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ABSTRACT

One of the major limitations of current electroencephalo-

gram (EEG)-based brain-computer interfaces (BCIs) is the

long calibration time. Due to a high level of noise and non-

stationarity inherent in EEG signals, a calibration model

trained using limited number of train data may not yield an

accurate BCI model. To address this problem, this paper

proposes a novel subject-to-subject transfer learning frame-

work that improves the classification accuracy using limited

training data. The proposed framework consists of two steps:

The first step identifies if the target subject will benefit from

transfer learning using cross-validation on the few available

subject-specific training data. If transfer learning is required

a novel algorithm for measuring similarity, called the Jensen-

Shannon ratio (JSR) compares the data of the target subject

with the data sets from previous subjects. Subsequently, the

previously calibrated BCI subject model with the highest sim-

ilarity to the target subject is used as the BCI target model.

Our experimental results using the proposed framework ob-

tained an average accuracy of 77% using 40 subject-specific

trials, outperforming the subject-specific BCI model by 3%.

1. INTRODUCTION

Electroencephalogram (EEG)-based brain computer inter-

faces (BCI) are systems which allow for direct communica-

tion between a person and a machine using only the brain

waves produced by the user [1]. This form of communica-

tion can allow many people who are unable to communicate

otherwise, due to damage in their neural pathways [2], to

obtain some control of their environment. Recently BCI

has started to be implemented to assist with rehabilitation of

stroke patients [3].

Despite several recent advances, there are still a number of

major issues with the current BCI which need to be addressed.

One of these issues is the fact that currently 20% to 25% of

the users are unable to achieve the classification accuracy of

70% or more while using the BCI [4]. The other major issue is

that even for the users who can obtain high levels of accuracy,

they typically require a 20 to 30 minutes calibration period

at the beginning of each session [5]. During this calibration

period a large number of labelled training data are recorded

for adjusting the feature extractor and the classifier. This is

necessary to adapt the BCI to the target user and deal with the

variations in the EEG signals, both from subject to subject and

from session to session. These long calibration periods cause

fatigue and stress for the users, limiting the time available to

use the BCI as intended. As such improving the accuracy that

a BCI can achieve while reducing the training trials required

is an important area of research.

In order to improve the accuracy, research has been car-

ried out to improve the components within the BCI [6]. These

range from feature extractors, such as the filter-bank com-

mon spatial patterns algorithm [7], to classifiers, such as the

adaptive linear discriminant analysis (aLDA) which updates

the classifier parameters when new trials are available [8]. A

range of other adaptation methods have also been explored to

further improve the classification accuracy possible. An ex-

ample being data space adaptation which reduces the differ-

ence between the training data and test data through a linear

transform [9] [10]. Despite these techniques improving accu-

racy, they often require a large number of calibration trials to

provide a significant improvement.

To reduce the need for the long calibration time, trans-

fer learning between sessions and subjects has been investi-

gated. Transfer learning often refers to a procedure of using

a data set from a different task to improve the accuracy of a

related task [11]. When used for BCI, the data sets are often

from the same task but different users. One form of transfer

learning is through identifying features which are stationary

across multiple subjects, known as domain adaptation. This

area has been explored by Lotte and Guan [12] and Kang et



al [13] [14] with some success. The other form of transfer

learning is called rule adaptation which attempts to find the

framework of classification rules. The rule adaptation-based

transfer learning attempts to select the most appropriate fea-

ture extraction and classification rules from a pool of available

components [11]. This area of transfer learning has not been

explored much within BCI although it has been explored by

He and Wu recently [15].

In this paper first a new measurement of similarity is pro-

posed named the Jensen Shannon ratio (JSR). This measure

is used to compare calibration trials with existing data sets

for transfer learning. Then a framework is proposed which

identifies whether the target user will benefit from using rule

adaptation transfer learning. If so, the data set with the high-

est similarity to the trials of the target user is selected, from

previously recorded data, for training a BCI model for the tar-

get user.

