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ABSTRACT Multi-carrier based waveform design for directional modulation (DM) is studied, where

simultaneous data transmission over multiple frequencies can be achieved, with given phase distribution

at the mainlobe and as random as possible over sidelobe regions for each frequency. The design can be

implemented efficiently by the inverse discrete Fourier transform (IDFT) structure. However, the problem

of multi-carrier design is the high peak to average power ratio (PAPR) of the resultant signals, leading to

non-linear distortion when signal peaks pass through saturation regions of a power amplifier. To solve the

problem, the PAPR ≤ ρ (ρ ≥ 1) constraint is considered in the design and a solution called wideband beam

and phase pattern formation by Newton’s method (WBPFN) is proposed. The resultant beam patterns, phase

patterns and complementary cumulative distribution function (CCDF) of PAPR are presented to demonstrate

the effectiveness of the proposed design.

INDEX TERMS Directional modulation, multi-carrier, peak to average power ratio, phased antenna array

I. INTRODUCTION

I
N the past few years, directional modulation (DM) has re-

ceived more and more interest in the antenna array signal

processing community. It was first introduced in [1], [2] using

reflector switches to keep known constellation mappings in

a desired direction or directions, and scramble them for the

other directions. Then, a four-element reconfigurable antenna

array was introduced by switching elements for each symbol

to change its amplitude and phase of the element radiation

pattern [3]. A method in [4] named dual beam DM was

proposed to achieve DM, followed by phased array designs

in [5]–[13]. In [14], a design with far-field radiation pattern

templates was developed, along with a time modulation

technique in [15], and an artificial-noise-aided zero-forcing

synthesis approach in [16].

Recently, to increase channel capacity, a multi-carrier

based design for DM was presented in [17], where multiple

signals are transmitted at different frequencies simultane-

ously. The structure can be implemented efficiently using

the inverse discrete Fourier transform (IDFT), and it allows

different modulation schemes at different frequencies [17].

However, like traditional IDFT based multi-carrier wireless

communication systems, a potential problem of the multi-

carrier design in [17] is the high peak to average power

ratio (PAPR) when multiple signals are added together. If

signal peaks pass through the non-linear (clipping) region

of a power amplifier [18]–[26], then antenna performance

will be seriously degraded. To avoid this, a PAPR constraint

to control the signal envelope needs to be considered in the

design.

Many methods have been proposed in traditional multi-

carrier based communication to limit the PAPR of the trans-

mitted signals. A clipping and filtering method was intro-

duced in [27], [28], which iteratively limits the maximum

amplitude until its corresponding output is under or equal to

a pre-defined PAPR. Selective mapping (SLM) in [29], [30]

was used to generate a set of phase sequences, and then each

phase sequence is multiplied by the same data sequence to

produce their corresponding transmitted sequences, and the

one with the lowest PAPR is then chosen for transmission.

In [31], [32], the partial transmit sequences (PTS) technique

was studied, followed by the tone reservation method in [33]

and tone injection method in [34]. The wideband beampat-

tern formation via iterative techniques (WBFIT) method was
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FIGURE 1: A multi-carrier based DM structure using an an-

tenna array, where P/S denotes parallel to serial conversion.

introduced in [35] for wideband MIMO radar to directly

link the beampattern to the signals through their Fourier

transform. However, the above mentioned methods do not

consider different phase requirements for different regions of

the pattern and for different symbols, and therefore can not

be applied directly in our context. In this work, we propose

a new method called wideband beam and phase pattern

formation by Newton’s method (WBPFN) to solve the PAPR

and phase pattern formation problem simultaneously in the

design of multi-carrier based DM antenna array system.

The remaining sections of this paper are organised as

follows. A review of the multi-carrier based DM structure

is given in Sec. II. The proposed method WBPFN to solve

the PAPR ≤ ρ (ρ ≥ 1) minimization problem for DM

is described in Sec. III. In Sec. IV, design examples are

presented, followed by conclusions in Sec. V.

