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Abstract 

The processes that control chemical weathering of bedrock in the deep critical zone at a mm-

scale are still poorly understood, but may produce 100s of meters of regolith and substantial 

fluxes of silicate weathering products and thus may be important for modeling long-term, 

global CO2. Weathering controls are also difficult to ascertain, as laboratory determined 

dissolution rates tend to be 2-5 orders of magnitude faster than field determined dissolution 

rates. This study aims to establish (i) the incipient processes that control the chemical 

weathering of the Bisley bedrock and (ii) why weathering rates calculated for the watershed 

may differ from laboratory rates (iii) why rates may differ across different scales of 

measurement. We analyzed mineralogy, elemental chemistry, and porosity in thin sections of 

rock obtained from drilled boreholes using Scanning Electron Microscopy (SEM) with 

energy dispersive spectrometry, electron probe microanalysis, and synchrotron-based Micro 

X-ray Fluorescence (µXRF) and X-ray Absorption Near Edge Structure (XANES). 

Weathering ages were determined from U-series isotope analysis. Mineral specific 

dissolution rates were calculated from solid-state mineralogical gradients and weathering 

ages. Mineralogical and elemental transects across thin sections and SEM images indicate 

that trace pyrite is the first mineral to dissolve. Micro-XRF mapping at 2 µm resolution 

revealed sulfate in pore space adjacent to dissolving pyrite, indicating that the incipient 

reaction is oxidative. The oxidative dissolution of pyrite produces a low pH 

microenvironment that aids the dissolution of pyroxene and chlorite. The rate-limiting step of 

weathering advance, and therefore the creation of the critical zone in the Bisley watershed, is 

pyrite oxidation, despite the low abundance (~0.5 vol %) of pyrite in the parent rock. The 

naturally determined dissolution rates presented here either approach, converge with, or in 

some cases exceed, rates from the literature that have been experimentally determined. The 

U-series weathering age data on the mm-scale integrates the weathering advance rate over the 

~4.2 ± 0.3 kyrs that the weathering rind took to form. The weathering advance rate calculated 

at a watershed scale (from stream chemistry data) represents a contemporary weathering 

advance rate, which compares well with that calculated for the weathering rind, suggesting 

that the Bisley watershed has been weathering at steady-state for the last ~4 kyrs.  

 

1. INTRODUCTION 
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Identifying and quantifying deep Critical Zone (CZ) weathering mechanisms is crucial to 

understanding the landscape evolution of the Earth’s surface and the development and 

regulation of the CZ as a whole (Buss et al., 2008; 2013; Dosseto et al., 2012; Graham et al., 

2010; Holbrook et al., 2014; Rempe and Dietrich, 2014; Riebe et al., 2017; St. Clair et al., 

2015). In humid tropical catchments with very high weathering rates, weathering along deep 

CZ rock fractures likely controls the solute weathering flux to the hydrosphere (Chapela Lara 

et al., 2017; Kurtz et al., 2011; Schopka and Derry, 2012; White et al., 1998) and the flux of 

nutrients to the subsurface biosphere (Buss et al., 2005; 2008; 2010). Chemical weathering is 

one of the primary rate-limiting steps of the global geochemical cycle as a whole (Barth, 

1961). In this regard, chemical weathering also exerts a major control on the global carbon 

cycle, regulating atmospheric CO2 over geologic timescales (Berner et al., 1983; Walker et 

al., 1981). Therefore, controls on deep chemical weathering processes may be critical in 

terms of understanding and modeling global climate. However, the relative importance of 

chemical weathering in the deep CZ versus that in soils, and the processes that control deep 

weathering rates (whole-rock and mineral-specific), are still poorly understood (Anderson 

and Dietrich, 2001; Buss et al., 2005; 2008; 2010; Tipper et al., 2006). 

Hot-spots of chemical weathering may dominate global silicate weathering fluxes. In 

particular, the tropical regions supply the majority of the dissolved Si that reaches the world’s 

oceans, despite covering only a quarter of the land mass (Meybeck, 1987; Stallard and 

Edmond, 1983) and report some of the highest weathering rates in the world (e.g., Buss et al., 

2008; Dosseto et al., 2012; Schulz and White, 1999; White and Blum, 1995). Similarly, 

volcanic islands are weathering hotspots, where dissolution of Ca and Mg bearing silicate 

rocks leads to an estimated sequestration of 30-35% of global CO2 (Dessert et al., 2003). On 

volcanic islands, deep CZ weathering rates are 2 to 5 times higher than surface weathering 

rates (Rad et al., 2007), resulting in ~15 times more CO2 (of the sequestered 30-35%) being 

consumed via groundwater flow along subsurface bedrock fractures, versus that consumed by 

surface waters reacting with regolith (Schopka and Derry, 2012). Throughout this study, 

regolith is defined as all material overlying or surrounding intact bedrock, including the 

saprolite (an isovolumetric weathering product that retains the structure of the original parent 

material) and the soil (the portion of the weathering profile that no longer retains any of the 

parent structure).   
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Some previous attempts to quantify weathering rates in the field have extrapolated surface 

processes to the deep (e.g., McKean et al., 1993; Pavich et al., 1985), or averaged elemental 

loss over the entire regolith profile or watershed (e.g., Gaillardet et al., 2011; Schulz and 

White, 1999; Von Blanckenburg, 2005; White et al., 2001). These methods generally require 

the assumption of a steady-state weathering profile, whereby the weathering advance rate 

(WAR) through the bedrock must equal the surface erosion rate i.e., the profile thickness is 

constant (Fletcher et al., 2006; White, 2002). Several studies have proposed mechanisms by 

which processes at the atmosphere-regolith interface are coupled with those at the regolith-

bedrock interface, for example, via O2 infiltration (Fletcher et al., 2006), temperature, runoff, 

erosion (West et al., 2005) and precipitation (Riebe et al., 2004). However, very few studies 

have tested the steady-state assumption (Riebe et al., 2004), for example, by comparing 

surface erosion rates determined from cosmogenic isotope abundances to regolith production 

rates calculated from U-Th disequilibria (e.g., Carretier et al., 2014; Dellinger et al., 2015; 

Dosseto et al., 2008; 2012). The work presented here aims to address this knowledge gap by 

comparing weathering rates calculated over different spatial and temporal scales, as well as 

depths, to test the steady-state assumption. 

Extrapolation of surface observations to the deep critical zone assumes that the same 

processes, with the same controls, function in both zones. Within much of the humid tropics, 

the surface ecosystem is separated from deep ecosystems by thick regolith (10s-100s of 

meters deep), depleted in base cations and mineral nutrients and characterized by a sharp 

weathering front, producing nutrients close to the bedrock-regolith interface (e.g., Buss et al., 

2010; 2017). As a result, the surface ecosystem is reliant upon the shallow recycling of 

nutrients (Herrera et al., 1978a; 1978b; McDowell, 1998; 2001; Stark and Jordan, 1978; 

White et al., 1998) with atmospheric inputs an integral source of nutrients (e.g., McTainsh, 

1980; Pett-Ridge, 2009; Stoorvogel et al., 1997). Also, in some regolith profiles, O2 

concentrations decrease with depth as CO2 increases substantially (Brantley et al., 2014; Buss 

et al., 2017; Liptzin et al., 2011; Richter and Markewitz, 1995). This partitioning makes it 

probable that the weathering mechanisms at the bedrock-regolith interface are fundamentally 

different from those at the surface.  

If the weathering mechanisms at the surface are decoupled from those at depth, both zones 

must be examined individually at a spatial scale consistent with the extent of the reactions. 

For example, in the Río Icacos watershed of Puerto Rico, petrographic, mineralogical and 
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elemental analysis across a granitic bedrock-regolith transition of about 50 cm, revealed that 

complete depletion of plagioclase, chlorite and apatite occurs over the entire transition and 

complete hornblende depletion only occurs over the outer 7 cm (Buss et al., 2008; 2010; 

Turner et al., 2003). In contrast, within the same weathering profile, biotite depletion begins 

in the transition zone (Buss et al., 2008), but continues throughout the overlying 4-6 m of 

saprolite (Murphy et al., 1998) and quartz dissolves (partially) over most of the saprolite 

profile (2.4 – 8.5 m) (Schulz and White, 1999). If solid-state dissolution rates of these 

minerals were integrated over the entire regolith or watershed without an upscaling treatment, 

the rates would be underestimated as they are likely slower in the regolith than at the rock-

regolith interface where minerals are fresher. Underestimation of rates may then lead to 

misinterpretation of their influence on spatially discrete CZ processes (e.g., vegetation 

growth, subsurface microbial cycles and groundwater evolution). Furthermore, 

underestimation by inappropriate averaging of weathering data over entire regolith profiles or 

watersheds may contribute to the so-called field-laboratory discrepancy of 2-5 orders of 

magnitude between lab calculated and field calculated mineral dissolution rates (e.g., White 

and Brantley, 2003), further highlighting the need for greater knowledge of deep CZ 

weathering rates..  

Quantification of natural weathering rates, in the context of other CZ processes is essential to 

modeling the evolution of the continental surface. To establish and model the controls on 

whole-rock weathering rates, mineral-specific weathering rates, and weathering export rates, 

and therefore the response of the CZ to current and future environmental drivers, the 

identification of the weathering mechanisms and rate-limiting steps are also crucial. 

Extrapolating from chemical kinetics, the rate-limiting step can be conceptualized as the 

‘bottleneck’ in the ‘supply chain’ of nutrients and soil from the bedrock to the rest of the CZ, 

limiting its overall productivity (Field et al., 2015). For instance, regardless of whether a 

mineral present in the rock has a fast kinetic dissolution rate or not, if the reactive fluid is 

highly saturated with regard to a weathering product (i.e., at thermodynamic equilibrium), or 

undersaturated with a reactant (e.g., CO2), then the mineral dissolution will proceed more 

slowly than the kinetic rate. For example, in the Landscape Evolution Observatory, Arizona, 

USA, van Haren et al. (2017) found that reduced CO2 diffusion into pore space limited basalt 

weathering rates, shifting the balance towards equilibrium. 
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Chemical weathering of rocks commonly begins with grain-scale infiltration of meteoric 

water, which is largely controlled by the texture of the parent material (e.g., grain size 

distribution, permeability, porosity) (Bazilevskaya et al., 2013). Mineral dissolution rates 

tend to be slow at this initial stage, as they depend on the rate of diffusion into (and out of) 

the solid rock (transport limited). Subsequent micro- or macro-fracturing or other types of 

porosity development allows advective infiltration of reactive fluids into the rock and greater 

access to fresh minerals, enabling chemical weathering to proceed more rapidly (Buss et al., 

2008; Navarre-Sitchler et al., 2011; Mironenko and Cherkasova, 2017). As porosity develops, 

the advance of the weathering front may cease to be transport-limited, and instead become 

kinetics-limited (Navarre-Sitchler et al., 2011). 

Regardless of the incipient process by which water infiltrates fresh parent rock and initiates 

chemical weathering, if water-rock interactions persist and if the chemical WAR (weathering 

advance rate) is greater than the physical erosion rate, a rind may form. Weathering rinds are 

residual outer layers of chemical alteration. They are generally formed isovolumetrically and 

are composed of secondary minerals (e.g., metal oxides and clays) and weathering-resistant 

primary minerals (e.g., quartz) (Buss et al., 2013; Navarre-Sitchler et al., 2011; Pelt et al., 

2008; Sak et al., 2004; 2010). Often visible to the naked eye, rinds are commonly denoted by 

discoloration and increased porosity, relative to the un-weathered parts of the rock. Once a 

rind has developed, grain-scale infiltration of meteoric water to the fresh rock is then 

controlled by the permeability and diffusivity of the rind’s pore network (Navarre-Sitchler et 

al., 2009). Assuming that rind thickness is directly related to the time over which weathering 

has occurred, mineralogical and elemental gradients across weathering rinds can be used not 

only to identify weathering mechanisms, but also to determine relative rates of mineral-

specific reactions over the timescale of rind development.  

Due to issues of accessibility (e.g., vegetation cover, thick regolith and conservation 

restrictions), few studies are conducted to determine the weathering mechanisms, whole-rock 

and mineral-specific weathering rates and the rate-limiting step along deep bedrock fractures, 

where the majority of weathering occurs in the tropics (Hynek et al., 2017). Here we 

document in-situ weathering processes that occur in a deep, tropical CZ, located in the 

Luquillo Experimental Forest on Puerto Rico, an island of volcanic origin. We used U-Th 

isotopic disequilibria across weathering rinds to determine whole-rock weathering rates and 

to provide a time constraint to calculate mineral-specific dissolution rates over the mm-scale 
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weathering hot-spot (Buss et al., 2013; 2017). This method affords a mechanistic 

understanding of the initial formation of the CZ based directly on observations of deep CZ 

weathering reaction fronts. We also compared our rates to laboratory-determined mineral 

dissolution rates from the literature and to whole-rock weathering rates measured on different 

spatial and temporal scales to identify and understand the scale-dependence of our rates. 

