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Abstract We present novel homomorphic encryption

schemes for integer arithmetic, intended primarily for

use in secure single-party computation in the cloud.

These schemes are capable of securely computing arbit-

rary degree polynomials homomorphically. In practice,

ciphertext size and running times limit the polynomial

degree, but this appears sufficient for most practical

applications. We present four schemes, with increasing

levels of security, but increasing computational over-

head. Two of the schemes provide strong security for

high-entropy data. The remaining two schemes provide

strong security regardless of this assumption. These

four algorithms form the first two levels of a hierarchy

of schemes and we also present the general cases of

each scheme. We further elaborate how a fully homo-

morphic system can be constructed from one of our gen-

eral cases. In addition, we present a variant based upon

Chinese Remainder Theorem (CRT) secret sharing. We
detail extensive evaluation of the first four algorithms
of our hierarchy by computing low-degree polynomi-

als. The timings of these computations are extremely

favourable by comparison with even the best of exist-

ing methods, and dramatically out-perform many well-

publicised schemes. The results clearly demonstrate the

practical applicability of our schemes.

A preliminary version of this paper [39] was presented at
IMACC 2017.

J. Dyer
De Montfort University, UK

M. Dyer · J. Xu
School of Computing, University of Leeds, UK.

1 Introduction

With services like Amazon’s Elastic MapReduce [4] and

Microsoft’s HDInsight [59] offering large-scale distrib-

uted cloud computing environments, computation in

the cloud is becoming increasingly more available. Such

services allow for computation on large volumes of data

to be performed without the large investment in local

computing resources. However, where the data that is

processed is sensitive, such as financial or medical data,

then uploading such data in its raw form to such a third-

party service becomes problematic.

To take advantage of these cloud services, we require

a means to process the data securely on such a plat-

form. We designate such a computation, secure com-

putation in the cloud (SCC). SCC should not expose

input or output data to any other party, including the

cloud service provider. Furthermore, the details of the

computation should not allow any other party to de-

duce its inputs and outputs. Cryptography seems the

natural approach to this problem.

However, it should be noted that van Dijk and Juels
[36] show that cryptography alone cannot realise secure

multi-party computation in the cloud, where the parties
jointly compute a function over their inputs while keep-

ing their own inputs private. Since our approach is via

homomorphic encryption, we will restrict our attention

to what we will call secure single-party computation in

the cloud (SSCC).

Homomorphic encryption (HE) appears to offer a
solution to the SSCC problem. First defined by Rivest

et al. [70] in 1978, HE allows a function to be computed

on encrypted inputs without ever decrypting the inputs.

Suppose we wish to compute the function f on inputs
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x1, x2, . . . , xn, then, under HE,

Dec(f ′(x′
1, x

′
2, . . . , x

′
n)) = f(x1, x2, . . . , xn),

where x′
1, . . . , x

′
n are the encryptions of x1, . . . , xn, f

′

is the equivalent of f in the ciphertext space, and Dec

is the decryption function. HE clearly satisfies some of

the requirements for secure computation in the cloud.

A somewhat HE scheme (SWHE) is a scheme which

is homomorphic for only limited inputs and functions.

Fully HE (FHE) is a scheme that is homomorphic for all
functions and inputs. This was first realised by Gentry

in 2009 [44], and appeared to be the ideal HE scheme.

However, despite the clear advantages of FHE, and

many significant advances [20,18], it remains largely im-

practical. Two implementations of recent FHE schemes,
HELib [49] and FHEW [37], both perform very poorly
in practice, both in their running time and space re-

quirements (see section 2.6).

In this paper, we present four novel SWHE schemes
for encryption of integers that are additively and multi-

plicatively homomorphic. These schemes are capable of

computing arbitrary degree polynomials. In section 2,

we present our usage scenario, a summary of our results,

and a discussion of related work. We present our initial

homomorphic scheme in section 3, in two variants, HE1

and HE1N. HE1 (section 3.1) provides strong security

for integers distributed with sufficient entropy. This se-

curity derives from the assumed hardness of the par-

tial approximate common divisor problem (PACDP).

