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Stabilizing predictive control with persistence of excitation for constrained linear systems

Bernardo A. Hernandez Vicentea,1,∗, Paul A. Troddena

aDepartment of Automatic Control & Systems Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK

Abstract

A new adaptive predictive controller for constrained linear systems is presented. The main feature of the proposed controller is

the partition of the input in two components. The first part is used to persistently excite the system, in order to guarantee accurate

and convergent parameter estimates in a deterministic framework. An MPC-inspired receding horizon optimization problem is

developed to achieve the required excitation in a manner that is optimal for the plant. The remaining control action is employed by a

conventional tube MPC controller to regulate the plant in the presence of parametric uncertainty and the excitation generated for

estimation purposes. Constraint satisfaction, robust exponential stability, and convergence of the estimates are guaranteed under

design conditions mildly more demanding than that of standard MPC implementations.

Keywords: adaptive control; model predictive control; control of constrained systems; system identification; persistent excitation.

1. Introduction

Model predictive control (MPC) is an advanced control tech-

nique that handles constraints explicitly and optimizes system

performance online [1]. The stability and performance guar-

antees of an MPC controller, however, depend largely on the

accuracy of the model used for prediction; indeed, a large mis-

match between plant and model may result in an unstable closed-

loop. Robust forms of MPC (such as [2–4]) seek, therefore, to

establish guarantees when the uncertainty in the system (includ-

ing modelling error) can be bounded. Yet robust MPC takes a

worst-case approach to the problem, and predictions are usually

made using some fixed nominal model [4], thus closed-loop

performance can be poor.

Adaptive MPC (AMPC) aims to overcome some of these

drawbacks by identifying (and providing the MPC controller

with) a more accurate model of the system during operation. Al-

beit several approaches have been proposed, e.g. [5–14], AMPC

remains to a large extent an open problem [15, Section 3.1]. One

of the reasons for this is the duality [16] of the optimal control

problem, in which the objectives of achieving sufficient excita-

tion of the system for a successful (closed-loop) identification

and satisfactory regulation are competing.

Different AMPC approaches place different emphasis on

these competing objectives. In [5–10], the main concern is

the control objective, and different robust approaches (such as

min-max optimization [6] and constraint tightening [8–10]) are

employed in order to ensure robust constraint satisfaction and
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stability. The main assumption common to these approaches is

that a bound on the initial modelling error is known, and that it

does not increase over time; the latter is achieved by allowing

parameter estimates to be updated only when the closed-loop

output data is informative enough [17], but there are no guar-

antees that this will occur. Therefore, while attaining desirable

system theoretic properties, these approaches assume, rather

than guarantee, sufficient excitation of the unknown system for

accurate identification. On the other hand, a group of papers that

focus on guaranteeing sufficient excitation, albeit at the expense

of constraint satisfaction and stability guarantees, is [11–14].

In these approaches, a nominal (non-robust) MPC optimization

problem is augmented with a constraint that forces the input

sequence to be persistently exciting (PE) [16, 17]. In [14], the

receding-horizon principle of MPC is explicitly taken into ac-

count in the design of the PE input, which allows for a recursive

feasibility guarantee with respect to the PE constraint; however,

constraint satisfaction and stability of the closed-loop system

are merely assumed.

Some approaches have been proposed to address both objec-

tives simultaneously, and achieve control guarantees while en-

suring sufficient excitation. In [18], the system states are driven

to a region of the state space wherein identification experiments

can be performed safely (i.e. without constraint violation). The

approach is, however, limited to open-loop stable linear time

invariant (LTI) systems and, moreover, system uncertainty is

entirely neglected during the transient; constraint satisfaction

and convergence to the target region are not guaranteed during

this phase. In [19], robust set invariance concepts are employed

in order to guarantee constraint satisfaction by the trajectories of

the uncertain controlled system. Excitation is promoted via an

augmented cost function in the MPC problem; this results in a

non-convex optimization problem, albeit the system model and

constraints are linear and the regulation objective is quadratic.

In this paper we propose a new and simple solution to the
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AMPC problem for linear constrained systems, that achieves

guarantees of stability, constraint satisfaction and persistence

of excitation. Our approach is to decouple the objectives of

regulation and excitation, thereby making their fulfilment more

straightforward; we show that this can be achieved by parti-

tioning the control input into a regulatory part and an exciting

part, and then deploying conventional tube-based MPC [4] in

order to control the uncertain excited system. Robust stability

and constraint satisfaction are guaranteed even if the plant is

open-loop unstable (c.f. [9, 18]) and linear time varying (LTV).

Convergence of the parameter estimates is achieved by inclusion

of PE-type constraints, similar to [11, 14], in a separate opti-

mization problem built specifically for the exciting input design;

however, the main MPC problem remains convex, unlike in [19].

The main drawback of the proposed approach is its conser-

vativeness and the strength of our assumptions: in particular,

the control guarantees rely on some a-priori knowledge of the

uncertain plant (its order and bounds on uncertainty). On the

other hand, the design complexity of our approach is lower than

in [5–7, 9], and comparable to [8, 18, 19]; moreover, we provide

some insights into how the assumptions might be met in practice.

A preliminary version of this approach appeared in [20].

Several modifications and additional contributions have been

included in this paper, amongst them (i) the required excitation is

guaranteed to be transmitted from the exciting part to the whole

input; (ii) sufficient conditions for the existence of a stable linear

feedback gain for the true plant are given instead of assumed;

and (iii) the problem of prediction model update is tackled by

a set of a-posteriori (online) redesign approaches, instead of an

overly robustified initial design. The latter simplifies the design

procedure and relaxes many of the assumptions, thus making the

proposed controller applicable for larger model uncertainties.