II. REVIEW OF MULTI-CARRIER BASED DIRECTIONAL

MODULATION

A linear antenna array for multi-carrier based DM imple-

mented by the IDFT structure is shown in Fig. 1 [17], which

consists of N omnidirectional antennas with spacing dn be-

tween the zeroth and the n-th antenna for n = 1, . . . , N − 1.

Each antenna is associated with multiple frequency depen-

dent weight coefficients wn,q , n = 0, . . . , N − 1 and

q = 0, . . . , Q − 1, where n and q represent the index of

antenna and frequency, respectively. The transmission angle

is represented by θ ∈ [0◦, 180◦].

As explained in [17], the steering vector of the array at the

q-th frequency is given by

s(ωq, θ) =[1, ejωqτ1 , . . . , ejωqτN−1 ]T

=[1, ej2π(f0+(−Q
2 +q)△f)τ1 , . . . ,

ej2π(f0+(−Q
2 +q)△f)τN−1 ]T ,

(1)

where {·}T represents transpose, τn = dn cos(θ)
c is the time

advance between the zeroth and n-th antennas. The beam

response of the array at the q-th frequency is given by

p(ωq, θ) = wH(ωq)s(ωq, θ), (2)

where {·}H represents the Hermitian transpose, and w(ωq)
is the weight vector at the q-th frequency

w(ωq) = [w0,q, w1,q, . . . , wN−1,q]
T . (3)

In the context of DM, for M -ary signaling, we define

pm(ωq, θ) as the desired array response for the m-th con-

stellation point (m = 0, . . . ,M − 1) at the q-th fre-

quency, with its corresponding weight vector wm(ωq) =
[wm,0,q, . . . , wm,N−1,q]

T . We sample the whole angle range

of interest by R points, with r points in the mainlobe and

R − r points θ0, θ1, . . . , θR−r−1 in the sidelobe [17]. Then,

we can construct the following two vectors

pm(ωq, θSL) =[pm(ωq, θ0), pm(ωq, θ1), . . . ,

pm(ωq, θR−r−1)],

pm(ωq, θML) =[pm(ωq, θR−r), pm(ωq, θR−r+1), . . . ,

pm(ωq, θR−1)] .

(4)

Accordingly, at the q-th frequency, all steering vectors at

sidelobe regions form the N × (R − r) matrix S(ωq, θSL),
and all vectors in desired directions form the N × r matrix

S(ωq, θML).
Then for them-th constellation point at the q-th frequency,

the weight coefficients can be obtained by

min
wm(ωq)

||pm(ωq, θSL)−wH
m(ωq)S(ωq, θSL)||2

subject to wH
m(ωq)S(ωq, θML) = pm(ωq, θML).

(5)

The problem in (5) can be solved by the method of Lagrange

multipliers [17] and the optimum value for the weight vector

wm(ωq) is given in the following,

wm(ωq) =R−1(S(ωq, θSL)p
H
m(ωq, θSL)− S(ωq, θML)

× ((SH(ωq, θML)R
−1S(ωq, θML))

−1

(SH(ωq, θML)R
−1S(ωq, θSL)p

H
m(ωq, θSL)

− pH(ωq, θML)))),
(6)

where R = S(ωq, θSL)S
H(ωq, θSL).

III. PAPR CONSTRAINT

Although the IDFT based DM shown in Fig. 1 works well

in theory, in practice we need to consider the PAPR problem,

where due to signal envelope fluctuation, signal peaks can fall

into saturation regions of an amplifier, resulting in non-linear
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distortion. The PAPR of the output signal at the n-th antenna

can be defined as [19], [23]–[26]