 

2. METHODS 

2.1 Field site 

The Bisley 1 watershed is one of five neighboring catchments within the Luquillo 

Experimental Forest in NE Puerto Rico and is a key study site of the Luquillo Critical Zone 

Observatory (LCZO) (Fig. 1). These catchments feed into the Mameyes River, which 

discharges into the Atlantic Ocean. The 30+ m thick regolith (Buss et al., 2013) is 

interspersed with bedrock corestones of the Fajardo formation, a marine bedded meta-

volcaniclastic rock that was initially deposited in a near sea-surface complex ~100 Ma 

(Briggs and Aguilar-Cortés, 1980; Jolly et al., 1998). The area then underwent low-grade 

contact metamorphism, including hydrothermal alteration, as a result of the subsequent 

intrusion of the nearby Río Blanco quartz diorite stock ~60 Ma (Smith et al., 1998).  

The Bisley watershed’s topography is characterized by steep slopes that vary in elevation 

from 260 to 400 masl over a 6.7 km2 area (Scatena, 1989). The climate is humid and 

subtropical, with precipitation in every month. Mean annual temperatures decrease with 

elevation, from around 23.5-27 oC in the lower elevations to 17-20 oC in the upper reaches 

(Schellekens et al., 2004). Rainfall in the Luquillo Mountains increases with altitude from 

about 2500 to 4500 mm yr-1 over 1200 m of elevation (Garcia-Martino et al., 1996), with the 

Bisley watersheds experiencing an average rainfall of 3482 mm yr-1 between 1988 and 2003 

(Heartsill-Scalley et al., 2007). Of this rainfall, approximately 28% falls in less than 10% of 

calendar days (Scatena, 1989), resulting in a rapid streamflow response that is dominated by 

fast, near-surface flow paths (Schellekens et al., 2004). Despite the evident near-surface flow 

paths, deeper infiltration must occur, as the Bisley 1 stream flows year round. The deeper 

flow paths likely run through the bedrock which has regularly distributed fractures (Hynek et 

al., 2017). Indeed, Mg isotope signatures in the Bisley 1 stream water at base flow have been 
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interpreted to reflect substantial chlorite dissolution (Chapela Lara et al., 2017), which only 

occurs at rock-regolith interfaces, deep in the Bisley CZ (Buss et al., 2017). 

 

2.2 Field sampling and sample preparation 

In 2010 a wireline drilling campaign was conducted on Road 915, near the stream gage for 

the Bisley 1 catchment and along the spine of the local ridge that borders the catchment (Buss 

et al., 2013). Samples in this work originate from borehole, B1W1 (N18 18.933 W65 44.748, 

referenced to NAD83 datum; see Fig. 1) drilled to 37.2 m depth (Buss et al., 2013). Drilling 

was conducted by Geo Cim Inc. (Guaynabo, Puerto Rico), using a hydraulic rotary drill with 

diamond-impregnated drill bits. Bisley 1 stream water was used as the only drilling fluid. The 

weathering advance rate of the Bisley 1 regolith has also been previously investigated at 

location B1R (Fig. 1) by Dosseto et al. (2012). 

Extensive optical petrographic microscopy and preliminary SEM of thin sections from 

throughout this borehole and another borehole noted abundant weathered fracture surfaces in 

the recovered rock, with visible rinds up to 15 mm thick (Buss et al., 2013). Most of these 

rinds were 3-10 mm thick. For the present study, we selected two adjacent samples, B1W1-1-

4 and B1W1-1-5 (from a depth of 3.4 m), which we deemed representative as they have 

approximately 6 mm thick weathering rinds and unweathered mineral and elemental 

compositions (i.e., at the region of the thin sections furthest from the rinds) close to the mean 

for the bedrock (average of 18 samples; Buss et al., 2013). These two samples are analogues, 

as they are from the opposing sides of a fracture, meaning they have undergone the same 

degree of weathering for the same period of time and both display the same thickness of rind. 

B1W1-1-5 was used for elemental and mineralogical analysis and cut perpendicular to the 

fracture surface (Fig. S1). Following vacuum impregnation with Epo-Tek 301 epoxy resin, 

multiple 30 µm thick petrographic thin sections were then made with dimensions of 27 x 46 

mm (Spectrum Petrographics, Inc., Vancouver, WA) to cover the entire weathering profile of 

the sample. Thin sections were then finished with a 0.5 µm diamond polish. To minimize the 

interaction of samples with water, the material was only exposed to an anhydrous 

cooling/lubricant fluid throughout the preparation process. Sample B1W1-1-4 was reserved 

for U-Th analysis and inductively coupled plasma – optical emission spectrometry (ICP-

OES) (Fig. S2). 
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2.3 Microscopic analysis 

To determine the spatially resolved, elemental composition of the weathering rocks (which 

can then be used to determine the mineralogical composition), a Hitachi S-3500N scanning 

electron microscope (SEM) was used in conjunction with a Thermo Scientific 10 mm2 

Silicon Drift Detector (SDD) (35o take off angle) to couple backscattered electron (BSE) 

imaging with micrometer scale X-ray elemental maps traversing from the unweathered parent 

material up to the edge of the weathered fracture surface (Fig. S1B). The SEM was operated 

at an accelerating potential of 20 kV for all X-ray elemental maps. The elemental maps were 

produced by rastering the electron beam automatically with the SDD recording the number of 

X-ray counts at different excitation energies (which correspond to different elements). 

Elemental X-ray maps were produced with a 1024 x 1024 pixel resolution with 40 frames per 

map and a frame time of 100 s, resulting in an average dwell time of 95 µs. To determine 

mineral modal abundances, phase analysis was conducted on the elemental X-ray maps using 

the Noran System Seven (NSS) V3.2 software. Briefly, pixels with similar X-ray spectra are 

grouped together and attributed by the user to a specific mineral, based on the elemental 

composition and crystal morphology. Porosity was determined from the areas of X-ray maps 

that have an elemental composition of SiO2 (the glass of the thin section) and identified by 

the user as visually distinct from quartz (pore space appears black and quartz as grey on BSE 

images). To calculate the mean area percentages of each mineral, five X-ray phase analysis 

maps from the furthest area inboard of the fracture surface, measuring 2.8 mm by 2.1 mm 

were averaged. Then the two-dimensional area percentages were projected into the third-

dimension to produce volume percentages of minerals, assuming a homogenous distribution 

and that the dimensions of the mineral grains are the same in the z dimension as in the xy, 

with the uncertainty presented as 1SE. To obtain statistically significant counts and a good 

signal/noise ratio for the X-ray mapping, an accelerating voltage of 20 kV was necessary. X-

ray phase analysis was used in favor of XRD due to the higher sensitivity and spatial 

resolution of the method, previously XRD analysis of the Bisley bedrock failed to detect the 

presence of pyrite which was detected by SEM (Buss et al., 2013). 

To determine profiles of elemental and mineralogical changes across the rock weathering 

fronts, five X-ray map transects were produced parallel to the propagation of the weathering 
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front, running from the fracture surface into the parent rock (Fig. S1) and averaged. The 

uncertainty is presented as one standard error of the mean (1SE) of the five transects and 

propagated through all calculations using standard error propagation rules. 

To corroborate the results of the elemental X-ray maps, bulk solid-state elemental 

concentrations were also analyzed by ICP-OES following lithium metaborate fusion, on 

samples drilled along a ~50 mm transect in sample B1W1-1-4 using a handheld rotary tool 

with a diamond impregnated bit (Fig. S2). The uncertainty of the ICP-OES data is presented 

as 1SE of a local rock standard analyzed repeatedly over several years, or where larger, the 

detection limit of the method. 

Element oxide compositions of minerals were determined quantitatively on a five-

spectrometer Cameca SX100 electron microprobe at the University of Bristol, run at 20 KeV 

using a 10 nA regulated beam current, with a focused beam. To measure K, Ca, Cr and Ti, 

LPET crystals were used; TAP crystals for Na, Mg, Si and Al and an LLIF crystal for Fe and 

Mn. The set up was then calibrated against a range of mineral, oxide and metal standards. 

Counting times for most elements were 30 s on peak and 15 s on the background. Na was 

measured first to prevent migration, however, due to the high concentrations of Na no 

mobility was observed. A diopside standard and amphibole standard were run in triplicate as 

unknowns at the beginning of each analytical session.  

Mineral diameters were measured from BSE images using the ImageJ image processing 

software (National Institute of Mental Health, Maryland). The sample size was 50 for each 

mineral and the diameter is presented as the mean of this population with the uncertainty 

presented as 1SE. An SEM image’s scale bar was measured 100 times, to determine an 

accuracy of -0.06 % between the measured and actual length, with a precision of 3% from the 

average measured length. 

 

2.4 Weathering alteration analyses 

2.4.1 CIA 

The chemical index of alteration (CIA) of silicate rocks was calculated to document the loss 

of mobile base cations Ca, Na and K, relative to Al, which is assumed to be relatively 

immobile (Nesbitt and Young, 1982): 
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ܣܫܥ ൌ  ஺௟మைయሺ஺௟మைయା஼௔ைା ே௔మைା ௄మைሻ  ൈ  ͳͲͲ                                         (1) 

The CaO included in the CIA calculation includes only that which is incorporated in silicate 

minerals and excludes the fraction present in carbonates or phosphates, if present (Bahlburg 

and Dobrzinski, 2011; Fedo et al., 1995). However, as the CIA relates the losses to Al2O3, it 

actually documents the degree of weathering of aluminosilicate minerals, with particular note 

to feldspars weathering to clay minerals. Values of CIA for parent material are typically ≤55 

and increase with the degree of weathering to a maximum of 100 (Nesbitt and Young, 1982). 

The CIA therefore gives a rough indication as to what depth in the profile can be deemed as 

unweathered parent material for other analyses such as U-series and the mass transfer 

coefficient (as described below), where a parent sample is required. 

2.4.2 Mass transfer coefficient 

Chemical weathering produces profiles that record (i) the loss of mobile components 

(elemental or mineralogical) from a parent rock, (ii) the addition of components from external 

sources and (iii) the translocation of elements within a profile. By definition, the total mass of 

an immobile component in a weathering profile remains the same in the weathered material 

as in the parent material. However, when mobile components are lost from the system, 

lowering the density of the material, the solid-state concentration (or mass fraction) of the 

immobile component increases. Therefore, by normalizing the measured solid-state 

concentrations of mobile components (elements or minerals) to an immobile component, the 

net mass loss or gain of the mobile component, relative to the parent material can be 

determined (Anderson et al., 2002; Brimhall and Dietrich, 1987): 

߬௜ǡ௝ ൌ ൬஼ೕǡೢ஼೔ǡ೛஼ೕǡ೛஼೔ǡೢ൰ െ ͳ                                              (2) 

where Ĳ = mass transfer coefficient,   = immobile component,   = component of interest,   = 

mass fraction (wt %), p = parent material and   = weathered material. When Ĳi,j = 0, no 

mobilization of j has occurred relative to the parent composition. When Ĳi,j = -1, component j 

is completely depleted and when Ĳi,j >0, component j has been gained relative to the parent 

composition. Therefore, Ĳ can be used to track the progress of weathering through a profile.  

To establish the least mobile component for the calculation of Ĳ, the immobility of 

components were tested using volumetric strain. Isovolumetric weathering involves the 

removal and/or addition of components to the weathering profile with neither compaction nor 
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dilation (Gardner, 1980). As weathering rinds are isovolumetric weathering products, it 

follows that the change in volume resulting from volumetric strain should be near zero for an 

immobile element (Ague, 1994; Brimhall and Dietrich, 1987), calculated by: 

௜ǡ௪ ൌ ఘ೛஼೔ǡ೛ఘೢ஼೔ǡೢߝ          െ ͳ                                             (3) 

where ߝ௜ǡ௪ = the volumetric strain (Fig. S4) in the weathered (w) sample with respect to a 

putative immobile component (i), ߩ௪ = the bulk density of the weathered material (g cm-3), ߩ௣ = the bulk density of the parent (p) material (g cm-3), ܥ௜ǡ௪ = the mass fraction of 

component i in the weathered sample (g g-1) and ܥ௜ǡ௣ = the mass fraction of component i in 

the parent material (g g-1). 

We quantified mass transfer (Ĳ) across the Bisley weathering rind profiles using Eq. 2, which 

is applicable when the parent material is homogeneous and an immobile element is present in 

both the parent and weathered materials. The Fajardo formation bedrock is of homogenous 

age (Albian) and possesses several relatively immobile elements that are readily measured 

using X-ray elemental analysis (Ti, Al, Si) in the parent and weathered material as 

determined above. Other immobile elements such as Zr are present in rock but in very low 

concentrations and heterogeneously distributed, meaning that the uncertainty associated with 

them is too great to make meaningful interpretations when propagated through calculations. 