The proposed framework will be evaluated using the pub-

licly available BCI Competition IV data set 2a [16]. The al-

gorithm will then be compared to utilizing only the Kullback

Leibler (KL) divergence for data set selection and a frame-

work previously proposed by Lotte using other subjects data

to alter the co-variance and mean of the training data set [17].

2. METHODOLOGY

2.1. The Proposed Jensen Shannon Ratio

The proposed JSR measures the difference of the average

EEG signals from the same class between users and the op-

posing classes using the Jensen Shannon divergence. The

JSR is then used to select an appropriate signal for training,

where the same classes are similar and opposing classes are

far apart. The Jensen Shannon divergence is based on the

Kullback Leibler (KL) divergence with some useful differ-

ences.

KL[Nj ‖ Dj ] =
1

2
[(µj − µj)

T
Σ

−1

j (µj − µj)

+tr(Σ
−1

j Σj)− ln(
det(Σj)

det(Σj)
)− k],

(1)

The band pass filtered EEG signals can be modelled as

Gaussian distributions. The similarity between two Gaussian

distributions can be measured through the KL divergence, as

shown in (1). For this equation Nj(µ,Σ) and Dj(µ,Σ) are

used to represent the distributions of class j from the target

subject N and training subject D. µ and µ represent the

means of the distribution, and Σ and Σ denote covariances.

Jensen Shannon divergence is an extension of the KL di-

vergence. This extension provides a symmetric and finite

value for the similarity by measuring to a middle point provid-

ing, as shown in (2). The middle point Mji(µji,Σji) is cal-

culated from the average of the two distributions being com-

pared, with µji = 0.5(µj + µi) and Σji = 0.5(Σj + Σi).

This Jensen Shannon divergence is then used to calculate the

JSR and select the best data sets for the test data.

JS[Nj ‖ Di] =
1

2
(KL[Nj ‖ Mji] + KL[Di ‖ Mji]) (2)

Through knowing the differences between the EEG sig-

nals for each subject and class the JSR can be calculated. This

aims to select a data set which has similar distributions for

the same class while ensuring that the opposing classes are

not similar. This is done through equation (3), with C rep-

resenting the number of classes. The JSR aims to minimize

the dissimilarity between the classes of two data sets while si-

multaneously maximizing the dissimilarity between different

classes.

JSR =

∑C

j=1 JS[Nj ‖ Dj ]
∑C

i=1i 6=j(JS[Nj ‖ Di])
(3)

When using the JSR for BCI subject to subject transfer

learning the band-pass filtered EEG signals are used. As such

Di(0,Σi) can be used to represent the distribution of one of

the training data sets. While Nj(0,Σj) represents the distri-

bution of the few subject specific trials we have from the user

for each j class. In each of these distributions the normalized

co-variance is estimated through the signal values x as shown

in (4), with N number of trials.

Σ =
1

N

N∑

i=1

xixi
T

tr(xixi
T )

(4)

As the band pass filtered EEG has a zero mean, equation

(3) can be simplified to equation (5). Once the JSR has been

calculated between the distribution of the subject specific tri-

als and each of the possible training data distributions, the

training data with the lowest JSR value is then selected. This

data set is used to train the CSP and LDA of the BCI.

JSR =
C∑

j=1

∑

i 6=c

(tr(M)−1
Σj + (M)−1

Σj)− ln(
det(Σj)
det(Σj)

)

C(tr(M)−1Σi + (M)−1Σj)− ln( det(Σi)
det(Σj)

)

(5)

2.2. Proposed BCI Subject to Subject Transfer Learning

Framework

Users who encounter BCI deficiency can benefit substan-

tially from the application of transfer learning. While for

other users, who easily obtain high classification accuracy,

the transfer learning can be detrimental. To counter this the

proposed framework identifies the users who can benefit from

subject to subject transfer learning then selects the best pre-

viously recorded data set for these users to train their BCI

models. To identify the subjects requiring transfer learning



the leave-one-out validation (LOOV) accuracy is applied on

the few subject-specific target trials. If the average accuracy

for those subject-specific trials is below 70% they are iden-

tified as BCI deficient. For user who are found to encounter

BCI deficiency the proposed JSR was then used to select an

appropriate data set for training the BCI.