The paper is organized as follows. In Section 2 the prelimi-

naries of the problem are presented. Section 3 briefly describes

the robust MPC approach and its related assumptions, while

Section 4 develops a novel MPC-like constrained optimization

for the purpose of excitation. Section 5 discusses three possi-

ble approaches for allowing an update of the prediction model,

and a numerical example is shown in Section 6 to illustrate the

performance of the proposed AMPC controller.

2. Preliminaries

2.1. Notation

For C,D ⊂ Rn, C ⊕ D and C ⊖ D are, the Minkowski sum

and Pontryagin difference respectively [21]. A compact set that

contains the origin is a C-set and aPC-set if it contains the origin

in its interior. The null matrix is 0, and the identity is I (the

dimension will be clear from context). For x ∈ Rn and Q ∈ Rn×n,

||x||2
Q

is shorthand for x⊤Qx. For a time signal φ(·), the sequence

of its values up to time instant i is {φ(i)} = {φ(0), φ(1), · · · , φ(i)}.

2.2. Model dynamics and constraints

Consider the problem of regulating the uncertain LTV system

x(i + 1) = A(i)x(i) + B(i)u(i), (1)

where x(i) ∈ Rn and u(i) ∈ Rm are respectively the state and

input vectors at the current time instant, and x(i + 1) ∈ Rn is the

state vector at the subsequent time. The state and input matrices

are uncertain but assumed to reside, at all times, in a compact

set, i.e. [A(i) B(i)] ∈ M ⊂ R(n)×(n+m). With a slight abuse of

notation, the time dependency of the state and input matrices is

neglected in the rest of the paper. Additionally, the states and

inputs are subject to the following constraints

x(i) ∈ X ⊂ Rn, u(i) ∈ U ⊂ Rm, ∀i ≥ 0. (2)

It is common that an initial guess of the plant parameters, say
(

Ā, B̄
)

, is available, thus we can recast (1) in nominal form

x(i + 1) = Āx(i) + B̄u(i) + wp(i), (3)

where wp(i) is state/input dependent uncertainty arising from

the model mismatch (i.e., a parametric uncertainty). The robust

dual controller proposed in this paper requires the following

assumptions to hold.

Assumption 1. X and U are convex PC-sets.

Assumption 2. There exists a convex C-set Wp such that wp ∈

Wp for all (x, u, [A B]) ∈ X×U×M and nominal model
(

Ā, B̄
)

.

Assumption 3. The pair (A(i), B(i)) is stabilizable for all i ≥ 0.

Furthermore, ĀK = Ā + B̄K is Schur for some K ∈ Rm×n.

Remark 1. Assumptions 1 and 2 are tightly related. If X or

U are unbounded (e.g., loose state constraints), Assumption 2

cannot be met.

Remark 2. The set Wp is a conservative bound for a state/input

dependent uncertainty, and the main source of conservatism

of the proposed approach. However, a similar set is implicitly

characterized by the min-max approaches in [6, 9] and explicitly

defined in [8] by the set that contains the values of the unmodeled

dynamics. Furthermore, given the generality of Assumption 2,

the set Wp can be easily computed with minimal knowledge of

M. In addition,M does not need to be convex, but Wp does.

2.3. System identification

A standard prediction error approach is employed for the pur-

pose of estimating the true model from measured data (x(i), u(i)).

Note, however, that the proposed setting (1) diverges from the

classical framework in system identification problems since full

state measurement is assumed and no noise is considered (hence

all variables are deterministic). Nevertheless, these assumptions

do not necessarily hinder the applicability of the proposed dual

controller. The effects of these assumptions on each objective

of the dual control problem are discussed in more detail in Re-

marks 7 and 10.
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2.3.1. Parameter estimation algorithm

Consider the following predictor for the plant in (1):

x̂⊤(i) = φ⊤(i)θ̂(i − 1) ∈ Rn (4a)

φ⊤(i) =
[

x⊤(i − 1) u⊤(i − 1)
]

∈ Rn+m (4b)

θ̂(i) = [A(i) B(i)]⊤ ∈ R(n+m)×(n), (4c)

where (A(i),B(i)) are the current estimates of (A, B). At time i,

θ̂(i) is computed following a standard RLS algorithm [17]:

∆θ̂(i) = E(i)−1φ(i)
[

x⊤(i) − φ⊤(i)θ̂(i − 1)
]

(5a)

E(i) = ηE(i − 1) + φ(i)φ⊤(i), (5b)

where ∆θ̂(i) = θ̂(i) − θ̂(i − 1) and η is a forgetting factor.

2.3.2. Convergence of the estimates

It can be shown that, under mild assumptions, convergence

of θ̂(i) to (A, B) is guaranteed if the regressor φ(i) is a strongly

persistently exciting (SPE) sequence of order 1 [16].

Definition 1 (SPE sequence). A sequence {φ(i)}, is said to be

SPE of order h ≥ 1 at time i, if there exists a positive integer l

and real numbers ρ0, ρ1 > 0 such that,

ρ1I >

l−1
∑

j=0

(

φi− jφ
⊤
i− j

)

> ρ0I (6a)

φi− j =
[

φ(i − j) φ(i − j − 1) · · · φ(i − j − h + 1)
]

. (6b)

Definition 1 is equivalent to standard persistence of excitation

definitions [16, 17, 22], but with the observed time window

positioned so that the current time instant i lies at the right-hand

end of it. The purpose of this is to facilitate the inclusion of a

constraint such as (6a) in the receding horizon context of MPC.

At time i, the regressor vector (4b) contains not only the

past input, but also the past state. Since at time i − 1 the MPC

controller has no influence over the state x(i−1), the direct inclu-

sion of a constraint such as (6a) might pose feasibility problems.

A result from [22] that employs the concept of reachability of

linear systems can be used to overcome this.