The composition of the rock ranges between andesite and basaltic andesite and the grain size 

varies (Buss et al., 2013); geochemical and textural heterogeneity were accounted for by 

averaging multiple transects along the thin sections from the parent material, through the rind 

to the fracture surface, perpendicular to the weathering front (Fig. S1).  

2.4.3 Mineral specific dissolution rates 

White (2002) showed that a solid-state depletion profile for a given weathering component 

within regolith can be used to calculate a rate of loss for the component as a function of the 

WAR (also referred to as the weathering velocity, Fig. S3). However, to calculate mineral-

specific dissolution rates, Ĳ cannot be used as it is dimensionless. Therefore, we convert Ĳ to 

an equivalent parameter, Cw (mol kg-1): 

௪ܥ         ൌ ௝ǡ௣൫߬௜ǡ௝ܥ ൅ ͳ൯                                               (4) 
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where Cj,p
 is the mass fraction of element j in the parent material. Assuming 1-D vertical 

transport, a decrease (Fig. S3) in the normalized concentration of a mineral or element from 

the initial mass fraction (e.g., g mineral g-1 rock) C0, at depth Z0, to a weathered state (Cw) at 

depth Z1, represents a loss of that component from the parent material (White, 2002). In the 

case of an element, this loss is only represented if it is not incorporated into a secondary 

mineral. In a soil or regolith profile formed on homogeneous parent material, the Cw of a 

weathering, mobile component generally decreases with distance from the parent material, 

describing a weathering reaction front in reference to the bedrock-regolith interface. In a 

weathering rind profile, weathering reaction fronts are defined relative to the fracture surface, 

tracking loss of mobile components from the un-weathered interior of the rock towards the 

fracture. In either case, the thickness of the weathering reaction front is inversely proportional 

to the reaction time, such that sample points furthest from the un-weathered parent represent 

the longest reaction times.  

If the weathering profile thickness is in steady-state (i.e., constant with time) or quasi-steady-

state (where the thermodynamics of the system change slowly enough that equilibrium is 

maintained (Lichtner, 1988) and therefore conditions such as the WAR are constant over the 

timescale of profile development, mineral-specific dissolution rates can be estimated from an 

approximated linear gradient of the mineral’s weathering reaction front and the WAR (Fig. 

S3; White, 2002):  

௠ݎ ൌ ͳͲିଷ ଵఝ௦ ቀௐ஺ோ௕ೞ ቁ      (5) 

where  ୫ (mol m-2 s-1) is the mineral-specific, surface-normalized dissolution rate; ɔ = mass 

fraction of the mineral in the weathering material (g g-1); S = specific surface area of the 

mineral (m2 g-1);     = solid-state weathering advance rate (m s-1);  ୱ= slope of solid-state 

weathering gradient (m kg mol-1) representing Cw with depth (Eq. 4, Fig. S3) and 10-3 is a 

unit conversion factor.  

Some weathering rind rate models incorporate a parameter to describe diffusive transport 

(e.g., Navarre-Sitchler et al., 2011; Sak et al., 2004), which is used to derive a time constraint 

by relating diffusion coefficients to the thickness of the rind. In the present study, U-series 

isotope measurements were used to more directly determine a time constraint (WAR) for 

Equation 5. The weathering gradient (bs) simply describes measured mass changes across a 
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weathering profile, and therefore Equation 5 can be used to estimate mineral-specific 

weathering rates in diffusive or advective weathering regimes.  

In a steady-state weathering profile, a gradient in the mass transfer of a mineral (Ĳ or Cw, Eqs. 

2 and 4) with depth indicates where in the profile a reaction is occurring, that is, it defines a 

mineral weathering front and is inversely proportional to the rate (Eq. 5; Fig. S3). Locating 

the zone of reaction enables interpretation of rates in the context of other spatially variable 

parameters, such as porosity and pO2. We calculated mineral-specific weathering rates (Eq. 

5) using gradients determined from changes in mineral volume across the Bisley weathering 

rinds; these gradients track congruent mineral dissolution or  transformation into a secondary 

mineral (e.g., kaolinite), but do not track incongruent dissolution. 

2.4.4 Geometric surface area 

Previous workers (Gautier et al., 2001; Mellott et al., 2002; White et al., 1996) have 

suggested that geometric rather than BET surface areas are more representative of reactive 

surface areas in the weathering environment. Therefore, to calculate the mineral specific 

surface area for Eq. 5, a geometric approach was used (Helgeson et al., 1984; White and 

Brantley, 2003), based on the average mineral grain diameter, density, geometry and 

roughness: 

ݏ   ൌ ଺ஃఘ೘஽                                                             (6) 

where, S = specific surface area of the mineral (m2 g-1); Ȧ = roughness factor (m2 m-2) (found 

to be 7 for a wide range of silicate mineral sizes (White and Peterson, 1990)); ߩ௠ = mineral 

density (g cm-3) and D = average mineral grain size diameter (µm). 

 

2.5 U-Th disequilibria 

The uranium-thorium (U-Th) decay series can be used to directly measure the length of time 

since the introduction of water into a rock sample (e.g., Chabaux et al., 2003; 2013; 

Dequincey et al., 1999; 2002; Dosseto et al., 2008; 2012; Hansen and Stout, 1968; Ma et al., 

2010; 2012; 2013; Pelt et al., 2008; Rosholt et al., 1966). The parent nuclide 238U decays with 

a half-life (T1/2) of ~4.5 Ga to 234U (T1/2 = 244 kyr) which subsequently decays to 230Th (T1/2= 

75 kyr). The half-lives of the two daughter radionuclides are on comparable timescales to 
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Earth surface processes such as chemical weathering. If a system remains undisturbed for 5 

decay half-lives of 234U (roughly >1.3 Myr) then the U-series system is said to be in secular 

equilibrium (i.e., the flux from the daughter nuclide is equal to the flux of the parent to the 

daughter). When secular equilibrium is achieved, the daughter/parent activities (number of 

atoms of an isotope multiplied by its decay constant) are equal.  

The order of mobility of the nuclides is generally viewed as 234U>238U>Th (Chabaux et al., 

2003; 2008; Dosseto et al., 2008; 2012; Ma et al., 2013). Thus, a U-series disequilibrium 

(deviation from secular equilibrium) is established when U-bearing phases are exposed to 

reactive fluids (e.g., groundwater). Disequilibria in weathered material tends to show 

(234U/238U) < 1 and (230Th/238U) > 1 (parentheses indicate activity ratios, hereafter). The 

extent of disequilibria therefore records the time passed since the mineral-water interfacial 

area was great enough to mobilize U. 

To determine U-Th isotope ratios across the Bisley weathering rinds, a transect of ten points 

was drilled on sample B1W1-1-4, extending 48 mm from the un-weathered interior of the 

rock (representing parent material) to the fracture surface (Fig. S2). A sample at each point 

was extracted by drilling with a 3-mm diameter carbide-tipped drill bit until a mass of ~100 

mg was obtained. Each sample was then homogenized and crushed using an agate mortar and 

pestle. Samples were then spiked with ~30 mg of a 236U-229Th enriched solution and 

dissolved in a mixture of HClO4, HF and HNO3. Once dissolved, samples were heated to 

100oC to evaporate fluorides and were then dried down by step evaporation at 150oC, 170oC 

and 200oC. Samples were redissolved in 1.5 M HNO3 and loaded onto columns containing 

EichromTM TRU resin to separate U and Th (Luo et al., 1997). The U and Th isotope ratios 

were measured on a Thermo Neptune Plus multi-collector ICP-MS at the Wollongong 

Isotope Geochronology Lab, University of Wollongong, following the method described in 

Sims et al. (2008). The precision and accuracy of the activity ratios were determined by 

analyzing the gravimetric standard, Quartz Latite (QLO-1) returning values of 1.006 ±0.001 

(2SE) and 1.005 ±0.004 (2SE) for (234U/238U) and (230Th/238U), respectively.  

 

2.6 U-Th Modeling 

The calculation of the weathering advance rate of the rinds (WARrind) assumes that U-series 

isotope fractionation within the system is controlled by weathering processes (Chabaux et al., 
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2008; 2011; 2013; Dequincey et al., 2002; Dosseto et al., 2008; Ma et al., 2010; Pelt et al., 

2008). The fractionation (i.e., deviation from secular equilibrium) results from the 

mobilization of radionuclides, which can be expressed in terms of loss and/or gain to the 

system. Loss processes include mineral dissolution and nuclide desorption from secondary 

minerals. Nuclides can be added to the system via illuviation processes plus sorption and co-

precipitation of nuclides to minerals such as Fe(III)-(hydr)oxides or clays. Aeolian deposition 

can be another source of nuclides; however, this is generally irrelevant to weathering rind 

studies. Assuming net losses and gains are constant with time and the weathering advance is 

unidirectional, the temporal evolution of the number of these nuclides per gram of sample can 

be described by Eq. 7 to 9 (Chabaux et al., 2013; Dequincey et al., 2002; Dosseto et al., 2008; 

Ma et al., 2012). All of these equations use first order kinetic rate laws (dependent on the 

concentration of one reactant) to describe continuous nuclide loss or gain (open system 

conditions) and zero order rate laws (independent of the concentration of the reactants) to 

describe nuclide gain. 

ୢమయఴ௎ୢ௧ ൌ ଶ݂ଷ଼ ଴ܷଶଷ଼  െ ݇ଶଷ଼ ܷଶଷ଼ െ ߣଶଷ଼ ܷଶଷ଼                                          (7) 

 

ୢమయర௎ୢ௧ ൌ ଶ݂ଷସ ଴ܷଶଷସ െ ݇ଶଷସ ܷଶଷସ െ ߣଶଷସ ܷଶଷସ െ ଶଷ଼ߣ ܷଶଷ଼                             (8) 

 

ୢమయబ்௛ୢ௧ ൌ ଶ݂ଷ଴ ݄ܶ଴ଶଷ଴ െ ݇ଶଷ଴ ݄ܶଶଷ଴ െ ߣଶଷ଴ ݄ܶଶଷ଴ ൅ ଶଷସߣ ܷଶଷସ                        (9) 

where: ߣ௝ = decay constant (yr-1) of nuclides ݆  (here 238U, 234U and 230Th); ௝݇ = first order 

nuclide loss constant (yr-1) for leaching of nuclides ݆; and ݂ ௝  = nuclide constant (yr-1) of 

nuclides ݆ gained by the regolith. Input fluxes are presented as a proportion of the number of 

atoms of nuclides added per year to the assumed initial quantity (expressed as ௝݂ ଴ܰ). 
By solving Eq. 7 to 9, the theoretical activities of the different nuclides in the sample at time ݐ were determined. These activities were then used to calculate the two independent activity 

ratios (234U/238U) and (230Th/238U). The nuclide activities and the activity ratios are expressed 

as a function of the mobility parameters (௝݇ǡ ௝݂), the initial activities of the different nuclides 

and time (ݐ) (Chabaux et al., 2013). For these calculations, ݐ is the time elapsed between the 
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initial reference state (0 = ݐ) and the current stage of weathering. If the reference state sample 

has not undergone sufficient weathering (where mineral-water interactions are great enough 

that U series isotopic fractionation occurs), then ݐ represents the weathering age of the rock. 

The reference state, 0 = ݐ, was taken as the furthest sample inboard of the weathering front, 

with a distance of ݖ from the sample being considered. Even if the sample used as the 

reference state has undergone weathering it can still be used to determine the WARrind, as ݐ 
(kyr) will be the interval of time passed since the considered sample was at the same relative 

position to the weathering front as the reference state, giving depthǡ  ,.WARrind i.e ;(mm) ݖ

velocity (mm kyr-1) was then calculated by Eq. 10. ܹܴܣ௥௜௡ௗ ൌ ݖ Τݐ݀                                                         (10) 

If all mobility parameters are constrained, and nuclide fractionation only occurs at the 

weathering front, then the analysis of just two points (the reference state and a point that has 

undergone weathering) are required to calculate ݀ݐ and thus WARrind. Although this is 

theoretically sound, in practice, parent rock samples are not always at secular equilibrium and 

the mobility parameters are not usually defined.  

For simplicity, nuclide loss and gain were assumed to be constant across the sample (from the 

unweathered parent rock into the rind) (Dequincey et al., 2002; Ghaleb et al., 1990; Ma et al., 

2012). The assumption of constant loss and gain is valid because the processes governing the 

loss and gain of nuclides is likely to be the same across the mm-scale of the study. The 

measured disequilibria in the samples were then used to determine the mobility parameters 

and the age of the individual samples relative to the parent sample (Chabaux et al., 2013). 