2.3. Selection Comparison

To evaluate the effectiveness of the proposed JSR transfer

learning, its results are compared with the accuracies obtained

using a KL based similarity measure. Moreover, the proposed

framework is compared to the algorithm previously suggested

by Lotte utilizing other subjects training data [17]. These

were also compared to training the BCI with the available

subject specific trials provided to highlight the improvement

in accuracy achieved by providing the additional training tri-

als.

2.3.1. Kullback Libeler Divergence

KL divergence is a long established method of calculating the

difference between two Gaussian distributions. As such it is

used for comparison against the JSR as a mean of transfer

learning in the data domain. Equation (1) displays the cal-

culations required to calculate the KL divergence. In this the

data set which has the lowest summation of KL divergence

between the test and target subjects classes is used for the

BCI training.

2.3.2. BCI utilizing other subjects data

Lotte and Guan previously developed an algorithm for BCI

which used other subjects data to reduce the need for cali-

bration trials [17]. This evaluates the training data by train-

ing a BCI using each of the training data sets available. The

subject specific trails are then used to evaluate the data sets.

The selected data sets are then weighted, with λ, then used

to estimate a new co-variance and mean in the feature do-

main as shown (7) and (6). For these equations µ and Σ are

the mean feature vector and co-variance of the target subject

while µ and Σ are the mean feature vector and co-variance of

the training subset. s is the number of selected training data

sets.

Σ = (1− λ)Σ+ λ
1

s

s∑

i=1

Σs (6)

µ = (1− λ)µ+ λ
1

s

s∑

i=1

µs (7)

λ =
DatasetAccuracy − SubjectSpecificAccuracy

100− ChanceAccuracy
(8)

The weighting of λ is calculated through comparing the

leave-one-out validation (LOOV) accuracy that is achieved

by the subject specific trials and the accuracy achieved when

the other data sets are used for training. If the leave one out

validation outperforms the other data sets it is used for train-

ing the BCI, while if it is less than chance the trials are not

used at all. If the LOOV accuracy is between the chance level

and the accuracy achieved by the other data sets then they are

weighted as shown in (8).

3. RESULTS AND DISCUSSION

3.1. Improvement for BCI Deficient Users

Initially the proposed JSR is compared to the other transfer

learning algorithms. The JSR allows BCI deficient users to

achieve higher accuracy then any of the other algorithms.

This can be seen in figure 1 which shows the accuracy

achieved by each of the algorithms when 8 subject spe-

cific trials are available. For the users who achieved less than

70% accuracy with their subject specific trials the average

improvement was 8% with JSR. In comparison the algorithm

proposed by Lotte improved the accuracy for these subjects

by just 3% and the KL divergence caused a fall in accuracy.

Subjects 1 and 5 in particular had a large increase in clas-

sification accuracy when the JSR was applied. While the

average accuracy across all the subjects is not improved by

JSR, compared to the standard BCI. This could be improved

with a larger data base with more subjects to select from.

Fig. 1. The accuracy achieved by each algorithm for every

subject in the data set when only 8 trials are available for ei-

ther training or calibration.

When examining the average classification accuracy

across all the subjects, when 8 subject specific trials are

available, the algorithm proposed by Lotte outperforms the

JSR 0.9%. This may be due to Lottes algorithm only using



others data for users encountering BCI deficiency, who re-

quire assistance, while JSR was used for all subjects. The

subjects able to achieve high levels of accuracy with only a

few subject specific trials lose accuracy with any of the other

data sets available in the database. As such it is important

to differentiate between the subjects who will achieve high

accuracy and the subjects who will encounter BCI deficiency.