Definition 2 (Reachability). System (1) is state reachable if

the matrix Os =
[

B AB · · · An−1B
]

has full row rank.

Lemma 1 (PE of output reachable systems [22]). The output

of any output reachable LTI system of McMillan degree ν is SPE

of order 1, independent of initial conditions, iff the input to the

system is SPE of order ν + 1.

Corollary 1 (PE of the regressor). Assume that the true plant

(1) is state reachable. The sequence {φ(i)}, with φ(i) defined as

in (4b), is SPE of order 1 at time i if the input sequence {u(i)} is

SPE of order n + m at time i.

Remark 3. Corollary 1 is easily extended to account for time-

varying systems via a proper selection of ρ0 (see Theorems 4.1

and 4.2 of [23]).

2.4. Dual control problem

The control problem can be summarized as: regulate the

plant described by (1), respecting the constraints (2), but using

only the available model (3), while simultaneously producing

data that is informative enough for the recursion in (5) to provide

converging estimates. Moreover, if possible, use the current

converged estimates to update the nominal model (3) in order to

obtain more accurate predictions within the MPC context and

hence improve performance of the controlled system. In the

following, a dual controller which provides a solution to this

problem, and its associated set of assumptions, is described.

3. Robust control

3.1. Input partition

The central feature of the proposed dual controller is the

partition of the input into a regulatory part û, and an exciting

part ŵ, such that at all time instances the input fed to the plant

fulfils u(i) = û(i) + ŵ(i). The nominal model takes the form,

x(i + 1) = Āx(i) + B̄û(i) + w(i), (7)

where the parametric uncertainty and the exciting part of the

input have been lumped into a single disturbance term w(i) =

B̄ŵ(i) + wp(i). Consider the following constraint partition

û(i) ∈ Û = αU, ∀i ≥ 0 (8a)

ŵ(i) ∈ Ŵ = U ⊖ Û = (1 − α)U, ∀i ≥ 0 (8b)

with α ∈ (0, 1). It is clear that satisfaction of (8) guarantees

satisfaction of the true input constraint (2). Moreover, it follows

that Ŵ is a convexPC-set, hence the set that contains the lumped

disturbance, W = B̄Ŵ ⊕Wp, is at least a convex C-set [21].

Remark 4. This architecture has two main purposes: (a) to

simplify the control problem to that of the robust regulation of

a linear system
(

Ā, B̄
)

in the presence of a bounded additive

disturbance w(i) ∈W, and (b) to allow the selection of û(i) to be

independent from that of ŵ(i), as long as ŵ(i) ∈ Ŵ is guaranteed.

3.2. Regulation via tube MPC

In view of Remark 4, the plant is controlled robustly using a

simplified version of conventional tube MPC that is developed in

detail in [1, Chapter 3]. For completeness of exposition, we now

recall some standard definitions and present a brief description

of the optimal control problem devised in [1, Chapter 3].

Definition 3 (Positive invariant (PI) set). A set T ⊂ Rn is a PI

set for the dynamics x(i + 1) = ĀK x(i) if ĀKT ⊆ T.

Definition 4 (Robust PI (RPI) set). A set S ⊂ Rn is an RPI set

for the dynamics x(i + 1) = ĀK x(i) + w(i) with w(i) ∈ W if

ĀKS ⊕W ⊆ S.

Remark 5. A PI set T is called admissible (for constraints (2)

and (8a)) if T ⊂ X and KT ⊂ Û. The same holds for an RPI set.
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Consider an undisturbed representation of (3)

z(i + 1) = Āz(i) + B̄v(i). (9)

The control law employed to regulate the disturbed plant is

û(i) = κ̂(x(i), z(i)) = κ (z(i)) + Kt (x(i) − z(i)) , (10)

where Kt is stabilizing for
(

Ā, B̄
)

and κ (z(i)) is the receding

horizon control law that stems from a nominal MPC controller

designed to stabilize the undisturbed model in (9), subject to

tightened versions of constraints (2) and (8). The optimal control

problem (OCP) to be solved at each time instant is defined as:

PN (z = z(i)) : min
v

VN (z, v) (11)

subject to (for k = 0, . . . ,N − 1):

z0 = z (12a)

zk+1 = Āzk + B̄vk (12b)

zk ∈ Z = X ⊖ S (12c)

vk ∈ V = Û ⊖ KtS (12d)

zN ∈ Z f ⊆ X ⊖ S. (12e)

A sub-index is employed in (12) to differentiate predictions from

true values, N is the controller prediction horizon and the opti-

mization variable v represents the sequence of control actions

throughout the prediction horizon, i.e. v = {v0, v1, . . . , vN−1}.

The cost function VN (z, v) is defined as the standard finite hori-

zon LQR cost with terminal penalty

VN (z, v) =

N−1
∑

k=0

ℓ (zk, vk) + V f (zN)

=

N−1
∑

k=0

(

||zk ||
2
Q + ||vk ||

2
R

)

+ ||zN ||
2
P.

(13)

The set of all the states for which the optimization problem (11)–

(12) is feasible is defined asZN . The solution to (11)–(12) is a

sequence of optimal inputs and associated predicted states,

v
∗(z(i)) =

{

v∗0, v
∗
1, . . . , v

∗
N−1

}

(14a)

z
∗(z(i), v∗) =

{

z0, z
∗
1, . . . , z

∗
N−1, z

∗
N

}

, (14b)

and the implicit nominal control law is defined as the first control

action of the optimal sequence κ (z(i)) = v∗
0
.

3.3. Conventional tube MPC properties

The following result summarizes the main properties of the

robust controller described above (see [1, Chapter 3] for a de-

tailed proof of Theorem 1).

Assumption 4. The set Z f is an admissible PI set for the dy-

namics in (9) when in closed-loop with a stabilizing linear gain

K (possibly different from Kt).