WARrind was then calculated from the variation of weathering age of individual samples as a 

function of distance (ݖ) from the parent sample, assuming the WARrind is constant over ݖ. As 

Th may be mobile (Ma et al., 2010; Dosseto et al., 2014), this system had 7 unknowns: six 

mobility parameters (a loss and gain parameter for each isotope) to be determined plus one 

weathering age (t) for each sample. Assuming that WARrind and the aforementioned mobility 

parameters are constant with time, (234U/238U) and (230Th/238U) ratios were needed for a 

minimum of four samples from different depths in the weathering profile to calculate Eq. 7-9. 

Using the U-Th isotope ratios measured on the 10 samples from our 48 mm transect, these 

equations yielded the individual change in time (݀ݐ) since each sample at distance z from the 

reference sample resided in a spatially and chemically equivalent position as the parent 
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sample (Eq. 10) (Chabaux et al., 2013). By satisfying the two variables ݀  and z for each ݐ

sample, we calculated the individual weathering age of each sample and then an average 

WARrind of the profile. No volume correction was required as the profile weathered 

isovolumetrically (Fig. S4).  

The unknown parameters and WARrind were constrained using a model that utilizes a non-

linear, least-squares problem solving algorithm: the MatLabTM function, lsqnonlin (e.g., 

Chabaux et al., 2011; Dosseto et al., 2014; Ma et al., 2012). The model was solved by 

minimizing the sum of the squared differences between the known activity ratios, (234U/238U) 

and (230Th/238U), and the modeled activity ratios were calculated with a set of random values 

for the unknowns. A large number of solution sets were iterated (>1,000), with variables 

constrained by upper and lower boundaries. The final solution set output by the model was 

the most commonly calculated values of the dataset. Similar algorithms have been 

successfully used to determine WARs in other studies (Chabaux et al., 2003, 2013; Dosseto 

et al., 2008, 2012; 2014; Ma et al., 2010, 2012).  

 

2.7 Micro X-ray Fluorescence Spectroscopy (µXRF) 

Micro-XRF (ȝ-XRF) measurements were conducted on the Bisley bedrock thin sections 

(B1W1-10-5) using the I18 beamline at Diamond Light Source, UK. For the duration of the 

experiments, the storage ring had operating conditions of 3 GeV electron energy and 150 mA 

electron current. Standards with known oxidation states for the element of interest were not 

used, therefore the µXRF maps represent relative proportions of different oxidation states. 

Following collimation of the beam, excitation energies were selected using a liquid nitrogen-

cooled Si(111) double crystal monochromator. The beam was then focused using non-

chromatic Kirkpatrick-baez focusing mirrors to produce a spot size of 2 µm x 2 µm. A 0.1 

mm thick aluminum filter was used to reduce the beam current. Samples were mounted at 45o 

to both the incident beam and a 6-element silicon drift detector (SiriusSD®, SGX 

Sensortech). All spectra were acquired in fluorescence mode and the distance from the 

sample to the detector was adjusted so that that the total count rate was within the range of 

the processing electronics.  



  

19 
 
 

2.7.1 Fe oxidation state maps 

Prior to collecting data, the monochromator was calibrated by defining the first derivative 

peak of an Fe foil standard spectrum as 7112.0 eV with an energy resolution of 0.5 eV at the 

Fe K-edge. Fe K-edge spectra were recorded using step sizes of 5 eV for the baseline before 

the edge (6987 – 7099 eV), 0.5 eV for the edge region (7099 – 7137 eV), 1 eV for the 

XANES region (7137-7150 eV) and 2 eV for energies above 7150 eV. Due to the high 

concentrations of Fe in the samples, a low dwell time of ~0.1 s per point could be used. 

Maps of changing Fe oxidation states were produced by first locating spectral features in 

XANES that are sensitive to changes in oxidation state. Energies of 7119 eV and 7130 eV 

were determined for Fe2+ and Fe3+, respectively, by comparison of XANES on the edge of a 

weathered pyrite grain, where oxidation is likely, and the center of an unweathered pyrite 

grain where oxidation has not occurred or occurred to a lesser extent (Fig. S5). Next, maps of 

fluorescence intensity as a function of position were produced by rastering the stage both 

horizontally and vertically for excitation energies of 7080 eV (baseline), 7117 eV (Fe2+), 

7130 eV (Fe3+) and 7400 eV (Fetotal). Each of the maps were then normalized to the beam 

intensity (I0) followed by the subtraction of the baseline map (7080 eV) from each of the 

other maps. The 7117 eV and 7130 eV maps were then each normalized to the 7400 eV map 

to account for concentration effects. All data manipulation was performed in Microsoft Excel 

and the maps produced in PyMca (Software Group, European Synchrotron Radiation 

Facility). 

2.7.2 S oxidation state maps 

All experiments were conducted in a helium environment to minimize absorption of the X-

rays by air. The monochromator was calibrated by defining the first derivative peak of sulfate 

within the spectrum of a scotch tape standard (Czapla et al., 2012) as 2472 eV with an energy 

resolution of 0.3 eV at the S K-edge. Quick XANES were conducted repeatedly on a single 

grain of pyrite to assess oxidation as a result of beam damage, with no oxidation detected. 

Micro-XRF maps of S oxidation states were produced by collecting the S K fluorescence at 

2471 eV (S1-), 2482 eV (S6+) and 2600 eV (total fluorescence). The maps were then 

normalized as per the method described above for Fe µXRF maps. As the oxidation state of S 

increases, the absorption edge shifts to higher energies (e.g., Fleet et al., 2005; Métrich et al., 

2009; Wong et al., 1984). Therefore, the maximum normalized intensity (a.u.) at each of the 
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energies above can be used to map changing S oxidation states. The S2- peak energy was 

identified by XANES on a pyrite grain within the sample (Fig. S6). The S6- peak energy was 

selected from a value for barite in the literature (Métrich et al., 2009) and previous 

experiments on beamline I18 specifically (Fig. S6). 

 

2.8 Watershed Scale Weathering Advance Rate 

When calculating a weathering advance rate at the watershed scale (WARwatershed), the rate is 

normalized to a geographical surface area, as opposed to the mineral grain-scale surface area 

when calculating WARrind. In addition, WARwatershed uses stream or river data to calculate 

mass loss via solute concentration and the time constraint via runoff. As such, WARwatershed 

provides a contemporary weathering rate for the snapshot moment at which the stream or 

river is sampled, compared to the kyr timescale represented by WARrind. By calculating 

WARwatershed we can therefore compare it to the WARrind to examine how WAR varies on 

multiple temporal and spatial scales. 

We calculated WARwatershed for the Bisley 1 watershed stream, following the method of 

Gaillardet et al. (2011): ܹܴܣ௪௔௧௘௥௦௛௘ௗ ൌ ஼ௐோఝೌ೗ೖఘ೛ሺଵି஍୭ሻ                                     (11) 

where: ߮ ௔௟௞ = average mass fraction of alkali and alkaline earth cations per g of parent rock 

(g g-1); ߩp = average bulk density of the parent (g cm-3); ĭo = porosity of the parent material 

(vol %) and CWR is the cation weathering rate calculated by multiplying the concentration of 

cations (mg L-1) of the total dissolved solids, TDScat, by the runoff of the watershed (mm yr-

ܴܹܥ :(1 ൌ ௖௔௧ܵܦܶ  ൈ  (12)                                         ݂݂݋݊ݑܴ

To calculate WARwatershed using Eq. 11 and 12, daily stream discharge from 2000 to 2005 

(Gonzalez, 2011) was used to calculate run off, and weekly chemical composition of the 

stream and rainfall from 2000 to 2005 (McDowell, 2010; 2012) was used to calculate 

rainfall-corrected stream chemistry (raw data from the LTER online database 

http://luq.lternet.edu/data) (Table S1). 
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To investigate the potential effect of weathering in the Bisley watershed on the global silicate 

weathering-climate feedback, we used the weekly stream chemistry averaged over five years 

(Table S1) to determine a CO2 consumption rate (CDCR) for the watershed (Gaillardet et al., 

݁ݐܽݎ ݊݋݅ݐ݌݉ݑݏ݊݋ܿ ଶܱܥ :(2011 ൌ ሾܱܥܪଷିሿ  ൈ  (13)                            ݂݂݋݊ݑܴ 

where [HCO3
-] = concentration of HCO3

- in mol km-3 and runoff is in km yr-1. HCO3
- 

concentration was calculated from stream chemistry charge balance, as the stream is not 

hydrothermally impacted, the anionic charge is dominated by HCO3
-. This equation can 

therefore also be written as: ܱܥଶ ܿ݁ݐܽݎ ݊݋݅ݐ݌݉ݑݏ݊݋ ൌ ሺሾܰܽାሿ ൅ ሾܭାሿ ൅ ʹሾܽܥଶାሿ ൅ ʹሾ݃ܯଶାሿሻ ൈ  (14)     ݂݂݋݊ݑܴ

where [i] = concentration in mol km-3 and runoff = km yr-1. 

 

3. RESULTS 

3.1 Parent rock mineralogy 

A Winchester-Floyd plot (Fig. S7) indicates that the original lithology, prior to 

metamorphism, was an andesite. However, hydrothermal alteration in the area has altered the 

rock type to an albite-epidote hornfels facies rock, displaying the characteristic hydrothermal 

minerals: albite, epidote, pyroxene and chlorite. Lower abundance hydrothermal minerals that 

are present include: pyrite, sphene, illite and apatite. Interestingly, previous work on the 

lithology of the area (Briggs and Cortes-Aguilar, 1980) marked the Bisley watersheds as 

outside of the metamorphic aureole of the Río Blanco stock intrusion, however this low-

grade, contact metamorphic facies clearly places it within the aureole.  

Plagioclase comprises the majority of phenocrysts measuring on average 126 ± 15 µm 

(determined from SEM images) along the long axis, most of which is albite with occasional 

intergrowths of anorthite. The albite contains the majority of the bedrock Na, with only trace 

amounts found in the pyroxene and amphibole. Pyroxene is present as an accessory mineral, 

predominantly in the form of augite, with variably sized grains from 74 ± 8 µm as 

phenocrysts to ≤11 ± 3 µm when found in the matrix, with some occasional chloritization. To 

optimize the signal to noise ratio of the X-ray elemental mapping, a higher accelerating 
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voltage was used during the analysis. The higher accelerating voltage resulted in a greater 

excitation volume of the parent rock, meaning that due to their size and chemical similarity to 

augite, amphibole inclusions within the augite grains could not be differentiated. Therefore, 

the minor amphibole was included in the pyroxene abundances.  Epidote has an average grain 

size of 31 ± 4 µm, with the typical monoclinic-prismatic crystal habit of epidote. Chlorite 

comprises the majority of the matrix, however as it is microcrystalline, the average grain size 

was difficult to estimate. Therefore, the mean measurable chlorite grain size for this bedrock 

of 14 ȝm reported by Buss et al., (2017) was used (determined from SEM images) and thus 

the chlorite surface area was likely underestimated. 

Quartz occurs as an accessory mineral with a fairly homogenous distribution throughout the 

sample, despite its variable grain size, with 3.0 ± 0.9 m sized grains, on average, for those 

that were measurable. In addition, microcrystalline quartz comprises part of the matrix, but 

these grains were too small to measure on the SEM. Evidence of hydrothermal alteration 

includes occasional quartz veins and sphene, illite, apatite and pyrite. Sphene occurs within 

the matrix, concentrated around the edges of larger grains. Illite occurs as a component of 

minor sericitization of plagioclase grains (Fig. 2A). Apatite resides within the matrix as 

small, spherical/sub-spherical grains constituting the only measurable source of phosphorous. 

The distribution of pyrite is heterogeneous within the rock, with grains of 14 ± 2 m in size. 

Trace barite, arsenopyrite and chalcopyrite also occur. 

 

3.2 Weathered mineralogy and profiles 

The order in which the onset of mineral dissolution occurs can be estimated from the depth of 

each mineral’s weathering reaction front (Fig. 3 and 4) and SEM observations. Using this 

method, the order of mineral dissolution was found to be: pyrite > pyroxene > chlorite > 

anorthite > illite ≈ apatite > albite ≈ epidote. Quartz and sphene are conserved across the 

profile. Incipient pore space is frequently lined with Mn-oxide (MnO2) precipitates around 

the edges (Fig. 2B). Chlorite is the only primary mineral found to contain Mn and this is in 

trace amounts (Table 1). Gibbsite and kaolinite were also commonly found within pore space, 

but they formed less thorough linings than the Mn-oxides (Fig. 2C). Anorthite concentrations 

were very low, with large uncertainties. 
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Fe(III)-(hydr)oxides, kaolinite and gibbsite all increase from ~35 mm inboard of the fracture 

surface (Fig. 4F, 4G and 4H), with a sharp increase from ~8 mm in the case of kaolinite and 

Fe(III)-(hydr)oxides and ~6 mm for gibbsite. The sharp increase in kaolinite at ~8 mm from 

the fracture surface is coincident with losses of Na from albite increasing at the same point 

(Fig. 5D). BSE images show the presence of pitting within albite grains (Fig. 2D).  