HE1N (section 3.2) guarantees strong security for in-

tegers not distributed with sufficient entropy or where

the distribution is not known, by adding an additional

“noise” term. In addition to the hardness assumption,

we prove that HE1N is IND-CPA secure [6]. Section 4

describes a further two variants, HE2 and HE2N, which
increase the entropy of the plaintext by adding a di-
mension to the ciphertexts, which are 2-vectors. This
further increases the security of these schemes by ef-

fectively doubling the entropy. HE2 (section 4.1) deals

with integers of sufficient entropy, HE2N (section 4.2)

with integers without the required entropy or of un-

known distribution. HE2N also satisfies IND-CPA. We

describe this in some detail, since it appears to be prac-

tically useful, and is the simplest version of our general

scheme. In section 5, we generalise HE2 and HE2N from

2-vectors to k-vectors, for arbitrary k, in the scheme
HEk, with noisy variant HEkN. These schemes may also

be practical for small enough k. In section 6, we detail a

variant of our HE2N scheme that employs Chinese Re-

mainder Theorem secret sharing to allow one to process

the computation by dividing into subcomputations on

smaller moduli. In section 7, we show how to construct

a fully homomorphic system from our HEk scheme.

We have performed extensive experimental evalu-

ation of the four schemes presented in this paper. We

report on this in section 8. Our results are extremely fa-

vourable when compared with other methods. In some

cases, our algorithms outperform the running times of

directly comparable schemes by a factor of up to 1000,

and considerably more than that for fully homomorphic

schemes, used in the same context. Finally, in section
9, we conclude the paper.

2 Background

2.1 Scenario

As introduced above, our work concerns secure single-

party computation in the cloud. In our scenario, a se-

cure client wishes to compute a function on a large

volume of data. This function could be searching or

sorting the data, computing an arithmetic function of
numeric data, or any other operation. We consider here
the case where the client wishes to perform arithmetic

computations on numeric data. This data might be the

numeric fields within a record, with non-numeric fields

being treated differently.
The client delegates the computation to the cloud.

However, while the data is in the cloud, it could be

subject to snooping, including by the cloud provider.

The client does not wish to expose the input data, or

the output of the computation, to possible snooping

in the cloud. A snooper here will be a party who may

observe the data and the computation in the cloud, but

cannot, or does not, change the data or insert spurious

data. (In our setting data modification would amount
to pointless vandalism.) The snooping may be casual,
displaying an uninvited interest, or malicious, intending

to use data for the attacker’s own purposes.

To obtain the required data privacy, the client’s

function will be computed homomorphically on an en-

cryption of the data. The client encrypts the source

data using a secret key and uploads the encryption to

the cloud, with a homomorphic equivalent of the tar-

get computation. The cloud environment performs the

homomorphic computation on the encrypted data. The

result of the homomorphic computation is returned to

the client, who decrypts it using the secret key, and

obtains the output of the computation.

In this scenario, the source data is never exposed in
the cloud, but encryptions of it are. A snooper may ob-

serve the computation of the equivalent homomorphic

function in the cloud environment. As a result, they

may be able to deduce what operations are performed,

even though they do not know the inputs. A snooper

may also be able to inspect the (encrypted) working
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data generated by the cloud computation, and even per-

form side computations of their own. However, snoop-

ers have no access to the secret key, so cannot make

encryptions of their own.

2.2 Definitions and Notation

x←$S denotes a value x chosen uniformly at random

from the discrete set S.

x←p S denotes a prime number x chosen uniformly

at random from the discrete set S.

KGen : S → K denotes the key generation function

operating on the security parameter space S and whose
range is the secret key space K.

Enc :M×K → C denotes the symmetric encryption

function operating on the plaintext space M and the

secret key space K, whose range is the ciphertext space
C.