Assumption 5. The set S ⊂ Rn is an admissible RPI set for the

nominal closed-loop Ā+ B̄Kt in presence of disturbances W and

constraints (2) and (8a).

Assumption 6. The linear feedback gain Kt is such that AKt
=

A + BKt and ĀKt
= Ā + B̄Kt are Schur.

Theorem 1 (Stability). Suppose Assumptions 1 to 6 hold. If (a)

Q is positive semidefinite and R is positive definite, (b) Ā⊤
K

PĀK +
(

Q + K⊤RK
)

≤ P, and (c) the nominal system is initialized such

that x(0) ∈ {z(0)} ⊕ S ⊂ ZN ⊕ S, then the optimization (11)–

(12) is feasible at all times, the state constraint (2) and input

constraint (8a) are met at all times and the set A ≔ S × {0} is

exponentially stable with a region of attraction (ZN ⊕ S) ×ZN

for the constrained composite closed-loop system

x(i + 1) = Āx(i) + B̄κ̂ (x(i), z(i)) + w(i) (15a)

z(i + 1) = Āz(i) + B̄κ (z(i)) . (15b)

Assumption 6 demands the knowledge of a linear feedback

that stabilizes the unknown dynamics (which are possibly vary-

ing over time). This is a strong assumption; however, it is

interesting to see that its realization is actually guaranteed by

Assumption 5. First note that admissibility of S is necessary to

guarantee thatZN , ∅, thus Assumption 5 is required indepen-

dently of Assumption 6. The following result establishes the

link between both Assumptions.

Proposition 1. If Assumptions 2, 3 and 5 hold, then AKt
is Schur.

Proof. Suppose x(0) ∈ S and so z(i) = v(i) = 0 for all i. Since S
is constraint admissible, it follows that wp ∈Wp, and assuming

(8b) is met, then w ∈W. Therefore, for any x ∈ S, it holds that

ĀKt
x +w ∈ S. It is easy to show that ĀKt

x +w = AKt
x + Bŵ, and

so, AKt
x + Bŵ ∈ S for all x ∈ S and ŵ ∈ Ŵ. This implies that S

is an RPI set for AKt
and disturbance BŴ, hence AKt

is Schur.�

Remark 6. The admissibility of S depends on the size of Wp,

hence given
(

Ā, B̄,X,U
)

there is a bound on the parametric

uncertainty that this approach can accept (i.e., a bound onM).

Remark 7. The control related guarantees established by The-

orem 1 can still be realised in the presence of noise and state

estimation errors by resorting to an additional step of tightening

in the design of the constraints (12c) and (12d). This is the main

result in [24], where output-feedback tube MPC is developed to

deal explicitly with estimation error and measurement noise.

4. Persistence of excitation

The tube MPC controller is autonomous in the selection of

the regulatory part of the input û(i), only requiring ŵ(i) ∈ Ŵ
for Theorem 1 to hold. Consequently, the exciting sequence

{ŵ(i)} can be chosen independently to be of a certain PE order.

The latter can be easily achieved in many different ways (e.g.

with PRBS or sine signals [17]), however many such approaches

lead to unnecessary perturbation affecting the plant. In order to

design the exciting sequence in a way that considers its impact on

the control objective, we propose the use of an MPC-like finite-

horizon optimization problem, in which the decision variable is

the exciting input. Define

M (ŵ(i)) =

l−1
∑

j=0

(

ŵi− jŵ
⊤
i− j

)

− ρ0I (16)

4



with ŵi− j as in (6b). At each time instant the excitation ŵ(i) to

be applied to the system is obtained by solving

P̂h ({ŵ(i − 1)} , x(i)) : min
ŵ0

h−1
∑

k=0

ℓ (xk, ŵk) (17)

subject to (for k = 0, . . . , h − 1):

x0 = x(i) (18a)

xk+1 = Āxk + B̄ŵk (18b)

ŵ0 ∈ Ŵ (18c)

ŵk+1 = ŵ(i + k + 1 − l) (18d)

M (ŵk) > 0. (18e)

The optimization (17)–(18) minimizes the running cost of

the fictitious trajectories that would be generated by feeding

the exciting part directly to the nominal model. Since ŵ(i) is

indeed a portion of the input, this helps minimize its disturbing

impact on the plant. Albeit the prediction horizon in (17)–(18)

is h, the solution is a single optimal value ŵ∗
0
(i) (or simply ŵ∗

0
),

while the remaining values are fixed by (18d). Furthermore,

(17)–(18) is implemented in a receding horizon fashion, so that

feedback is introduced in the computation of ŵ(i), to account for

the parametric uncertainty.

The purpose of constraint (18d) is to guarantee recursive

feasibility of the OCP (17)–(18). It is thus referred to as a

terminal constraint, since it plays the same role of a terminal

constraint in standard MPC controllers. In this case, however,

the overall objective is not to regulate the state, but to endow

a certain order of persistence of excitation into ŵ(i), hence the

terminal constraint is not an invariant set such as Z f , but an

l-periodic signal defined by looking at past values.

An obvious drawback of such a terminal constraint is that

only one element of the exciting sequence is optimized at a

time, however this could be relaxed by an appropriate extension

of the prediction horizon and a shift in the time window the

terminal constraint is active. Nevertheless, the complexity of the

non-convex optimization would possibly increase.

Remark 8. Constraints (18d) and (18e) need access to the past

values of ŵ(i) over a time period of l − 1 steps. This implies

that a buffer sequence is required to initialize {ŵ(i)} [14, 20].

Notice also that only the lower bound of (6a) is included in

the definition of the PE measure (16), this is because the upper

bound is trivially met given that ŵ(i) is bounded [13].

