movement 
direction and imposed force. Interestingly, movement 
direction decoding was maximal for the Resistive Field 
condition and minimal for the Passive Field condition. 
From an electrophysiological perspective, this is highly 

plausible, because it reflects the number of motor units 
recruited and their firing frequency during no or assistive 
force conditions, which are both necessarily lower than 
during a resistive force condition [27, 28]. This finding 
highlights that the force conditions imposed by the robot 
will affect motor unit recruitment and their firing 
frequency (rate coding), which, in turn, will affect the 
biofeedback signal, its decomposition and its later use as a 
control signal for a rehabilitation robot. The choice of 鶏 噺ぬ  temporal modules matched the three different muscular 
activation timing patterns of agonist-antagonist bursts that 
characterize goal-directed arm movement [24, 25]. 
Moreover 軽 噺 ね  spatial modules included all the 
muscular co-activations that we previously found during a 
similar human-robot interaction protocol [8].  

The consistency between the extracted modules and 
those obtained using separate spatial and temporal NMF 
decompositions showed the effectiveness of space-by-time 
method in a) incorporating spatial and temporal modularity 
into a unique compact decomposition and b) capturing 
reliably the invariant (temporal and spatial) structure 
underlying the movements to different targets under 
different force conditions.  

The high module correlation across subjects indicated 
that this structure was also shared across individuals. 
However, for some subjects the correlation of one or more 
of the 4 spatial modules was poor. This is explained by the 
fact that for those subjects the optimal number of spatial 
modules was likely to be 軽 隼 ね. Assuming that for a given 
subject the spatial modules capturing all the essential 
information are 軽 噺 ぬ and we then impose the extraction 
of 軽 噺 ね spatial modules, the algorithm will find the three 
modules plus an additional one, similar to one of the first 
three. This last module therefore will not correlate well 
with the reference module to which it was paired. This 
caveat needs to be considered when applying the method 
to extract biofeedback signals that ultimately shape the 
force control signals of a robot interacting with a human 
patient.Finally, when extracting patterns of muscle 
activation in neurological patients, it is important to 
consider the notion of primary deficits and compensatory 
control. For example, in our recordings of healthy humans 
the Biceps Brachii muscle showed low activation levels, 
which is not surprising given that this muscle acts 
primarily as an elbow flexor and is typically not active 
during single-joint wrist movements. We here included the 
muscle into our analysis, because certain neurological 
patients such as cortical stroke survivors are known to 
show forearm muscle activation in order to compensate for 
impaired wrist muscle innervation. Indeed, it is well 
established that neurological disease may give rise to quite 
different manifestations in the electromyographic signal. 
For example, stroke is associated with muscular weakness 
affecting movement initiation and control [29], while 
cerebellar patients show a prolongation of agonist muscles 
activation and a delay of antagonist muscle activation [30]. 
As a result of neurological impairment, these patients may 
produce compensatory movements in order to minimize 
task errors. The selected compensatory strategy typically 
reflects the nature of the primary deficit and the level of 
initial impairment [31]. While basic muscle synergies are 
thought to be structured by subcortical neuronal networks 
and coordinated by descending cortical signals, altered 
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descending control due to, for example, cortical or 
cerebellar dysfunction will interfere with the formation of 
established muscle synergies [32, 33]. That is, muscles 
activation patterns in these patients can differ profoundly 
from those found on healthy subjects. Consequently, 
different synergies will be extracted by the described 
decomposition method. Thus, a comparison between the 
synergy modules generated by a neurologic patient and a 
healthy cohort can quantify the deficits in synergistic 
control and such information could be used to shape the 
robotic control signals to aid the patient. 

That is, during rehabilitation, such an EMG module 
comparison can guide the level of assistive or resistive 
forces needed and when such forces shall be applied during 
the movement. Indeed, the use of customized robot-
assisted therapy driven by EMG biofeedback has been 
explored and the results indicate an added rehabilitation 
benefit for stroke patients when compared to robotic 
assistance alone [34, 35]. Thus, our EMG decomposition 
methodology could aid the human-robot interaction by 
customizing robotic control signals to the motor control 
deficits of individual patients.  

For example, the level of mismatch between healthy and 
pathological EMG modules resulting after one training 
session, could be translated into an assistive force 
delivered during the following training session in such a 
way that muscle activation more closely resembles an 
innervation pattern of a healthy individual. In this case the 
set of modules could be extracted from a small set of 
training trials (e.g. の repetitions of each task condition 
would be sufficient as we showed here) and this set could 
be used as the basis functions on which the EMG signals 
of each newly recorded test trial would be projected. 
Therefore, only 鶏 抜 軽 噺 なに parameters would have to be 
estimated. Importantly, this number does not scale with the 
number of muscles and/or number of recorded time points, 
which makes the extraction computationally inexpensive 
and time-efficient even for more complex and high-
dimensional data.  

In this scenario, the biofeedback is not presented to the 
patient visually to indicate errors in the timing or of the 
amount of muscular activation, but it is implicit and is 
incorporated into the human-robot control scheme. One 
may argue that by “hiding” the biofeedback information 
from the patient and embedding it into the assistance 
provided by the robot, the rehabilitation protocol gains the 
benefit of the use of the biofeedback without the drawback 
of user becoming frustrated by the direct observation of 
his/her atypical muscular activation patterns [36]. 

V. CONCLUSIONS 

This study mapped the muscular activation of healthy 
individuals performing wrist movements during a motor 
task constrained by a robotic device. Our data show that 
muscle activation patterns can be reduced to a subset of 
stereotypical spatial and temporal patterns of muscle 
activation. Depending on the nature of the nervous system 
damage, these modules will be different for people with 
motor disabilities.  

The reliability of the decoding and the robustness of 
modules across subjects indicate that the decomposition of 
EMG signals can be used to generate feedback signals for 

rehabilitation robots. This could potentially simplify and 
improve the motor control during training of neurologic 
patients. 

We suggest that during motor rehabilitation of 
neurological patients a comparison between their abnormal 
synergies and those established by the age-appropriate 
healthy cohort can be used as a feedback signal for the 
control of robotic device in order to provide patient-
tailored force assistance. 
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