 

3.3 Major element profiles 

The calculations of volumetric strain (Fig. S4) suggest that Si, Al and Ti are largely 

conserved (immobile) within the weathering profile. However, when Ĳ was calculated for Si 

and Al, with Ti as the immobile (Fig. S8A), they both showed slight relative losses compared 

to parent material. Conversely, when Ĳ was calculated for Ti with either Al or Si immobile 

(Fig. S8B and S8C), Ti showed enrichment. Therefore, Ti is likely more immobile than Al 

and Si in the Bisley bedrock weathering profile.  

The bulk elemental concentrations were measured by ICP-OES to support the elemental X-

ray mapping data, and the values agree remarkably well (Figs. 5 and 6A-D). However, due to 

the larger uncertainties associated with the ICP-OES data, we used the elemental X-ray 

mapping data for all calculations and data analysis. 

Calculations of the mass transfer coefficient using Ti (ĲTi,j) (Eq. 2, presented in Figs. 5 and 6) 

were used to determine the depth at which depletion begins for each element. From these 

depths, the order of cation mobility from the parent material, through the weathered rind, and 

to the fracture surface was determined as: Ca>Mg>Na≈Si≈Al, with Fe conserved within the 

rind. Due to the high uncertainty associated with the low K and S concentrations and their 

heterogeneous distribution, it was not possible to make meaningful interpretations from their 

profiles and they are therefore not presented. The most substantial loss was shown by Ca, 

beginning at ~50mm, where 30% of the element was lost over 15 mm (Fig. 5B) with a final 

loss of 60% over the final 10 mm, resulting in a total depletion of ~ 90% for Ca (ĲTi,Ca  =  -

0.90). There is no significant loss of Mg within the weathering profile, until the shallowest 

~20 mm where a gradual loss up to the fracture surface totals ~45% (ĲTi,Mg  =  -0.45) (Fig. 

5C). Na, Si and Al all display a similar trend of conservative behavior over the majority of 

the profile until the visible rind (0-6 mm from the fracture surface) where they reflect losses 
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of ~60 % (ĲTi,Na  =  -0.57), ~45 % (ĲTi,Si  =  -0.47) and ~40% ~60 % (ĲTi,Al  =  -0.47), 

respectively. These losses correspond to losses of albite, which occurred over the same depth 

(Fig. 3B). 

 

3.4 Porosity development and density changes 

Porosity (ĭ) remains close to zero from 56.5 mm (the sample furthest inboard of the fracture 

surface) to roughly 40 mm from the fracture surface (Fig. 7). At this point it gradually 

increases by ~2-3 vol% until <10 mm from the fracture surface where a significant increase 

in porosity was observed across the weathering front and into the rind. A maximum ĭ of 15.0 

± 3 vol% was reached within the rind. This porosity is the same within uncertainty as the 

neutron scattering porosity of 8 ± 4 vol% measured on the weathered Bisley rock (Buss et al., 

2013).  

Rock density was calculated using mineral density values taken from the literature (Table 1), 

and mineral volumes observed using X-ray phase analysis. Density calculated in this way 

yielded a value of 2.9 g cm-3 for the parent material and 2.2 g cm-3 for the rind material, 

compared with a bedrock density of 2.3 g cm-3 as measured by volume displacement (Buss et 

al., 2017). When normalized to the parent material density, very little change was noted in the 

weathered material density across the profile (Fig. 7) except in the weathering rind, where the 

density ratio increased to ~1.24. 

 

3.5 Oxidation within pores 

The oxidation state of Fe in an unweathered pyrite grain at ~55 mm from the fracture surface, 

is +2 (Fig. 8A), as expected. The oxidation state of Fe in the surrounding weathered chlorite 

grain is +3. There is also no definitive sign of Fe retention within pores. Sulfur within the 

pyrite has an oxidation state of -2 (Fig. 8B), as expected, with no other minerals in the map 

boundaries bearing any sulfur. X-ray phase analysis indicated that there is sulfur within the 

pore space (Fig. 2E) in association with secondary minerals such as kaolinite and gibbsite; 

µXRF indicated that this is oxidized sulfur (+6). 
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3.6 U-Th mobility and activity ratios 

The unaltered parent material has U and Th concentrations of 0.83 ppm and 1.26 ppm, 

respectively (Table 2). The U concentration is comparable to previous work on a landslide-

exposed outcrop of Bisley bedrock (Dosseto et al., 2012) whereas the Th concentration 

reported here is higher. Th is conserved throughout the profile (Fig. 6E), relative to the 

immobile component (Ti). However, the ĲTi,Th profile displays two outliers at 10.5 mm and 

13.5 mm from the fracture surface, which contain anomalously high concentrations of Th 

relative to the parent material. We found that U is conserved throughout most of the profile, 

except for a slight enrichment of ~5% at ~20 mm from the fracture surface and a loss over the 

visible rind of ~8-9% (Fig. 6F).  

If the hydrothermal activity that occurred in the area ~60 Ma (Smith et al., 1998) altered the 

U-series activity ratios, sufficient time has passed (>1.3 Myr) for secular equilibrium to be 

reached. Values of (234U/238U) are significantly greater than 1 across the entirety of the 

transect (Table 2 and Fig. 9A), with an increase toward the rind compared to the deeper 7 

samples. The furthest sample inboard of the fracture surface (46.5 mm) also shows higher 

activity ratios, similar to the rind. Starting from close to secular equilibrium at the furthest 

sample inboard of the fracture surface, the (230Th/238U) ratios (Table 2 and Fig. 9B) show an 

increase >1 with decreasing distance from the fracture surface. Samples at 16.5 mm and 4.5 

mm from the fracture surface are exceptions to this, with values slightly less than 1. An 

outlier exists with a (230Th/238U) ratio of 1.097 at 10.5 mm inboard of the fracture surface, 

which also shows an increase of 50% in the ĲTi,Th profile, relative to the parent material (Fig. 

6E).  

3.7 Weathering advance rate at the rind scale 

The U-Th nuclide loss/gain model provided weathering exposure ages across the weathering 

profile (Table 3), with the outermost rind sample having a weathering age of ~3.2 kyr. The 

mean weathering age of the profile is 1264 years. Using the mean weathering age, the 

transect length (46.5 mm) and Eq. 10, a WARrind of 37 ± 2 mm kyr-1 was derived. No 

volumetric correction was required as isovolumetric weathering was assumed, which was 

reasonable because the volumetric strain values were near zero (Fig. S4) and SEM 

observations indicated retention of the original mineral structures within the rind (Fig. 2G). 

The model yielded a k234/k238 ratio of 0.88.  
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3.7 Mineral-specific weathering rates 

Here we present mineral-specific dissolution rates (Eq. 5; Tables 1 and 4) for the notable 

primary minerals excluding quartz (which is conserved), using the calculated WARrind (Eq. 

10) as a time constraint and the gradients as shown in Fig. 10. Mineral gradients were 

calculated over the distance where each mineral shows pronounced losses, which for all 

minerals spans the visible rind and extends several mm deeper, as observed in the normalized 

mineral profiles (Fig. 10). We also calculated additional, deeper gradients for the early stage 

dissolution of both chlorite and pyroxene (Fig. 10D-E). Although albite and epidote show 

variation in their gradients inboard of the rind, SEM observations indicate that these result 

primarily from heterogeneities within the rock, not weathering, and have therefore not been 

included in the calculation of the gradients for these minerals. 

 We calculated a pyrite dissolution rate (Eq. 5) of 1.8 x 10-12 ± 2.4 x 10-15 mol m-2 s-1 (log rm= 

-11.8) from the only clear gradient, which spans the visible rind, although evidence for 

dissolution of pyrite is apparent in SEM and µXRF maps further inboard of the fracture (55 

mm; Fig. 10). The dissolution rate determined for pyroxene from the deepest gradient (~50-

60 mm inboard of the fracture surface), is 6.9 × 10-13 ± 2.3 x 10-15 mol m-2 s-1 (log rm = -12.2). 

Across the visible rind, the dissolution rate of pyroxene was calculated as 1.5 x 10-12 ± 4.8 x 

10-15 mol m-2 s-1 (log rm = -11.8), we derived dissolution rates for chlorite  of 1.0 × 10-14 ± 1.3 

x 10-16 mol m-2 s-1 (log rm = -13.9) from the deepest gradient (~40-50 mm inboard of the 

fracture surface) and 2.9 x 10-14 ± 3.8 x 10-16 mol m-2 s-1 (log rm = -13.5) from the gradient 

that spans the weathering rind, Albite and epidote dissolution rates of 1.1 x 10-12 ± 2.9 x 10-14 

mol m-2 s-1 (log rm = -12.0) and 4.3 x 10-13 ± 1.4 x 10-15 mol m-2 s-1 (log rm = -12.4), 

respectively, were calculated across the rind. 

 

3.8 Weathering advance rate at the watershed scale 

Using the stream chemistry data in Table S1 plus Eq. 11 and 12, we calculated a WARwatershed 

of 39 ± 9 mm kyr-1 following the method of Gaillardet et al. (2011). From the stream 

chemistry data (Table S1) and using Eq. 13 or 14, the CO2 consumption rate (CDCR) for the 

Bisley watershed was calculated to be ~ 1029 x 103 ± 320 x 103 mol km-2 yr-1. 
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4. DISCUSSION 

4.1 Weathering reactions 

The albite-epidote hornfels bedrock of the Bisley watershed weathers at a rate of 37 ± 2 mm 

kyr-1 with between 40-90% of each cation lost over the mm-scale profile. The first mineral to 

weather is pyrite via oxidation, followed by pyroxene > chlorite > anorthite > illite ≈ apatite > 

albite ≈ epidote. The order of mineral dissolution given in Section 3.2 does not follow the 

order predicted by the Goldich dissolution series, suggesting that the system cannot be 

described simply by mineral crystal stability alone. The oxidation of Fe(II)-bearing minerals 

has previously been identified as the incipient weathering reaction in other lithologies in 

different watersheds, including the adjacent granitic watershed of Río Icacos (Buss et al., 

2008) and other granitic watersheds in Virginia, USA (Bazilevskaya et al., 2015) and 

California, USA (Goodfellow et al., 2016); the Susquehanna Shale Hills CZO in central 

Pennsylvania, USA (Brantley et al., 2013); and a charnockitic profile in Sri Lanka (Behrens 

et al., 2015). Pyrite oxidation as the incipient reaction has also previously been proposed for 

the Bisley bedrock (Buss et al., 2013) and is demonstrated here by evidence of S oxidation 

within pores (Fig. 8B). 

Although losses in pyrite content between 60-50 mm from the fracture surface are within the 

variability of the parent material, SEM-BSE imaging (Fig. 2F and H) suggest that the 

dissolution of pyrite is the first weathering reaction (furthest inboard of the fracture surface). 

In areas of early-stage pyrite dissolution identified by SEM-BSE, µXRF maps (Fig. 8) show 

that pyrite dissolution occurs with oxidation of S, consistent with sulfuric acid production. 

Following the dissolution of pyrite, pyroxene and chlorite dissolve earlier than albite and 

epidote (Fig. 3B-E). The earlier onset of pyroxene and chlorite dissolution could be due to 

several reasons: i) pore water is more undersaturated with respect to pyroxene and chlorite 

than to epidote and albite; ii) pyrite occurrences (which dissolve first creating incipient 

porosity that allows greater access of reactive fluids) are more closely associated with 

pyroxene and chlorite; and iii) the products of oxidative pyrite dissolution act to catalyze the 

dissolution of pyroxene and chlorite.  

As the elements contained within epidote are also present in chlorite and pyroxene, it is 

unlikely that the saturation state of the pore water with respect to pyroxene and chlorite 

would be appreciably different to the saturation state with respect to epidote. It is possible 
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that pyroxene is more accessible following pyrite dissolution due to its higher correlation 

with pyrite abundance (r2= 0.57, p <0.01, Fig. S9B), however albite also shows a moderately 

high correlation (r2= 0.47, p <0.01, Fig. S9C); epidote content is not well correlated with 

pyrite (r2= 0.19, p >0.01, Fig. S9D) and chlorite shows the least correlation (r2= 0.12, p 

>0.01, Fig. S9A), suggesting this is not the primary cause for the earlier onset of pyroxene 

and chlorite dissolution. Finally, there is evidence of oxidative dissolution of pyrite from 

µXRF analysis of S oxidation states within a pyrite grain and pore space (Fig. 8B). Pyrite 

dissolution in the presence of oxygen generates acidity (Eq. S1), which would create a low-

pH microenvironment on a mineral grain scale. It is possible that ferrous iron liberated in this 

reaction would then oxidize to ferric iron, which could then catalyze further pyrite dissolution 

and sulfur oxidation. However, from the µXRF data (Fig. 8A) there is no evidence that Fe3+ 

is retained within pores to catalyze the reaction. Regardless of whether or not Fe3+ acts as a 

catalyst, the oxidation of pyrite still produces H+, promoting dissolution of other minerals in 

the vicinity of pyrite grains, consistent with our observations in the Bisley rock (e.g., Fig. 2F 

and H). 