To identify these BCI deficient subjects the proposed

framework incorporates the LOOV accuracy as a quick way

to estimate the users competency in controlling EEG based

BCI. Through this the users are classified as either BCI defi-

cient or sufficient. The users will then either use the JSR to

select the best training set for them or use the subject specific

trials as the training set for the BCI.

Using the framework to select the subjects requiring trans-

fer learning, before applying the JSR, improves the average

accuracy across all the subjects. This is shown in figure 2

where the proposed framework is able to achieve 77% ac-

curacy when 40 subject specific trials are available. When

only the subject specific trials are used for training the aver-

age accuracy is only 74.5%. The proposed framework con-

sistently outperforms the standard BCI although it does not

perform optimally initially and experiences a small decrease

in accuracy when 28 trials are available. The drop in accu-

racy which occurs when there are 28 subject specific trials is

due to subjects 2 and 8 both experiencing a fall in accuracy.

These subjects are both correctly identified as BCI deficient

and sufficient respectively however still lose accuracy due to

a few inconsistent trials. These trials causes the JSR to select

a bad data set for subject 2 and leading to a fall in accuracy

of 2%. This shows that the framework could benefit from an

algorithm to evaluate and remove trials that are outliers.

3.2. Average Improvement from Proposed Framework

As mentioned the framework is not able to improve the aver-

age accuracy when only 8 subject specific trials are available.

The LOOV misidentifies subjects 1 and 3 lowering the aver-

age accuracy by 0.1% compared to the standard BCI. The ini-

tially low accuracy of the proposed framework highlights one

of the main problems which is its ineffectiveness in noticing

BCI deficient users quickly. Using the LOOV accuracy is able

to produce a fairly accurate prediction of the users capabili-

ties when enough trials are available however a few outlying

trials can affect the results. These outliers are not necessarily

just trials that produce low levels of accuracy but can also pro-

duce uncharacteristically high levels of accuracy which lead

to the subjects being miss-classified by the LOOV and the

framework under performing. The LOOV does perform well

when there are enough trials provided to the validation and

the framework does still improve on the standard BCI when

10 or more trials are available.

Table 1 highlights this failing of the LOOV accuracy as

a measurement of BCI competency. The proposed frame-

Fig. 2. The average accuracy achieved by the standard BCI

and framework improves as the number of trials increase.

Table 1. Average accuracy for BCI deficient users

Trials Subject Specific Proposed framework JSR

8 57 62.5 62.5

40 58.65 65.1 66.1

work improves upon standard BCI however there is still a

lot of room for improvement. If a better selection method

was available this could further improve the accuracy of the

framework. This increase in accuracy could be up to 3% if

the correct subjects are selected to utilize the JSR. The current

framework is able to improve the accuracy for BCI deficient

subjects by over 5.5% when only 8 trials are available and by

up to 6.5% when 40 trials are available.

4. CONCLUSION

Overall an improvement in the classification accuracy was

consistently achieved for users encountering BCI deficiency

by the proposed Jensen Shannon ratio data selection. When

the ”leave one out” method was used to select the users who

required alternative training trials the average accuracy of the

system outperformed the standard BCI by 3%. It is also im-

portant to remember that this was conducted using a publicly

available data set with only nine subjects, providing a rela-

tively small amount of training data to select from. A larger

data set with more subjects may be able to find more appro-

priate data sets for each deficient subject. A number of users

who were miss-classified could have benefited from using a

different users data. As such to progress this work a key area

to focus on will be in selecting a better predictor of classifica-

tion accuracy going forward. This could potentially improve

the systems allowing it to achieve an accuracy of 77% with

only 8 trials. As the framework improves it can be applied to

assist stroke patients with rehabilitation.
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