4.1. Recursive feasibility of the PE optimization

The feasible space of (17)–(18) at time i depends on past

values of the exciting sequence, and the PE constraint (18e) is

non-convex (see [14]). However, despite the complexity of the

problem, the structure of (16) can be exploited to ensure that a

feasible solution exists and it is known at each time instant, if

there exist a buffer signal with certain characteristics.

Assumption 7. A buffer sequence
{

ŵb(h + l − 2)
}

is available

and fulfils: (a) ŵb( j) = ŵb( j − l) for all j ≥ l, (b) ŵb( j) ∈ Ŵ for

all j ∈ [0, h + l − 2] and (c)M(ŵb(h + l − 2)) > 0.

Proposition 2. If Assumption 7 holds, and the exciting part is

initialized as ŵ(i) = ŵb(i) with i ∈ [0, h + l − 2], then for all

i ≥ h + l − 1, ŵ(i) = ŵ(i − l) is a feasible solution for (17)–(18),

and {ŵ(i)} is SPE of order h.

Proposition 2 guarantees that the periodic repetition of a

particular buffer signal represents a feasible solution for (17)–

(18), however this sequence is computed off-line, and hence it is

open-loop and not necessarily optimal. The following result pro-

vides a guarantee of recursive feasibility for exciting sequences

generated in closed-loop by solving (17)–(18).

Theorem 2 (RF of the PE optimization). If Assumption 7 holds,

and the exciting part is initialized as ŵ(i) = ŵb(i) with i ∈

[0, h + l − 2], then for all i ≥ h + l − 1 the optimization problem

(17)–(18) is feasible, and {ŵ(i)} is SPE of order h with ŵ(i) = ŵ∗
0
.

Proof. Suppose that at time i = h+l−1 the optimizer has chosen

ŵ(i) = ŵ∗
0
, ŵ(i−l) such that (18) are fulfilled, then the new non-

periodic value ŵ(i) remains in ŵ j for h − 1 time steps. However,

if ŵ∗
0
, ŵ(i − l) is a feasible solution at time i, then constraints

(18d) and (18e) must have been satisfied at time i. This implies

that periodic repetition of the past solution during h − 1 future

time steps remains feasible, and hence, ŵ( j) = ŵ( j − l) is a

feasible solution at time j = i + 1, . . . , i + h − 1.

Remark 9. Given the non-convexity of (18e) and the time re-

strictions inherent to online optimization in a receding horizon

framework, a minimum to (17)–(18) might not be found in time.

However, Theorem 2 guarantees the existence of a feasible but

not necessarily optimal solution at each time step thanks to the

terminal constraint (18d), which forces the new solution to sat-

isfy Assumption 7. Furthermore, Assumption 7 and constraint

(18d), as a way to guarantee the availability of a solution at

each time instant, promote the generation of periodic exciting

sequences (with period l).

This approach to persistence of excitation has similarities

with [14]. The key difference is that in [14] the whole input

is used to excite the system, and hence stability is only an as-

sumption. Another significant difference is that [14] employs

a single constraint, M (ŵ0) > 0, to achieve the required SPE

behaviour. This is evidently less demanding than (18), but it also

yields a weaker result. A similar claim to that in Proposition 2

is provided, however there is no guidance as to how the buffer

signal should be designed, as opposed to the structure described

in Assumption 7. Furthermore, there is no feasibility guarantees

after a time step in which the optimizer sets ŵ(i) = ŵ∗
0
, ŵ(i− l),

contrary to the result provided by Theorem 2.

4.2. Transmissibility of the persistence of excitation

Theorem 2 guarantees that a solution to (17)–(18) exists

and that it results in an exciting sequence that is SPE of order

h. However, setting h = n + m is not sufficient to meet the

requirements of Corollary 1. This is because the robust control

policy (10) is designed precisely to reject the whole disturbance

w(i) = Bŵ(i)+wp(i), thereby the true input sequence {u(i)}might

not inherit the SPE order of the exciting sequence.
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Transmissibility of the SPE order from {ŵ(i)} to {u(i)}, and

hence to the regressor, can be achieved under design require-

ments that are marginally more demanding than those of Corol-

lary 1. The whole input fed to the plant is

u(i) = (v(i) − Ktz(i)) + (Kt x(i) + ŵ(i)) . (19)

Given Theorem 1 and Lemma 2.2 from [25], the excitation

properties of the plant input depend solely on Kt x(i) + ŵ(i). By

neglecting the converging term in (19), the following state space

model can be constructed

x(i + 1) = (A + BKt) x(i) + Bŵ(i) (20a)

u(i) = Kt x(i) + ŵ(i), (20b)

with input ŵ(i) and output u(i). In view of Lemma 1, the mat-

ter of transmissibility of the PE condition from {ŵ(i)} to {u(i)},

reduces to the question of reachability of u(i) from ŵ(i).

Definition 5 (Output Reachability). Consider a state-space sys-

tem with input u(i) ∈ Rm, output y(i) ∈ Rp and state x(i) ∈ Rn

x(i + 1) = Ax(i) + Bu(i) (21a)

y(i) = Cx(i) + Du(i), (21b)

where A, B, C and D are of appropriate dimension. System (21)

is said to be output reachable ifOo =
[

D CB CAB · · · CAn−1B
]

has full row rank.

Theorem 3 (Transmissibility of PE condition). If the origin

is asymptotically stable for the undisturbed nominal closed-

loop system, and the sequence {ŵ(i)} is SPE of order 2n +m + 1,

then the regressor vector sequence {φ(i)} is SPE of order 1.