Once minerals surrounding a pyrite grain have dissolved and created pore space, the second 

possibility for earlier dissolution of pyroxene and chlorite, where reactive fluids are better 

able to penetrate the rock, could become important. A dual-stage mechanism such as this is 

reflected in the Ĳ profile for Ca (Fig. 5B) where there is an initial loss much further inboard 

than the loss over the visible rind. Anorthite dissolution may also contribute to the initial 

increase in porosity between 40-30 mm (Fig. 8); however, the majority of porosity 

development occurs in the visible rind (increase of about 13% over the outer 6 mm), several 

cm distant from where anorthite dissolution was completed. 

Pyroxene near pyrite grains is observed to dissolve second (Fig. 2H), and the pyroxene and 

pyrite abundances show the highest correlation (r2= 0.57, Fig. S9B). Therefore, initial 

pyroxene dissolution is expected to occur largely via attack by sulfuric acid (Eq. S2) 

produced by the oxidative dissolution of pyrite, as observed in SEM-BSE imaging and EDS 

analysis. Closer to the rind, as the supply of pyrite dwindles, the porosity increases, and fresh 

reactive fluids are better able to penetrate, it is likely that the dissolution of pyroxene will 

proceed at a higher pH via protons sourced dominantly from carbonic acid (Eq. S3) present in 

the infiltrating fluids. 
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Chlorite is the next mineral to dissolve, at a similar depth to the oxidation of pyrite, the 

dissolution of pyroxene, and formation of kaolinite as observed by SEM (Fig. 2C). Both 

albite and epidote abundances show a higher correlation with pyrite than chlorite does with 

pyrite (r2 = 0.47, 0.19 and 0.12, respectively; Fig. S9), suggesting that it may not be close 

association with pyrite that is the critical factor, but the mineral’s susceptibility to sulfuric 

acid promoted dissolution. The depth of the chlorite weathering front is in fact concurrent 

with the depth of pyrite oxidation and the susceptibility of chlorite to attack via sulfuric acid, 

following the oxidation of trace pyrite, has previously been reported within the Marcellus 

shale, USA (Heidari et al., 2017). Thus, we propose that chlorite dissolves via analogous 

reaction mechanisms to those described for pyroxene, sulfuric acid- or carbonic acid- 

promoted dissolution (Eq. S4 and Eq. S5, respectively) with the subsequent production of 

kaolinite. Both albite and epidote dissolve primarily over the rind where the carbonic acid 

reaction mechanism dominates (Eq. S6 and Eq. S7, respectively).  

As mentioned in Section 3.2, pore space is frequently lined with Mn-oxide precipitates 

between 48 mm and 10 mm from the fracture surface. The substantial MnO2 accumulations 

lining the pores (Fig 2B) may lower the total reactivity of the rock, slowing the WAR by 

denying infiltrating fluids access to fresh primary minerals. Mn-oxides are also effective 

scavengers of metals, acting to retain dissolved cations within pores via adsorption (e.g., 

Peacock et al., 2012; Taylor and McKenzie, 1966; Vuorinen and Carlson, 1985). In the 

Bisley rocks, inhibition of weathering by Mn-oxides would occur only from 40 – 10 mm 

distance from the fracture surface (Fig. 4E), where at 10 mm MnO2 is removed from the 

pores, likely due to increased fluid flux in the advection dominated rind. 

From the evidence above for a two-stage weathering mechanism: first by reaction with 

sulfuric acid in the fresh rock, followed by reaction with carbonic acid in the rind, it is likely 

that the initial reaction of pyrite oxidation controls the onset of chemical weathering. In turn, 

the dissolution of pyrite in the Bisley bedrock is regulated by the concentration of an 

oxidizing reactant such as O2 (Buss et al., 2013; 2017), therefore the diffusion rate of oxygen 

into the bedrock is likely the rate-limiting step. If pore water oxygen concentration is the rate-

limiting factor, this could regulate a steady-state weathering profile at the regolith scale. 

Because O2 concentration decreases with depth in the Bisley regolith (measured at a nearby 

site; Buss et al., 2017), then as the WAR increases and the regolith thickens, the O2 

concentration at the bedrock-regolith interface decreases. In turn, the decreased O2 
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concentration causes the WAR to slow, allowing surface erosion to thin the regolith and 

increase O2 at the bedrock-regolith interface again (Fletcher et al., 2006). The multiple 

mechanisms described above (i.e., oxidative weathering of pyrite and weathering of other 

minerals by both sulfuric and carbonic acid) suggests that the Bisley bedrock has at least two 

weathering fronts. These weathering fronts likely progress at different rates and therefore the 

WARrind calculated here would reflect an average. 

 

4.2 Comparison of mineral-specific weathering rates 

Field-measured mineral dissolution rates are not simply kinetic-controlled rates as are many 

laboratory determined rates, instead they reflect a multitude of variables, including the 

saturation index of reactive fluids with respect to the mineral of interest (e.g., Zhu et al., 

2004), past climatic conditions (e.g., Nagarajan et al., 2014), varying redox conditions (e.g., 

Fletcher et al., 2006), microbial activity (e.g., Balogh-Brunstad et al., 2008) and the 

accessibility of the mineral within the rock to reactive fluids (e.g., Navarre-Sitchler et al., 

2009). The accessibility of the mineral, in turn, depends on multiple controls including the 

dissolution rate of neighboring minerals (to create porosity) and the degree to which the 

resulting pores are then lined with secondary phases, such as kaolinite and Mn-oxides. Most 

of the weathering observed in thin sections was physically inaccessible to microorganisms 

(too small or disconnected pore space), although microbial activity in overlying regolith 

likely affects the reactivity of the pore fluids infiltrating the rock (e.g., by producing CO2, 

consuming O2, oxidizing Fe(II) or other redox active elements). 

The complex nature of natural dissolution rates is highlighted in this study by the case of 

pyrite. Buss et al. (2013) previously proposed that the formation of the entire critical zone of 

the Bisley watershed is controlled by rind formation, which in turn is controlled by pyrite 

dissolution. This dissolution rate (log rm = -11.8, Fig. 11) is several orders of magnitude 

slower than laboratory determined rates (log rm = -4.55, Fig. 11). Faster laboratory rates could 

be due to various issues such as pre-experimental cleaning processes, higher surface area and 

higher water:mineral ratios that exist in laboratory experiments compared to field settings 

(White and Brantley, 2003). The calculated pyrite dissolution rate presented here also 

matches a previously determined field dissolution rate for pyrite (log rm = -11.7, Fig. 11). 

España et al. (2007) found that laboratory oxidation rates of Fe(II) in pyrite (10-8 to 10-10 mol 
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L-1 s-1) were 2-3 orders of magnitude slower than field determined dissolution rates (10-6 to 

10-7 mol L-1 s-1), due to the influence of microbial oxidation on the field rates; this is the 

inverse of the field-laboratory discrepancy typically observed for silicate dissolution rates. 

However, microbial activity in the field will depend on the community present and factors 

including temperature, pH and nutrient availability. Indeed, Choppala et al. (2017) found that 

biotic oxidation had only a minor contribution in field-settings, concluding that pyrite 

oxidation rates are surface area dependent, a relationship often assumed to be linear (Lowson, 

1982). The relationship between pyrite dissolution rates and mineral surface area is 

complicated by the non-uniform attack of oxidants (Bierens de Haan, 1991), which occurs at 

sites of high excess surface energy (e.g., etch pits, defects and grain edges; McKibben and 

Barnes, 1986). Pyrite oxidation can also vary with grain-size (Gartman and Luther, 2014) 

whereby during a later stage of oxidation, electron shuttling occurs across the mixed valence 

oxide coating of smaller grains; larger particles form an oxygen-limiting, armor coating. Most 

studies do not account for this when crushing large grains to examine the oxidation of small 

grains (Gartman and Luther, 2014). The slower than expected oxidation rate of smaller 

particles, could explain why the pyrite dissolution rate for Bisley grains (~ 14 µm) is several 

orders of magnitude slower than lab-determined dissolution rates.  

The initial dissolution rate of pyroxene (log rm = -12.2, Table 4) and the dissolution rate over 

the rind (log rm = -11.8) are both more than an order of magnitude faster than pyroxene 

dissolution rates previously determined within a basalt from another tropical catchment in 

Paraná, Brazil (Fig. 11). The pyroxene dissolution rates presented here agree well with the 

experimental rates reported in Palandri and Kharaka (2004) (Fig. 11) for near neutral pH.  

The dissolution rate derived for chlorite over the weathering rind (log rm = -13.5, Table 4, Eq. 

S5) is similar to that calculated in the deep regolith of this watershed (log rm = -13.1; Fig. 11) 

and those experimentally-determined (log rm = -12.52; Fig. 11). Buss et al. (2017) used Mg 

fluxes to estimate chlorite dissolution rates for the Bisley watershed, assuming congruent 

dissolution. Therefore, the slight discrepancy between their faster dissolution rates and the 

one calculated here based on direct observation of chlorite abundances, may indicate 

incongruent weathering of chlorite with preferential loss of Mg occurring during the earlier 

stages. In addition, the high porosity of the regolith (60 vol%; Buss et al., 2017) compared to 

the rinds (15 vol%) and non-rind rocks (0.5 vol%) allows better access of reactive fluids to 

the weathering minerals. Furthermore, the molecular mechanism of chlorite dissolution may 
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also lead to faster regolith chlorite weathering. Lowson et al. (2007) describes clusters of 

partially hydrolyzed silica tetrahedra remaining on chlorite surfaces following initial proton 

attack of the Al tetrahedral sites during dissolution. The rate-defining step of chlorite 

dissolution is the conversion of these hydrolyzed silica species (via a precursor) into an 

aqueous silica species (Lowson et al., 2007). Therefore, the chlorite dissolution rate will be 

controlled by the concentration of aqueous Si in porewater, which may be more dilute in 

regolith than in rinds due to faster water flow. 

Both the pyroxene and chlorite dissolution rates calculated here in the presence of sulfuric 

acid are slower than those rates calculated for the same minerals in the presence of carbonic 

acid (Fig. 11; Table 4, Eq. S2-S5). Contrary to this observation, chlorite has previously been 

modeled to weather faster in association with sulfuric acid than carbonic acid within a shale 

bedrock (Heidari et al., 2017). However, the mineral dissolution rates presented here would 

be controlled by the supply of sulfuric acid, which is limited by the oxidative dissolution rate 

of pyrite. The oxidative dissolution rate of pyrite in this study is several orders of magnitude 

slower than those previously determined in the literature, suggesting that this rate is also 

supply-limited, consistent with the low abundance of pyrite as well as the hypothesis that the 

diffusion of oxygen into the bedrock is the rate-limiting step in weathering of the Bisley 

bedrock. 

The plagioclase (albite) dissolution rate calculated here (log rm = -12.0, Fig. 11, Table 4, Eq. 

S6) is an order of magnitude faster than that calculated for plagioclase (50:50 albite:anorthite) 

in the neighboring granitic watershed (log rm = -13.0; Buss et al., 2008). Our albite 

dissolution rate agrees well with lab determined rates (Fig. 11). Our field-determined epidote 

dissolution rate (log rm = -12.4, Fig. 11, Table 4, Eq. S7) is faster than experimental rates (log 

rm = -14.9 and -16.20; Sverdrup, 1990; Kalinowski et al., 1998, respectively), despite a 

similar pH range (lab: 5.5 to 4.5, Bisley regolith porewater: 4.4 to 5.7; Buss et al., 2017). 

The low pH of the Bisley regolith porewater (4.7; Buss et al., 2017), and the high dissolution 

rates reported here, may reflect the low pH microenvironment produced by the oxidative 

dissolution of pyrite. The pH necessary to produce the dissolution rates here can be estimated 

by rearranging the pH dependent linear rate equation presented by Palandri and Kharaka 

(2004). All of the minerals except pyrite and pyroxene would require a pH of 4.6-5.6 (Table 

S2), agreeing well with the measured pH of the Bisley porewater. The higher pH required for 
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pyrite (pH = 8.6) is unsurprising as its dissolution is independent of pH and would be 

controlled instead by the concentration of oxidants. However, this would not explain the 

higher pH required to dissolve pyroxene both initially (pH = 7.7) and over the rind (pH = 

7.1). It is more likely that each minerals dissolution rate varies due to more parameters than 

just pH dependence. 