PAPR(xn) =

max
k=0,...,Q−1

|xn(k)|2

1
Q

∑Q−1
k=0 |xn(k)|2

=
||xn||2∞
1
Q ||xn||22

n ∈ 0, 1, . . . , N − 1,

(7)

where xn = [xn(0), . . . , xn(Q − 1)]. Here the design in (5)

for a particular constellation point at a particular frequency

can be extended to the following, where cost functions and

constraints for all constellation points at all frequencies are

considered together [17]

min
W

||PSL −WHSSL||2
subject to WHSML = PML,

(8)

where

W = blkdiag{W(ω0), . . . ,W(ωQ−1)},
PSL = blkdiag{PSL(ω0, θSL), . . . ,PSL(ωQ−1, θSL)},
PML = blkdiag{pML(ω0, θML), . . . ,pML(ωQ−1, θML)},
SSL = blkdiag{S(ω0, θSL), . . . ,S(ωQ−1, θSL)},
SML = blkdiag{s(ω0, θML), . . . , s(ωQ−1, θML)},
W(ωq) = [w0(ωq), . . . ,wM−1(ωq)],

PSL(ωq, θSL) = [p0(ωq, θSL), . . . ,pM−1(ωq, θSL)],
T

pML(ωq, θML) = [p0(ωq, θML), . . . ,pM−1(ωq, θML)].
T

(9)

As the PAPR constraint is designed for all antennas and each

antenna has Q frequency dependent weight coefficients, the

formulation for DM design subject to the PAPR constraint is

given by

min
W

||PSL −WHSSL||2
subject to WHSML = PML

||xn||22 = Q̂

PAPR(xn) ≤ ρ n = 0, . . . , N − 1.

(10)

where ρ (ρ ≥ 1) represents the upper bound of PAPR. Here,

an energy constraint ||xn||22 = Q̂ is imposed [35] for the

PAPR requirements (although Q̂ can be any values, Q̂ = Q
is chosen to make the denominator of (7) equal to one for

simplicity). Then, based on the constraint ||xn||22 = Q̂ = Q,

PAPR(xn) ≤ ρ can be changed to

max
k=0,...,Q−1

|xn(k)|2 ≤ ρ. (11)

However, (10) is nonconvex because of the PAPR con-

straint. For example, for ρ = 1, each of [xn(0), . . . , xn(Q−
1)] in xn can only take values from the unit circle [35],

which does not satisfy a convex set. To solve the problem,

the WBPFN method is proposed, which includes two stages.

At the first stage, the coefficients in (8) without considering

the PAPR constraint are first calculated, and are used to

construct a 3-D matrix. At the second stage, a set of auxiliary

variables {ψq}Q/2−1
q=−Q/2 is introduced and is multiplied by the

3-D matrix. Then, based on the result, the weight coefficients

are optimized iteratively until the given phase and PAPR

requirements in the desired directions are satisfied.

Note that the main difference between our proposed

method in (10) and the WBFIT method [35] in (12) is the

additional phase requirement to the desired directions in our

design.

min
xn

||un − xn||2

subject to ||xn||22 = Q̂

PAPR(xn) ≤ ρ n = 0, . . . , N − 1,

(12)

where un is a reference vector. Therefore, the newly formu-

lated design problem cannot be solved by the original WBFIT

method in [35].

A. STAGE ONE

The PAPR constraint is designed for xn, n = 0, 1, . . . , N−1,

corresponding to the n-th antenna, and as shown in Fig.

1, each antenna is associated with Q frequency dependent

inputs (weight coefficients) [w∗
n,0, w

∗
n,1, . . . , w

∗

n,Q−1], result-

ing in Q outputs [xn(0), . . . , xn(Q − 1)] by IDFT [17].

Then, in the context of M -ary signaling for each frequency,

there are MQ sets of inputs (weight coefficients) for all Q
frequencies, and each set contains N ×Q coefficients. Then

an N × Q ×MQ matrix Ŵ can be constructed to represent

all sets of inputs, with Ŵ(n, :, u) representing the inputs

of the IDFT structure at the n-th antenna for the u-th set

of coefficients. Details of constructing the 3-D matrix are

described as follows

1) Calculate the values of weight coefficients wm(ωq) for

m = 0, . . . ,M − 1 and q = 0, . . . , Q− 1 in (8).