Proof. The output reachability matrix for system (20) is

Oo =
[

I KtB KtAKt
B · · · KtA

n−1
Kt

B
]

. (22)

Since I has row rank m, Oo has full row rank, and u(i) is reach-

able from ŵ(i). The McMillan degree of system (20) is n, and

the exciting sequence {ŵ(i)} is SPE of order 2n + m + 1, thus

Lemma 1 ensures that the input sequence {u(i)} is SPE of or-

der n + m. According to Corollary 1, this guarantees that the

corresponding regressor sequence {φ(i)} is SPE of order 1. �

Remark 10. Proposition 2 and Theorems 2 and 3 provide suffi-

cient conditions to ensure that the regressor is SPE of order 1,

hence ensuring convergent estimates. In the proposed setting,

that is full state availability and noise-free measurements, the

estimates will converge to the true plant parameters in finite

time. In the presence of noisy state measurements, however,

convergence is only in the limit. Moreover, if the states need

to be estimated from noisy output measurements, the estimates

may converge to biased values. Nevertheless, a set of converged

estimates is only considered for updating the MPC’s prediction

model following the discussion in Section 5, which aims to retain

the control guarantees even in the presence of biased estimates.

5. Prediction model update

Proposition 2 and Theorems 2 and 3 provide sufficient con-

ditions to ensure convergent estimates, even in the presence of

noise or state estimation error (Remark 10). Since the closed-

loop performance of MPC controllers depends largely on the

accuracy of the prediction model, it would then be advantageous

to use the set of converged estimates to update the prediction

model in (12b); however, this is cannot be readily done given

that the control related guarantees put forward in Theorem 1

fundamentally depend on the initial nominal model
(

Ā, B̄
)

.

Various approaches can be employed to verify and/or ensure

that a certain set of estimates can be used as a new prediction

model for the AMPC controller devised in this paper. In what

follows we discuss two that sit at opposite sides of the complexity

spectrum: a simple verification of properties, and a full controller

redesign. Note, however, that both are not mutually exclusive,

and they can be implemented in series (that is, if the simplest

one fails, the more complex one may be attempted).

Finally, it might seem that the size of the set S could be

decreased according to the confidence on the current set of

converged estimates, but this is not the case because the plants

being considered are not time invariant. The object of study is

LTV systems whose dynamics vary with time in an uncertain

manner but within a known set M. Thus, a set of converged

estimates, albeit currently accurate, may become inaccurate

in the future, rendering robustness necessary throughout. The

following assumption is then required to hold for any set of

estimates
(

Ã, B̃
)

being considered for updating (12b).

Assumption 8. There exists a convex C-set W̃p such that wp ∈

W̃p for all (x, u, [A B]) ∈ X×U×M and nominal model
(

Ã, B̃
)

.

5.1. A-posteriori verification

Consider that a set of converged estimates is available and

represent it by
(

Ã, B̃
)

. The most straightforward approach to

model update is to simply verify whether the necessary condi-

tions for Theorem 1 to hold are still met if the prediction model is

updated by
(

Ã, B̃
)

. In particular, the following set of conditions

would have to be verified if a model update is to be performed

at time i:

(a) Assumption 5, the set S is an RPI set for the closed-loop

dynamics Ã + B̃Kt and disturbance W̃ = B̃Ŵ ⊕ W̃p.

(b) Assumption 4, the set Z f is a PI set for the closed-loop

dynamics Ã + B̃K.

(c) Feasibility, there exists a feasible solution to (11)–(12) with

(12b) replaced by zk+1 = Ãzk + B̃vk at time i.

(d) Cost decrease

minv VN

(

z(i), v, Ã, B̃
)

−minv VN

(

z(i − 1), v, Ā, B̄
)

< 0.

(e) Terminal cost decrease, for ÃK = Ã + B̃K, it holds that

Ã⊤
K

PÃK +
(

Q + K⊤RK
)

≤ P.

Condition (a) is related to the robust constraint satisfaction guar-

antees, conditions (b) and (c) to the recursive feasibility of the

MPC optimization and (d) and (e) to the Lyapunov stability guar-

antees associated to the feedback law κ̂(·). If conditions (a)–(e)
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are met, then Theorem 1 holds under an update of the prediction

model, but there is no immediate guarantee that all conditions

will simultaneously hold for any
(

Ã, B̃
)

∈ M, except
(

Ā, B̄
)

.

Conditions (a), (b) and (e) depend only on MPC elements

designed off-line, as opposed to conditions (c) and (d) which

also depend on the current nominal state z(i). Given the expo-

nential stability guarantee provided by Theorem 1, it is easy

to show that there exists a finite time instant for which (c) is

met irrespective of
(

Ã, B̃
)

. Furthermore, note that stability at the

moment of a prediction model update is guaranteed by condition

(d), while condition (e) is necessary to ensure stability for all

future time instances following an update. This implies that

conditions (d) and (e) are independent, and so a new terminal

cost matrix, say P̃, could be computed online for each candidate
(

Ã, B̃
)

to meet condition (e) without affecting the rest of the

conditions. Computing P̃ to meet condition (e) amounts to the

solution of a single discrete algebraic riccati equation, which is

computationally tractable. Condition (d) could then be relaxed

to a non-strict inequality or even allow for a single instance of

cost increase (which will always be bounded).

In summary, conditions (c), (d) and (e) are relatively simple

to meet, however it is also easy to find an example for which (a)

is not met by any
(

Ã, B̃
)

∈ M except
(

Ā, B̄
)

, hence updating the

prediction model would not be possible.

This may appear as a shortcoming when compared to the

seamless model update allowed by other approaches such as

[5, 6, 10], but it rather owes to the expected trade-off between

complexity and performance. Indeed, the design and imple-

mentation complexity of proposals such as [5, 6, 10] is higher

when compared to the approach proposed here, demanding for

example the online re-computation of various MPC elements at

each time instant, or the implementation of min-max optimiza-

tions. The adaptive controller proposed in this paper is simpler

in formulation and design, but at the price of not necessarily

being able to update the prediction model with the true plant

parameters.