Dec : C×K →M denotes the symmetric decryption

function operating on the ciphertext space C and the
secret key space K, whose range is the plaintext space

M.

Add : C ×C → C denotes the homomorphic addition

function whose domain is C2 and whose range is C.
Mult : C × C → C denotes the homomorphic multi-

plication function whose domain is C2 and whose range
is C.

m, m1, m2, . . . denote plaintext values, and c, c1,

c2, . . . denote ciphertext values.

If k∗ =
(

k+1

2

)

, v⋆ = [v1 v2 . . . vk∗ ]T denotes a k∗-

vector which augments the k-vector v = [v1 v2 . . . vk]
T

by appending elements vi = fi(v1, . . . , vk) (i ∈ [k +
1, k∗]), for a linear function fi. (All vectors are column

vectors throughout.)

ei denotes the ith unit vector (i = 1, 2, . . .), with

size determined by the context.

[x, y] denotes the integers between x and y inclusive,

and [x, y) denotes [x, y] \ {y}.
log denotes loge and lg denotes log2.

If λ is a security parameter, “with high probability”

will mean with probability 1− 2−ǫλ, for some constant

ǫ > 0.

Polynomial time or space will mean polynomial in

the security parameter λ.

2.3 Formal Model of Scenario

We have n integer inputs m1,m2, . . . ,mn distributed in

[0,M) according to a probability distribution D. If X is

a random integer sampled from D, let Pr[X = i] = ξi,

for i ∈ [0,M). We will consider three measures of the

entropy of X, measured in bits:

Shannon: H1(X) = −∑M−1

i=0 ξi lg ξi,

Collision: H2(X) = − lg
(
∑M−1

i=0 ξ2i
)

,

Min: H∞(X) = − lg
(

maxM−1
i=0 ξi

)

.

It is known that H1(X) ≥ H2(X) ≥ H∞(X), with

equality if and only ifX has the uniform distribution on

[0,M), in which case all three are lgM . We will denote

H∞(X) by ρ, so it also follows that H1(X), H2(X) ≥ ρ.

We use the term “entropy” without qualification to
mean min entropy, H∞(X). Note that H∞(X) = ρ ≥
lgM implies ξi ≤ 2−ρ, i ∈ [0,M), and that M ≥ 2ρ.

We wish to compute a multivariate polynomial P of

degree d on these inputs. A secure client A selects an

instance Enc(K, ·) of the encryption algorithm Enc us-
ing the secret parameter set K. A encrypts the n inputs

by computing ci = Enc(K,mi), for i ∈ [1, n]. A uploads

c1, c2, . . . , cn and P ′ to the cloud computing environ-

ment, where P ′ is the homomorphic equivalent of P in

the ciphertext space. The cloud environment computes

P ′(c1, c2, . . . , cn). A retrieves P ′(c1, c2, . . . , cn) from the

cloud, and computes

P (m1,m2, . . . ,mn) = Dec(K,P ′(c1, c2, . . . , cn)).

A snooper is only able to inspect c1, c2, . . . , cn, the
function P ′, and the computation of P ′(c1, c2, . . . , cn),

including subcomputations and working data, and per-

form side-computations on these.1 Thus the snooper is

passive or honest-but-curious [45].

2.4 Observations from Scenario

First, we can observe that symmetric key encryption

is sufficient for the model. Public key encryption is not

necessary because there is no key escrow or distribution

problem. Additionally, even though the public paramet-

ers of our symmetric schemes are exposed to the cloud,

they do not provide an encryption oracle.

Note that the n inputs do not necessarily need to

be uploaded at once, but n is an upper bound on the

total number of inputs. For example, if the polynomial

is separable we might compute it in separate stages,

and this might be useful in more dynamic situations.