2) Select one set of weight coefficients (an N × 1
vector) from each frequency (e.g. for the q-th sub-

carrier frequency, select one column from [w0(ωq),
. . ., wM−1(ωq)]), and combine them together to form

an N × Q matrix for all Q frequencies, representing

one set of inputs of the IDFT. Then, with all MQ sets

of inputs, the N ×Q×MQ matrix Ŵ is constructed.

B. STAGE TWO

The objective of the WBPFN method is to find appropriate

weight coefficients for each set of inputs that satisfy DM with

their corresponding IDFT outputs xn subject to the PAPR

constraints simultaneously. To achieve this, a set of auxiliary

variables {ψq}Q/2−1
q=−Q/2 is introduced. Details of the second

stage are given below.

1) For the u-th set of inputs Ŵ(:, :, u), u = 0, . . . ,MQ−
1, {ψq}Q/2−1

q=−Q/2 are randomly generated following a

uniform distribution within [0, 2π].

2) Form the matrix E = diag{ejψ−Q/2 , . . . , ejψQ/2−1}
and minimize the difference between EŴH(:, :, u)

VOLUME 4, 2016 3
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and the DFT of X, subject to PAPR ≤ ρ (ρ ≥ 1),
i.e.

min
X

||EŴH(:, :, u)− FX||2
subject to

angle((FX)(q, :, u)S(ωq, θML))

= angle(ŴH(q, :, u)S(ωq, θML))

||xn||22 = Q̂

PAPR(xn) ≤ ρ for n = 0, . . . , N − 1,

(13)

where

F = [dft−Q/2, . . . ,dftQ/2−1]
T , (14)

dftq =[1, e−j2πq/Q, . . . , e−j2π
(Q−1)q

Q ]

for q = −Q/2, . . . , Q/2− 1,
(15)

X = [x0,x1, . . . ,xN−1], (16)

xn = [xn(0), xn(1), . . . , xn(Q− 1)]T . (17)

Here, the proposed phase constraint

angle((FX)(q, :, u)S(ωq, θML))

= angle(ŴH(q, :, u)S(ωq, θML))
(18)

is introduced to represent a phase equalization in

the desired directions between the designed phases

angle((FX)(q, :, u)S(ωq, θML)) and the correspond-

ing desired phases angle(ŴH(q, :, u)S(ωq, θML)).
3) Similar to [35], the cost function in (13) is further

changed to find the minimization for the corresponding

n-th antenna, n = 0, . . . , N − 1,

||EŴH(n, :, u)− Fxn||2
=|| 1

Q
FHEŴH(n, :, u)− xn||2.

(19)

Then (13) changes to

min
xn

|| 1
Q
FHEŴH(n, :, u)− xn||2

subject to

angle((FX)(q, :, u)S(ωq, θML))

= angle(ŴH(q, :, u)S(ωq, θML))

||xn||22 = Q̂

PAPR(xn) ≤ ρ for n = 0, . . . , N − 1.

(20)

4) The problem in (20) can be solved by the ‘nearest-

vector’ method in [35]–[37] in combination with the

Newton’s method for the phase requirement in desired

directions.

According to the nearest-vector solution, we first ob-

tain xn subject to the constraint ||xn||22 = Q̂, which

is

xn =

√

Q̂

1
QF

HEŴH(n, :, u)

|| 1QFHEŴH(n, :, u)||2
. (21)

With the PAPR constraint (max |xn| ≤ √
ρ), if the

magnitudes of all elements in xn are less than or equal

to
√
ρ, then xn is a solution; otherwise, the element in

xn corresponding to the largest element in magnitude

in 1
QF

HEŴH(n, :, u), represented by sa, is given by√
ρejangle(sa) and the rest of the Q− 1 elements in xn

is calculated by (20); in other words, we re-run step 4
for the rest of the Q − 1 elements. Here the difference

is that the size of xn and 1
QF

HEŴH(n, :, u) in (20)

becomes (Q − 1) × 1, instead of the original Q × 1,

and the energy constraint changes to ||xn||22 = Q̂ − ρ.