The much higher mineral dissolution rates calculated here, compared to other published field-

calculated dissolution rates from other locations are not surprising, considering that the 

tropical temperatures and abundant rainfall in the Luquillo rainforest make fast dissolution 

rates thermodynamically favorable. As a result, a large proportion of the primary minerals 

(~80% pyroxene, ~50% albite, ~40% epidote and ~30% chlorite) are lost over only several 

mm’s of weathering rinds. The precise balance of transport mechanisms (between diffusion 

and advection) are uncertain in the Bisley bedrock, however, as such thin reaction fronts are 

considered diagnostic of a diffusion dominated transport system (Lebedeva and Brantley, 

2013; Ma et al., 2011; Navarre-Sitchler et al., 2009; 2011; 2013), we assume diffusion is the 

primary mode of transport in the rinds. Field-calculated mineral dissolution rates that match 

or exceed laboratory dissolution rates are rarely observed; instead mineral dissolution rates 

determined in the field are usually 2-5 orders of magnitude slower than those determined in 

the laboratory (e.g., White and Brantley, 2003). Slower field-calculated dissolution rates have 

previously been ascribed to the presence or absence of organic acids (Drever and Stillings, 

1997; Lawrence et al., 2014); armoring of mineral surfaces (Nugent et al., 1998); physical 

erosion of weathered material influencing interpretations (Bluth and Kump, 1994) or 

supersaturation of the pore fluid due to slow precipitation of secondary minerals (e.g., Zhu et 

al., 2004). If the discrepancy between lab and field dissolution rates is an issue of fluid 

saturation (and therefore describes a transport-limited system), then fluid residence time may 

be the rate-limiting step (Maher, 2010). Alternatively, local grain-scale roughness may 

provide the main control on dissolution rates in weathering rinds (Sak et al., 2010). However, 

roughness is dependent upon the measuring resolution at the scale of interest and as such, the 

grain-scale surface area is difficult to estimate for field systems (Navarre-Sitchler et al., 

2011), necessitating a fractal dimension to calculate appropriate surface areas (Navarre-

Sitchler and Brantley, 2007).  

The mineral dissolution rates presented here, which converge with lab-determined rates, 

demonstrate the importance of the spatial scale of analysis. Calculating mineral dissolution 
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rates only over the mm-scale at which they occur i) avoids underestimation of dissolution 

rates by over-scaling (i.e., averaging over meters or kilometers); ii) minimizes the effects of 

other Earth surface processes such as physical erosion and organic acid production, as the 

thick Bisley regolith likely decouples many deep and surface processes (e.g., Buss et al., 

2013; 2017); iii) circumvents temporal scaling issues associated with exposure time, such as 

armoring of mineral surfaces, as the dissolution rate is calculated at the weathering front 

where mineral surfaces are still fresh; and iv) allows normalization to the dissolving 

mineral’s surface area in a similar fashion to laboratory calculated rates. It is therefore 

expected that by accounting for spatial and temporal scaling issues, field calculated 

dissolution rates should be similar to those calculated in laboratory studies. 

4.3 Uranium-series isotope behavior across the weathering profile and the weathering 

advance rate across the rinds (WARrind ) 

U/Th isotope disequilibria data was gathered in this study to model weathering ages of the 

rock and calculate a WARrind, which was used to determine the mineral-specific dissolution 

rates, and to compare to WAR calculated at the watershed scale. Analysis of the U and Th 

isotope ratios within the weathering profile not only enabled modeling of chemical 

weathering ages, but also revealed insights into the behavior of these isotopes during 

weathering rind development.  

Activity ratios of (230Th/238U) are ~1 (i.e., secular equilibrium) throughout most of the profile, 

suggesting no net loss or gain of 238U or 230Th (Fig. 9B). However, within the top of the 

profile 230Th/238U ≠ 1, reflecting greater mobility. This is consistent with the ĲTi,U profile, 

which shows losses over the visible rind (Fig. 6F) and the Ĳ Ti,Th profile (Fig. 6E), which 

shows Th to be conserved. All (234U/238U) activity ratios throughout the sampled profile are 

>1, suggesting a gain of 234U (Fig. 9A). These observations can all be reconciled if the system 

is not simply described by U loss, but with U addition as well, where an overall loss of U 

occurs (as evidenced by Ĳ Ti,U profile), but there is an addition of 234U relative to 238U, as 

evidenced by the increased (234U/238U) ratios (Fig. 9A and Table 2), whilst 230Th is 

conserved, as evidenced by the (230Th/238U) profile (Fig. 9B and Table 2) and the Ĳ Ti,Th 

profile (Fig. 6E). The outlier at 10.5 mm depth, displaying an enrichment of Th of ~50% in 

the Ĳ Ti,Th profile (Fig. 6E), and the highest (230Th/238U) activity ratio in the profile (Fig. 9B 
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and Table 2), may reflect an infiltration of Th-rich hydrothermal fluids associated with the 

intrusion of the Rio Blanco stock intrusion near the study site.  

It is likely there would be a greater addition of 234U than 238U from an external source, as it is 

a more soluble nuclide. At greater depths than the visible rind, fluid circulation through 

micro-fractures may have added 234U to the system, without sufficient weathering to liberate 

U from the minerals. A more likely explanation is that U leaching has occurred concurrently 

to 234U addition, but to a lesser extent. Sheng and Kuroda (1986) suggest that a phase may 

eject 234U into a less soluble phase as a result of alpha recoil, then when it is preferentially 

dissolved over the less soluble phase, the system’s (234U/238U) would be >1. All of these 

possibilities imply that mineral-water interaction has occurred throughout the entirety of this 

profile. The interpretation of weathering throughout the U-series sampled profile is supported 

to some degree by the CIA and Ĳ profiles (Fig. 5 and 6), both of which track weathering 

deeper into the rock than the U-series profiles. Our calculated average WARrind of 37 ± 2 mm 

kyr-1 (Eq. 10) is two orders of magnitude faster than those calculated for basalt weathering 

rinds in other tropical locations (e.g., Ma et al., 2012; Pelt et al., 2008) and an order of 

magnitude slower than for andesites calculated on a watershed scale (Rad et al., 2013). To 

our knowledge, there are no other weathering advance rates for andesitic rinds in the tropics 

in the literature.  

4.4 Weathering advance rates across multiple scales 

The WARwatershed calculated here of 39 ± 9 mm kyr-1 is within error of the calculated WARrind 

of 37 ± 2 mm kyr-1. The agreement in WAR between the rind and watershed scales has three 

key implications: Firstly, weathering solute fluxes of the Bisley 1 stream are dominated by 

weathering along bedrock fractures. This observation is supported by A) Chapela Lara et al. 

(2017), who estimated that during base flow, 84% of the Mg dissolved in the Bisley 1 stream 

originates from the dissolution of bedrock chlorite; and B) Schellekens et al. (2004) who find 

that after heavy rainfall there is a rapid streamflow response in the watershed that is 

dominated by fast, near-surface flow paths, highlighting the interconnectivity between 

bedrock fractures and the stream. The second implication is that the WAR across the whole 

watershed is constant, from the watershed scale (6.7 km2) down to the rind scale (<5 mm), 

supporting Hynek et al. (2017), who found that regularly distributed fractures in the Bisley 

bedrock promotes relatively homogenous weathering rates across the watershed. The third 
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and most intriguing implication relates to the difference in timescale between WARrind and 

WARwatershed. The WARwatershed is calculated from dissolved ions for the moment in time at 

which sampling took place (here from 2000-2010), thus recording the contemporary WAR, 

whereas the bedrock weathering profile took a maximum of 4.2 ± 0.3 kyr to form, recording a 

longer-term, average WAR. For both the WARwatershed and WARrind to return roughly equal 

values suggests that the watershed has been in a weathering steady-state for at least the 

maximum exposure age recorded (4.2 ± 0.3 kyr). 

The weathering advance rate for the regolith (WARregolith) of the Bisley catchment calculated 

by Dosseto et al. (2012) at site B1R (Fig. 1), is 334 ± 46 mm kyr-1, calculated over ~16 m. 

The WARregolith (m-scale) represents an intermediate spatial scale between the WARwatershed 

(km-scale) and WARrind (mm-scale), however the regolith has been exposed to reactive fluids 

for 60 kyr (Dosseto et al., 2012), a longer period of time than the bedrock fractures and rinds, 

and thus also represents an older record of weathering. A WARregolith that is an order of 

magnitude faster than the calculated WARwatershed and WARrind suggests that weathering 

occurred at a much faster rate in the Bisley 1 watershed prior to the oldest rind exposure age 

of 4.2 kyr. Previous paleoclimatic work suggests that the Caribbean was wetter and warmer 

during the mid-Holocene (~6-5 kyr) than the present day (Hodell et al., 1991; Mayewski et 

al., 2004), which would encourage a faster WAR. Another possibility is that the weathering 

processes within the bedrock (represented by WARrind and WARwatershed) are spatially 

decoupled as well as temporally from the weathering processes with the regolith. 

To place the chemical weathering in the Bisley watershed in a global context, we also 

estimated its current effect on the global carbon cycle by calculating a CO2 consumption rate 

(CDCR) of ~ 1029 x 103 ± 320 x 103 mol km-2 yr-1 from stream water chemistry (Eq. 14). 

This rate is comparable to others calculated for Caribbean watersheds, such as those on 

Guadeloupe, with a median of ~1300 x 103 mol km-2 yr-1 (Gaillardet et al., 2011) and on 

Dominica, with a range of 500 to 1500 x 103 mol km-2 yr-1 (Goldsmith et al., 2010). If 

streams from tropical watersheds are compared to CDCR values calculated by Gaillardet et 

al. (1999) of major rivers in temperate latitudes such as 226 mol km-2 yr-1 (Seine) and 542 

mol km-2 yr-1 (Rhine), it is evident that weathering in small tropical watersheds represents a 

significant component of the global carbon cycle. 
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5. Conclusions 

The meta-volcaniclastic, albite-epidote hornfels bedrock in the Bisley watershed weathers 

rapidly along deep subsurface fractures with the vast majority of primary minerals lost over 

several mm’s within the weathering rinds that form along fracture surfaces. The rate of 

primary mineral dissolution is accelerated via the dissolution of accessory pyrite, lowering 

the pH of porewater within the rock, despite pyrite only comprising ~0.5 vol% of the parent 

material. Pyroxene and chlorite are particularly susceptible to this reaction, dissolving in the 

presence of sulfuric acid at rates of log rm = -14.0 and -12.2 mol m-2 s-1, respectively. Then 

pyroxene and chlorite dissolve within the rind in the presence of carbonic acid at rates of log 

rm = -11.8 and -13.5 mol m-2 s-1, respectively. Albite and epidote also dissolve more readily 

within the rind in the presence of carbonic acid, at rates of log rm = -12.0 and -12.4 mol m-2 s-

1, respectively. 

The WARwatershed, which records contemporary weathering rates, and WARrind, which records 

kyr-averaged weathering rates, are within error of each other (39 ± 9 mm kyr-1 and 37 ± 2 

mm kyr-1, respectively). The similarity in WAR calculated on these differing spatial and 

temporal scales suggests that the Bisley watershed has been weathering in steady-state for a 

minimum of ~4.2 ± 0.3 kyr. However, the WARregolith is much faster (334 ± 46 mm kyr-1) 

than the WARrind, reflecting faster weathering before the time period recorded by the 

WARrind. 

The majority of mineral dissolution rates presented within this study are several orders of 

magnitude faster than field-determined rates previously reported in the literature and some 

match or are even faster than laboratory determined dissolution rates. This study calculates 

field-determined mineral dissolution rates only over the weathering front at which they occur 

(mm-scale in this study) avoiding issues relating to over-scaling (to a m-scale or km-scale), 

mineral exposure time (ageing of mineral surfaces) and surface area normalization; all of 

which have previously been suggested to slow mineral dissolution rates. Employing this 

method minimizes, and in some cases overcomes, the field-laboratory discrepancy in 

dissolution rates, suggesting that scale is a key factor in calculating mineral dissolution rates. 