This model is clearly susceptible to certain attacks.
We consider ciphertext only, brute force, and cryptana-

lytic attacks. To avoid cryptanalytic attacks, we must

choose the parameters of the system carefully. Here, a

brute force attack will mean guessing the plaintext asso-

ciated with a ciphertext. In our encryption schemes, it

will be true that a guess can be verified. Since ξi ≤ 2−ρ

for i ∈ [0,M), the expected number µ of guesses before

1 However, note that our “N” schemes below provide secur-
ity against more malicious snooping.
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making a correct guess satisfies µ ≥ 2ρ. Massey [58]

gave a corresponding result in terms of the Shannon
entropy H1(X).

Similarly, probability of any correct guess in 2ρ/2

guesses is at most 2−ρ/2. This bound holds if we need

only guess one of n inputs, m1,m2, . . . ,mn, even if

these inputs are not independent. Therefore, if ρ is large

enough, a brute force attack is infeasible. An example

of high entropy data is salaries for a large national or

multinational business. Low entropy data might include

enumerated types, such as gender.

In our model, known plaintext attack (KPA) is pos-

sible only by brute force, and not through being given

a sample of plaintext, ciphertext pairs. Chosen plain-
text attack (CPA) or chosen ciphertext attack (CCA)
do not appear relevant to our model. Since Enc(K, ·) is

never exposed in the cloud, there is no realistic analogue

of an encryption or decryption oracle, as required by

these attacks. In public key encryption, an encryption

algorithm is available as part of the system, so CPA

should be forestalled, though failure to satisfy IND-
CPA [7] does not imply that we can break the system.

Following [6], it is common in studying symmetric
key encryption to suppose that, in most practical set-
tings, defence against CPA or CCA is necessary. While

IND-CPA and IND-CCA are clearly desirable proper-

ties for a cryptosystem, their necessity, in the symmet-

ric key context, seems hard to justify. Both [9] and [14]

provide examples intended to support this convention.

However, these examples are unconvincing. Neverthe-

less, we show that the “N” variants of our HE schemes

below do satisfy IND-CPA.

We note that observation of the function P ′, which

closely resembles P , might leak some information about

its inputs. However, we assume that this information is

far too weak to threaten the security of the system, as

is common in the HE literature. However, if the threat
is significant, “garbled circuits” [45] are a possible solu-
tion.

Finally, we note that our model of SSCC is very

similar to the model of private single-client comput-

ing, described in [36]. Furthermore, they describe an

example practical application, a privacy preserving tax
return preparation program, which computes the relev-
ant statistics on government servers without revealing

the client’s inputs. Another example, cited in [57], is
a device which collects health data which is streamed
to the cloud. Statistics are computed on the data and

reported back to the device. To protect the patient’s

privacy this data is encrypted by the device and the

computations are performed homomorphically. Erkin et

al. [41] employ a similar scenario in the description of

their privacy-preserving face recognition algorithm.

2.5 Our Results

We describe new practical HE schemes for the encryp-
tion of integers, to be employed in a SSCC system
inspired by the HE scheme CryptDB [65]. CryptDB

encrypts integers using the Paillier cryptosystem [63]

which is additively homomorphic2. Similar systems [76,

77] use ElGamal [40] to support multiplications. The

“unpadded” versions of these schemes must be used.
These are not secure under CPA [47], reducing the ad-
vantage of a public-key system. These schemes do not
support both addition and multiplication. Computing

the inner product function requires re-encrypting the

data once the multiplications have been done, so that

the additions can be performed. In a SSCC system,

this requires shipping the data back to the initiator for
re-encryption, a significant communication overhead.
We aim to support both addition and multiplication

without this overhead. It should also be noted that a

hybrid scheme of Paillier and ElGamal, for a given mod-

ulus, will be limited in the degree of polynomials that

can be computed. Should a product or sum exceed the

modulus then the result cannot be successfully decryp-

ted.