If the PAPR constraint is still not satisfied by the new

results, we set the value of the largest element in xn
(size (Q − 1) × 1 in this iteration) in the same way as

in the previous iteration, and re-run step 4 for the rest

of the Q− 2 elements, and so on. The iterative process

ends when the PAPR constraint is satisfied [36], [37].

5) Now we consider the phase requirement at the desired

directions.

Based on the new weight coefficients, which are the

DFT of X calculated in the previous step, if the phase

constraint

angle((FX)(q, :, u)S(ωq, θML))

− angle(ŴH(q, :, u)S(ωq, θML)) = 0
(22)

is satisfied, then the desired phase pattern in the main-

lobe direction based on the new coefficients subject to

the PAPR constraint is achieved, and {ψq}Q/2−1
q=−Q/2 is

the proper set of auxiliary values, and we set u = u+1
and go back to step 1 for the (u+ 1)-th set of inputs.

If not, then we set

{ψq}Q/2−1
q=−Q/2 = {ψq}Q/2−1

q=−Q/2 −
f({ψq}Q/2−1

q=−Q/2)

f ′({ψq}Q/2−1
q=−Q/2)

,

(23)

where

f({ψq}Q/2−1
q=−Q/2) =angle((FX)(q, :, u)S(ωq, θML))

− angle(ŴH(q, :, u)S(ωq, θML)),
(24)

and run from steps 2 to 5 iteratively until the phase

constraint in step 5 has been met. Here we have used

the Newton’s method to optimize {ψq}Q/2−1
q=−Q/2 to limit

the corresponding phase differences (the left side of

(22)) to be smaller than itself in the previous iteration.

Note: {ψq}Q/2−1
q=−Q/2 on the right side of (23) represents

the previous value and on the left side denotes the latest

value. The value of the denominator f ′({ψq}Q/2−1
q=−Q/2)

is selected by trial and error.

IV. DESIGN EXAMPLES

In this section, examples are provided based on a 20-

element uniform linear antenna array (ULA) with and with-

out PAPR ≤ ρ (ρ ≥ 1) constraints to show the effectiveness

of the proposed solution. Both broadside and off-broadside

4 VOLUME 4, 2016
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FIGURE 2: Resultant beam responses based on the broad-

side design using eq. (5) for symbols (a) ‘00,01,11,00’,

(b)‘00,01,11,01’, (c)‘00,01,11,11’, (d)‘00,01,11,10’ without

PAPR constraint.
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FIGURE 3: Resultant phase patterns based on the broad-

side design using eq. (5) for symbols (a) ‘00,01,11,00’,

(b)‘00,01,11,01’, (c)‘00,01,11,11’, (d)‘00,01,11,10’ without

PAPR constraint.
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FIGURE 4: CCDF of PAPR based on the broadside design

using eq. (5) without PAPR constraint.
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FIGURE 5: CCDF of PAPR based on broadside design using

eq. (20) when ρ = 2.5.

design examples are provided. In the broadside design ex-

ample, the mainlobe direction is assumed to be θML = 90◦

and the sidelobe regions are θSL ∈ [0◦, 85◦] ∪ [95◦, 180◦],
sampled every 1◦. In the off-broadside design example,

θML = 120◦ and θSL ∈ [0◦, 115◦] ∪ [125◦, 180◦], sampled

every 1◦. The carrier frequency f0 is set to 2.4GHz, with

a bandwidth of 1.25MHz split into Q = 4 frequencies

(4-point IDFT). For each frequency, the desired response

is a value of one (magnitude) with 90◦ phase shift at the

mainlobe, i.e. QPSK where the constellation points are at

45◦, 135◦,−135◦,−45◦ for symbols ‘00’, ‘01’, ‘11’, ‘10’,

and a value of 0.1 (magnitude) with random phase over the

sidelobe regions. The threshold of the PAPR is set to ρ = 2.5.