5.1.1. Robustification of the initial design

From the discussion above it follows that, in order to in-

crease the likelihood of prediction model updating, the MPC

elements associated to Conditions (a) and (b) could be robustly

designed to account for a subset of models M̃ ⊂ M. Consider

the following definition [26].

Definition 6 (Robust λ-contractive set). A set T ⊂ Rn is a ro-

bust λ-contracive set for the dynamics x(i + 1) = ĀK x(i) + w(i)

with w(i) ∈ W if ĀKT ⊕W ⊆ λT with λ ∈ (0, 1). If W = {0}
then T is a λ-contracive set.

Suppose then that the terminal constraint set Z f and the tight-

ening set S are computed, correspondingly, as a λ-contractive set

and a robust λ-contractive set. It follows that there exists a non-

empty set M̃λ, contained insideM and centred around
(

Ā, B̄
)

,

such that conditions (a) and (b) are met for all
(

Ã, B̃
)

∈ M̃λ. If
(

Ā, B̄
)

∈ M̃λ then, there is a finite time such that all model updat-

ing conditions are met except possibly (d), which as discussed

previously, could be relaxed.

5.2. Complete controller redesign

If, however,
(

Ā, B̄
)

< M̃λ, it might not be possible to update

the prediction model without modifying some of the controller’s

parameters. Assume then that, for a certain pair
(

Ã, B̃
)

∈ M, a

set of parameters
(

W̃p, K̃t, S̃, K̃, Z̃ f , P̃
)

exists such that Assump-

tions 2, 4, 5 and (b) from Theorem 1 are fulfilled. Analogously

to (11)–(12), define an OCP associated to this set of parameters

as P̃N (z = z(i)) with cost ṼN (z(i), v), then the following holds.

Proposition 3. If the current nominal state z(i) is such that

minv ṼN

(

z(i), v, Ã, B̃
)

− minv VN

(

z(i − 1), v, Ā, B̄
)

< 0, then the

OCP driving the feedback laws κ(·) and κ̂(·), that is PN (z = z(i)),

can be replaced by P̃N (z = z(i)) while guaranteeing constraint

satisfaction and exponential stability of the nominal closed-loop

trajectories.

Proposition 3 follows directly from the discussion in Section 5.1

and the proof of Theorem 1 in [15].

The only obstacle in the design of P̃N (z = z(i)) is guarantee-

ing the admissibility of the tightening set S̃. Depending on the

plant and the setM there might only be a subset ofM for which

admissible tightening sets exist. If such a set exists, and in con-

trast to the discussion in Section 5.1, there is only one condition

required for prediction model update: the cost decrease at the

update time. This cannot be guaranteed, but could eventually

be relaxed as discussed in Section 5.1. The idea of updating

the entire controller may seem to share some of the challenges

associated to controlling switching systems, in particular how to

provide a guarantee of stability in view of fast switching. This

is not the case here, since stability is guaranteed via robustness

even if no change is performed, that is, there is no need to up-

date/modify the controller to guarantee stability. Updating of the

prediction model is done solely for performance purposes, while

accounting for the effects it may have on the control guarantees.

A drawback of this approach is that the computational cost

of computing invariant sets grows rapidly with the size of the

plant, thus making it difficult to compute them online in most

applications. However, note that albeit desirable, the prediction

model need not to be updated instantaneously after the estimates

have converged, thus the re-computation can be performed dur-

ing multiple sampling periods. Furthermore there exists efficient

methods to compute invariant approximations to the type of set

usually employed in MPC implementations, such as the minimal

RPI set (see for example [27, 28]), hence making this approach

a feasible solution.

5.3. Control algorithm

The proposed controller is summarized in Algorithm 1. Only

the verification approach to model update is considered for sim-

plicity of exposition. The threshold ε in Step 12 is a positive

scalar which value must be set according to the magnitude of

the measurement noise. In the deterministic case ε = 0.

6. Illustrative example

Consider a point-mass spring-damper plant (representing a

truck), where the control objective is to steer the mass to an
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Algorithm 1 Persistently exciting tube MPC

OFFLINE:

1: DefineM and choose
(

Ā, B̄
)

2: Choose α and compute Û, Ŵ and U
3: Choose Q, R, N, Kt, K and λ and compute Wp, S, Z, V, Z f

and P

4: Choose η, set h = 2n + m + 1 and compute l, ρ0 and
{

ŵb
}

5: Initialize E(0) = 0

ONLINE: i = 0

6: Measure x(i)

7: if i = 0 then

8: Compute z(0) such that z(0) ∈ ZN and x(0) ∈ {z(0)} ⊕ S
9: end if

10: if i ≥ 1: then

11: Compute θ̂(i) through the RLS recursion (5)

12: if ∆θ̂(i) < ε and conditions (a)–(e) are met: then

13: Set Ā = A(i) and B̄ = B(i)

14: end if

15: end if

16: if i ≤ h + l − 2 then

17: Set ŵ(i) = ŵb(i)

18: else

19: Solve OCP (17)–(18) to obtain ŵ∗
0
(i) and set ŵ(i) = ŵ∗

0

20: end if

21: Solve OCP (11)–(12) to obtain v
∗(z(i)) and set v(i) = v∗

0

22: Set û(i) = v(i) + Kt (x(i) − z(i))

23: Compute z(i + 1) = Āz(i) + B̄v(i)

24: Apply u(i) = û(i) + ŵ(i) to the plant

25: Set i = i + 1 and go to Step 6

arbitrary horizontal equilibrium using an horizontally applied

force u. The dynamics of the plant are described by

ẋ =

[

0 1
−c/M −k/M

]

x +

[

0
100/M

]

u, (23)

where the state vector is composed by the horizontal position and

velocity of the truck. The plant is subject to bound constraints

on the states ||x||∞ ≤ 15 and inputs |u| ≤ 5, thus Assumption 1 is

met. Moreover, for any M > 0, the (continuous time) system is

state reachable, and so Lemma 1 is applicable. A sampling time

Ts = 0.1[s] is used to discretize the plant.