The mineral grain-scale mechanisms that drive weathering within the Bisley watershed, 

coupled with the insights gleaned from observing the system with various sized ‘rulers’ and 

‘watches’, acts to highlight the need for further weathering studies to be conducted on 
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multiple scales (both temporally and spatially), especially on a mineral grain scale, which is 

only infrequently done. Approaching systems in this manner may solve the field-laboratory 

discrepancies in mineral dissolution rates by accounting for scaling issues. It would also 

strengthen the justifications of scaling up weathering rates spatially and also over long time-

scales when modeling past, present, and future global carbon cycling. 
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Table 1. Mineralogy of unweathered bedrock and mineralogy of weathered rind in B1W1 sample. 
 

aDetermined using X-ray phase analysis as described in Section 2.3. Uncertainties represent 1SE (n= 5). 
bDetermined by point counting as described in Section 2.3. Uncertainties represent 1SE (n= 50). 
cDetermined from microprobe analysis. 
dBuss et al. (2017)  
eDeer et al. (1997) 
 fAnthony (1997) 
g not detected 

            

Mineral 

Abundance of 
mineral in 

parent rocka 

Diameter  
of mineral 

(D)b 

Abundance of  
mineral in 

weathered rinda 

Mineral 
specific  
density 

(ȡm) Mineral Formula c   

vol% µm vol%  (g cm-3)   

Albite 35.2 ± 0.7 126 ± 15 11.8 ± 0.7 2.6e (Na0.94,Ca0.02,Fe2+
0.01,Mg0.01)[Si2.96Al 1.01O7.97] 

Chlorite 17.2 ± 0.7 14d 12 ± 1 3.0e  (Mg4.59,Ca0.57,Mn0.05,Fe2+
3.47,Fe3+

0.32,Al2.61)[(Si5.95,Al2.05)O20]OH16  

Epidote 14 ± 2 31 ± 4 4.7 ± 0.7 3.4e Ca2.11Fe3+
0.87Al 2.23Si3.11 O12(OH) 

Quartz 11.0 ± 0.9 3 ± 1 11 ± 1 2.7e SiO2 

Pyroxene 7 ± 1 74 ± 8 0.0 ± 0.3 3.4e (Fe2+
0.03,Mg0.17,Ca0.78,Na0.02)(Ti0.01,Al0.04,Fe3+

0.07,Fe2+
0.14,Mg0.74)(Si1.89,Al0.11)O6 

Illite 5 ± 2   0.9 ± 0.7 2.8e   

Anorthite 4.4 ± 0.7   0.0 ± 0.0 2.8e   

Sphene 2.6 ± 0.9   3.1 ± 0.6 3.5e   

Pyrite 0.5 ± 0.2 14 ± 2 0.0 ± 0.0 5.0e FeS2 

Porosity 0.9 ± 0.7   22 ± 3 0.0   

Kaolinite 0.4 ± 0.4   20 ± 2 2.7e   

Apatite 0.4 ± 0.2   0.0 ± 0.0 3.3e   

Mn-oxide n.d.g   1.4 ± 0.8 3.0f   

Fe(III) -(hydr)oxide < 0.1   11 ± 1 4.3e   

Gibbsite < 0.2   3 ± 1 2.4e   
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Table 2. Uranium-series measurementsa.  

Distance 
from fracture 
surface (mm) Th (ppm) U (ppm) U/Th (234U/238U) (230Th/238U) 

1.5  2.27 ± 0.00 1.4 ± 0.00 0.617 1.027 ± 0.001 1.069 ± 0.003 

4.5  1.51 ± 0.00 0.98 ± 0.00 0.649 1.014 ± 0.001 0.985 ± 0.003 

7.5  1.43 ± 0.00 0.9 ± 0.00 0.629 1.023 ± 0.001 0.999 ± 0.003 

10.5  2.1 ± 0.01 0.94 ± 0.00 0.448 1.011 ± 0.001 1.097 ± 0.008 

13.5  1.73 ± 0.00 0.93 ± 0.00 0.538 1.016 ± 0.001 1.02 ± 0.003 

16.5  1.39 ± 0.01 0.91 ± 0.00 0.655 1.016 ± 0.001 0.994 ± 0.007 

19.5  1.41 ± 0.01 0.88 ± 0.00 0.624 1.012 ± 0.001 1.018 ± 0.01 

22.5  1.42 ± 0.01 0.88 ± 0.00 0.620 1.012 ± 0.001 1.02 ± 0.019 

36.5  1.32 ± 0.02 0.83 ± 0.00 0.629 1.019 ± 0.002 1.001 ± 0.029 

46.5  1.26 ± 0.02 0.83 ± 0.00 0.659 1.021 ± 0.001 1.008 ± 0.033 

QLO-1       1.006 ± 0.001 1.005 ± 0.004 
aErrors for samples and rock standard QLO-1 are internal 
analytical uncertainties given at the 2SE level. 
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Table 3. Results of nuclide loss-gain model. 

Number of samples   10 

Initial Conditions   Secular equilibrium 

Parameter calculated valuesa   

k238 (yr-1)   2.39 × 10-5 ± 1.1 × 10-6 

k234/k238   0.88 ± 0.02 

k230/k238   6.12 × 10-5 + 9 × 10-6 / - 8 × 10-6  

f234/f238   0.80 ± 0.03 

      

Distance from fracture surface   Weathering age (yr)b  

1.5 mm   3190 ± 220 

4.5 mm   106 ± 16 

7.5 mm   379 ± 43 

10.5 mm   4210 ± 270 

13.5 mm   1184 ± 103 

16.5 mm   160 ± 20 

19.5 mm   1082 ± 96 

22.5 mm   1163 ± 102 

36.5 mm   436 ± 48 

46.5 mm   728 ± 72 
aUncertainty is presented as 2SE (n = 1000); 
bUncertainty is presented as 1SE (n = 1000);
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Table 4. Variables and results of mineral specific solid-state dissolution rate equation for B1W1. 

Mineral 

Mass fraction of 
mineral 

 in parent material 
(ĳ)a 

Specific 
surface area (s)b 

Weathering  
Gradient (bs)c r m

d Log rm 

  (g g-1)  (m2 g-1) (m kg mol-1) (mol m-2 s-1)   

Albite 0.31 ± 0.03 0.1 0.026 ± 0.012 1.1 × 10-12 ± 2.9 × 10-14 -12.0 

Chlorite 0.17 ± 0.01 1.0 0.222 ± 0.066 2.9 × 10-14 ± 3.8 × 10-16 -13.5 

Chloritee 0.17 ± 0.01 1.0 0.642 ± 0.008 1.0 × 10-14 ± 1.3 × 10-16 -14.0 

Epidote 0.18 ± 0.03 0.4 0.040 ± 0.004 4.3 × 10-13 ± 1.4 × 10-15 -12.4 

Pyroxene 0.08 ± 0.01 0.2 0.057 ± 0.012 1.5 × 10-12 ± 4.8 × 10-15 -11.8 

Pyroxenee 0.08 ± 0.01 0.2 0.120 ± 0.041 6.9 × 10-13 ± 2.3 × 10-15 -12.2 

Pyrite 0.01 ± 0.00 14 0.123 ± 0.009 1.8 × 10-12 ± 2.4 × 10-15 -11.8 
a Mass fractions were determined from mineral abundances and densities (Table 1). Errors are 1SE.  
b Calculated using Eq. 6 and mineral data from Table 1.  
c Weathering gradients were determined from the slope of the normalized concentration plots (Fig. 10). The uncertainty of the 
weathering gradient is calculated as the maximum and minimum slope gradient from the standard error. 

d rm was calculated using Eq. 5, the data in this table and Table 1. Errors are 1SE and propagated fully through all calculations. 
e Mineral dissolution in association with pyrite. 

 

 

 



  

55 
 
 

Figure captions 

Fig. 1. Map of field site, including key lithological units within the Luquillo Critical Zone Observatory (LCZO). 
Dots represent sample locations. B1W1: Bedrock fracture samples (this study); Stream gage: Stream chemistry 
data (McDowell, 2010; 2012); B1R: Regolith samples (Dosseto et al., 2012). 

Fig. 2. Back scattered electron (BSE) images of bedrock thin sections. A) X-ray phase map, false color image 
showing sericitization of albite (Alb) with illite (ILL, in red). Chl = chlorite, Epi = epidote. B) Mn-oxide 
precipitation in pore space. C) Kaolinite precipitation in pore space. D) Pitting of albite grain, darker grey areas 
are depleted in Na. E) Pyrite grain (Pyr) associated with pore space. Sulfur content shown in yellow indicates 
sulfur retention in pore space. F) Creation of incipient porosity in association with pyrite. G) Isovolumetric 
weathering of rock via preservation of mineral grain shape. Kaolinite (Kaol) along fracture surface (right of 
picture) with Fe-oxide layer between the kaolinite and the rest of the rock. H) Dissolution of pyroxene (Pyx) in 
association with pyrite. 

Fig. 3. Mineral composition (vol%) of parent rock minerals A) anorthite; B) albite; C) chlorite; D) pyroxene; E) 
epidote and F) quartz, determined via modal X-ray phase analysis. Each data point represents an average of 5 
areas 2.8 × 2.1 mm of the same distance from the fracture surface. The hatched box represents the abundance in 
the parent rock ± 1SE. The dotted line indicates the visible rind. The grey shaded area is the uncertainty, 
presented as 1SE (n=5). 

Fig. 4. Mineral composition (vol%) of secondary hydrothermal alteration minerals (top row) and secondary 
weathering product minerals (bottom row). A) apatite; B) sphene; C) pyrite; D) illite; E) Mn-oxides; F) Fe(III)-
(hydr)oxides; G) kaolinite; H) gibbsite; determined via modal X-ray phase analysis. Each data point represents 
an average of 5 areas 2.8 × 2.1 mm of the same distance from the fracture surface. The hatched box represents 
the abundance in the parent rock ± 1SE. The dotted line indicates the visible rind. The grey shaded area is the 
uncertainty, presented as 1SE (n=5). 

Fig. 5. A) Chemical index of alteration for the weathering profile (Eq. 1). B-D) Mass transfer (Ĳ) profiles of 
elements in the weathering profile, calculated using Eq. 2, with Ti as the immobile element. The unfilled data 
points represent the ICP-OES data with the error bars representing 1SE of an internal standard, or where larger 
the detection limit of the method and propagated through all calculations. The filled data points represent the 
elemental X-ray data with the grey shaded area representing 1SE of the mean and propagated through all 
calculations. The vertical dotted line in each plot represents the tau value of the unweathered parent rock and the 
horizontal dotted line represents the visible rind. Note differing tau scales.  
 
Fig. 6. A-D) Mass transfer (Ĳ) profiles for more elements in the weathering profile; the unfilled data points 
represent the ICP-OES data with the error bars representing 1SE of an internal standard, or where larger the 
detection limit of the method and propagated through all calculations. The filled data points represent the 
elemental X-ray data with the grey shaded area representing 1SE of the mean and propagated through all 
calculations. E-F) Mass transfer (Ĳ) profiles for U-series elements in the weathering profile. All mass transfer 
coefficients are calculated using Eq. 2, with Ti as the immobile.  The vertical dotted line in each plot represents 
the tau value of the unweathered parent rock and the horizontal dotted line represents the visible rind.  Note 
differing tau scales for each plot.  

 

Fig. 7. Top x axis: Porosity (vol %) determined via modal X-ray phase analysis as a function of distance from 
the fracture surface. Bottom x axis: density ratio (unitless) calculated by dividing the density of unweathered 
rock by the density of weathered rock. Rock densities determined via mineral densities (Table 1) and mineral 
volumes (Fig. 3 and 4). 

Fig. 8. Micro X-ray fluorescence map (µXRF) overlaying a BSE image, showing A) qualitative Fe(II)  
and Fe(III)  content of a pyrite grain, the neighboring mineral (chlorite) and neighboring pore space 
(partially filled with kaolinite and gibbsite). Cream = Fe(II) ; Blue = Fe(III); and greyscale represents no 
Fe content. B) Qualitative S(VI) and S(-II) content of a pyrite grain and neighboring pore space 
(partially filled with kaolinite and gibbsite). White = S(-II) ; Red = S(VI) and greyscale represents no S 
content. 
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Fig. 9. Activity ratios of U-series nuclides A) (234U/238U) and B) (230Th/238U) in the weathering profile versus 
depth. The vertical dotted line represent secular equilibrium and the horizontal dotted line indicates the visible 
rind. 

Fig. 10. Weathering gradients (bs) of normalized concentrations for A: albite; B: pyrite; C: epidote; D: 
chlorite; E: pyroxene in the B1W1 sample calculated using Eq. 4. With depletions relative to the parent 
material seen as decreases. All minerals show a linear trend for mineral dissolution. 

Fig. 11. Comparison of the mineral dissolution rates (rm) presented in this study (initial rate and rind 
rate) with those from the literature previously calculated for both lab and field. All lab rates are from 
Palandri and Kharaka (2004) and references therein. The field rates for each mineral are as follows: 
Epidote (Price et al., 2008); Albite (Buss et al., 2008); Chlorite (Buss et al., 2017); Pyroxene (Benedetti 
et al., 1994); Pyrite (Malmström et al., 2000). 
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