The value of denominator f ′({ψq}Q/2−1
q=−Q/2) is set to be 4

by trial and error, and the value smaller than this cannot

guarantee the convergence of (22).

Moreover, complementary cumulative distribution func-

tion (CCDF) [30] is used to show the probability (PR) of

PAPRs exceeding a given value

PR(PAPR > PAPRvalue)

= 1− PR(PAPR <= PAPRvalue)
(25)
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FIGURE 6: Resultant beam responses based on the

off-broadside design using eq. (20) for symbols

(a) ‘00,01,11,00’, (b)‘00,01,11,01’, (c)‘00,01,11,11’,

(d)‘00,01,11,10’ when ρ = 2.5.
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FIGURE 7: Resultant phase patterns based on the

off-broadside design using eq. (20) for symbols

(a) ‘00,01,11,00’, (b)‘00,01,11,01’, (c)‘00,01,11,11’,

(d)‘00,01,11,10’ when ρ = 2.5.

A. BROADSIDE DESIGN EXAMPLE WITHOUT PAPR

CONSTRAINT

The resultant beam patterns using (5) without PAPR con-

straint at frequencies f0 − 2△ f , f0 −△f , f0 and f0 +△f
are shown in Fig. 2 for symbols ‘00,01,11,00’, ‘00,01,11,01’,

‘00,01,11,11’, ‘00,01,11,10’, and the corresponding phase

patterns are displayed in Fig. 3. It can be seen that all main

beams are exactly pointed to θ = 90◦ (desired direction) with

a reasonable sidelobe level, and the phase in the main beam

direction follows the given QPSK constellation diagram and

random over the sidelobe ranges. The beam and phase pat-

terns for other symbols are not shown as they have the same

features as the aforementioned figures. Moreover, as shown

in Fig. 4, the values of PAPR for all sets of inputs are in the

range of [1, 4].

B. BROADSIDE DESIGN EXAMPLE SUBJECT TO

PAPR ≤ ρ

The resultant beam and phase patterns for all symbols under

PAPR ≤ 2.5 by (20) is similar to the design without PAPR

consideration, as shown in Figs. 2 and 3, where all main

beams are pointed to the desired direction θ = 90◦ with a

given shift shift, and random phase shift over sidelobe range

with a low magnitude, demonstrating the satisfaction of the

DM requirements. The CCDF of the PAPRs for all sets of

inputs in this design is shown in Fig. 5. Here it can be seen

that the probability of PAPR is down to zero when the PAPR

is over the pre-defined threshold ρ = 2.5, indicating that the

PAPR constraint has been met in the design.

C. OFF-BROADSIDE DESIGN EXAMPLE SUBJECT TO

PAPR ≤ ρ

The resultant beam patterns for these four symbols are shown

in Fig. 6, where all the main beams are pointed to the

desired direction θ = 120◦ with low sidelobe level in other

directions. The corresponding phase patterns are displayed

in Fig. 7, where it can be seen that in the desired direction

120◦ the phases for these symbols are the same as the

required QPSK modulation pattern, while in other directions

the phase values are random. The beam and phase patterns

for other symbols have the DM characteristics as well. The

corresponding CCDF of PAPRs for all sets of inputs is similar

to the broadside design with PAPR consideration, as shown

in Fig. 5, where the range of PAPR for off-broadside design

is [1,2.5]; in other words, PAPR constraints PAPR <= 2.5
has been satisfied.

V. CONCLUSIONS

In this paper, to solve the potential high peak to average

power ratio problem in the antenna array design for IDFT

based multi-carrier directional modulation, a method called

wideband beam and phase pattern formation by Newton’s

method (WBPFN) has been proposed for the first time to

meet both the DM requirement and the PAPR constraint. As

shown in the provided broadside and off-broadside design

examples, the main beams of the design results have pointed
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to the desired direction and the phase responses followed the

given constellation diagram in the mainlobe and random in

the sidelobe, providing an effective directional modulation

performance. Moreover, the CCDF results has demonstrated

clearly that the PAPR requirement has been met effectively

by the proposed method.
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