Initially, the truck is loaded with a mass of 2[Kg], and the

spring and damper coefficients are assumed to be at factory

values of 10[N/m] and 30[N/ms] respectively. During operation,

increasing temperatures may result in the spring losing up to 25%

of its stiffness; furthermore, an uncontrolled external disturbance

may increase the truck’s load by 25% at an arbitrary time. This

information results in a compact (non-convex) setM in which

the true plant is expected to reside at all times. The initial

conditions of the mass, spring and damper are used to define the

nominal prediction model
(

Ā, B̄
)

. In view of this, a set Wp that

fulfils Assumption 2 can be computed as the convex hull of the

individual uncertainty sets arising from each plant configuration.

The PE related parameters are set to α = 0.9 and ρ = 0.05.

A horizon of N = 3 is employed for the nominal MPC. Larger

0 40 80 120 160
−0.5

−0.25

0

0.25

0.5

0 5 10 15 20
−1

−0.5

0

0.5

1

0 40 80 120 160
−3

−1.5

0

1.5

3

Time instant i

Figure 1: (Top) Exciting sequence ŵ(i), (Middle) Input sequences

u(i), v(i), (Bottom) change in the l-periodicity of the excitation sequence

δŵ(i).

horizons would increase the size of ZN , however S, the main

source of conservatism of the proposed approach, would remain

unchanged. The weight matrices are set to Q = diag (100, 1)

and R = 1, and the linear gains K = Kt and terminal cost P are

computed as the corresponding infinite horizon optimal linear

gain and cost, hence meeting Assumption 3. The sets S and

Z f are computed as the minimal RPI set and the maximal PI

set for the closed loop Ā + B̄K and disturbance W, resulting in

Assumptions 4–6 being met. A buffer sequence for the exciting

part is computed following Assumption 7. The SPE order is set

to h = 6, and l = h (given the values of ρ0 and α). Finally, the

forgetting factor for the RLS algorithm is set to η = 0.75.

The system is initialized at x(0) = [−1 15]⊤ and it changes

between different operating conditions as follows: (a) nominal,

(b) 25% stiffness loss at i = 40, (c) 25% load increase at i =

80, (d) stiffness restoration at i = 120. Figure 1 shows the

optimized exciting sequence {ŵ(i)}. At time instant i = 12

the optimizer takes over the buffer and sets ŵ∗
0
(i) , ŵb(i − l),

however due to the non-convexity of the optimization and the

fact that operating condition (b) is a feasible prediction model,

the sequence remains periodic until the plant changes into mode

(c). Similarly, the periodicity observed after i = 100 is broken

once a new set of estimates, closer to mode (d), is employed for

predictions. Figure 1 also shows that the nominal input sequence

{v(i)} converges after 15 time steps, but the true input sequence

{u(i)} remains disturbed thanks to the action of the exciting part.

Figure 2 shows the closed-loop state trajectories for the

true plant and the undisturbed nominal model generated by the

inputs in Figure 1. As expected, the undisturbed state converges

to the origin fairly fast, but the true state remains disturbed by

ŵ(i). Figure 1 also shows the change in the l-periodicity of the

excitation sequence defined as δŵ(i) = [ŵ(i)−ŵ(i−l)]/ŵ(i−l). It can be

seen how the OCP (17)–(18) is able to interrupt the periodicity

at key instances, such as after h + l − 2 time instances when the

buffer sequence runs out and after new estimates are acquired

8



−1.2 −0.9 −0.6 −0.3 0 0.3
−4

0

4

8

12

16

x1

x
2

−0.2 −0.1 0 0.1 0.2
−3

−2

−1

0

1

2

Figure 2: State trajectory from x0 = [−1 15]⊤, x(i), z(i).

0.98

0.99

1

A
1
1

0.05

0.06

0.07

A
1
2

0 40 80 120 160
0.1

0.15

0.2

Time instant i

B
1
1

Figure 3: Parameter estimation results, true plant values (A, B),

estimates (A(i),B(i)).

such as after time instances i = 80 and i = 120.

A selection of the estimates is shown in Figure 3. Given

the deterministic framework, convergence to the true parameters

is achieved in finite time, however the new estimates are not

necessarily a feasible replacement for the prediction model. In

this particular example, the model associated to a 25% increase

in the load, say
(

Ã, B̃
)

, results in
(

Ã + B̃K
)

Z f * Z f thus break-

ing the invariance of the terminal constraint set. It is easy to

show, however, that if Z f is computed as a λ-contractive set,

with λ = 0.99, then the invariance property holds.

7. Conclusions and future work

A new AMPC controller, for constrained LTV systems, has

been devised to tackle simultaneously both objectives of the

dual control problem. The proposed method relies on the par-

tition of the plant’s input into a regulatory part and an exciting

part. The latter is designed to persistently excite the system and

guarantee convergence of least square estimates to the true plant

parameters, however only under the assumption of full state

measurement. If the state needs to be estimated, biased parame-

ter estimates will be obtained, however the control guarantees

remain. A shortcoming of the proposed approach is that the cur-

rent estimates might not be able to replace the MPC prediction

model if robustness to model uncertainty is to be maintained,

however a variety of methods to verify and ensure that a model

update is feasible are presented.

Future work will focus on reducing the conservatism with

which the parametric uncertainty is represented (possibly through

the implementation of time-varying robust invariant set) and on

the convexification of the PE constraint.
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