Our scheme is inspired by the SWHE scheme of van

Dijk et al. that is used as the basis for a public-key

system. As in their system, we add multiples of integers

to the plaintext to produce a ciphertext. However, [35]

supports only arithmetic mod 2. We generalise their

scheme to larger moduli.

We showed above that the input data must have

sufficient entropy to negate brute force attacks. If the

data lacks sufficient entropy, we will introduce more in

two ways. The first adds random “noise” of sufficient

entropy to the ciphertext, to “mask” the plaintext. This

approach is employed in [35]. In our “N” variants be-
low, we add a random multiple (from 0 to κ) of a large

integer, κ, to the ciphertext, such that mi < κ, for all

i ∈ [1, N ]. If the entropy of the original data was ρ, it

becomes ρ + lg κ. Therefore, if κ is large enough, our

data has sufficient entropy. But there is a downside. If
the noise term grows too large, the ciphertext cannot

be decrypted successfully. So we are restricted to com-
puting polynomials of bounded degree, but this does
not appear to be a practical problem.

The other technique will be to increase the dimen-

sion of the ciphertext. We represent the ciphertext as
a k-vector, where each element is a linear function of
the plaintext. Addition and multiplication of cipher-

texts use linear algebra. The basic case k = 1 is de-
scribed in section 3.1. Then we can increase the en-

2 Paillier supports computation of linear functions with
known coefficients homomorphically by repeated addition



Practical Homomorphic Encryption Over the Integers for Secure Computation in the Cloud 5

tropy by creating a k-vector ciphertext. Then we must

guess k plaintexts to break the system. Assuming that
the inputs m1,m2, . . . ,mn are chosen independently

from D, and the entropy is ρ, the entropy of a k-tuple

(m1,m2, . . . ,mk) is kρ. Thus the k-vectors effectively

have entropy kρ. If k is chosen large enough, we have
sufficient entropy to prevent brute force attack. The as-

sumption of independence among m1,m2, . . . ,mn can
be relaxed, to allow some correlation, but we will not

discuss the details. On the upside, some cryptanalytic

attacks for k = 1 do not seem to generalise even to

k = 2. The downside is that ciphertexts are k times

larger, and each homomorphic multiplication requires
Ω(k3) time and space. For very large k, this probably

renders the methods impractical. Therefore, we con-
sider the case k = 2 in section 4. The general case is

considered in section 5.

Our work here supports computing arbitrary degree

multivariate polynomials on integer data. However, we
expect that for many practical applications, computing
low-degree polynomials will suffice. See [57] for a discus-

sion regarding this. In this paper, we present four vari-

ants of our scheme. Two provide strong security under

the assumption that the input data has high entropy.

The other two provide strong security regardless of this

assumption. Section 5 generalises these four schemes to

dimension k ciphertexts.

2.6 Related Work

A comprehensive survey of partial, somewhat, and fully

HE schemes is presented in [1]. In this section, we dis-

cuss those most related to our own work. Some related

work ([65,76,77]) has already been discussed in section

2.5.

Our scheme is inspired by that of van Dijk et al.

[35]. In their paper they produce a fully homomorphic

scheme over the integers where a simple “somewhat”

homomorphic encryption scheme is “bootstrapped” to a
fully homomorphic scheme. van Dijk et al. take a simple
symmetric scheme where an integer plaintext m is en-

crypted as c = m + 2r + pq, where p, the secret key,

is an odd η-bit integer from the interval [2η−1, 2η), and

r and q are integers chosen randomly from an interval
such that 2r < p/2. The ciphertext c is decrypted by

the calculation (c mod p) mod 2. Our scheme HE1N be-
low (section 3.2) may be regarded as a generalisation
of theirs to arbitrary prime moduli.

van Dijk et al. transform their symmetric scheme

into a public key scheme. A public key 〈x0, x1, . . . , xτ 〉
is constructed where each xi is a near multiple of p
of the form pq + r′ where q and r′ are random integers

chosen from a prescribed interval. To encrypt a message

a subset S of xi from the public key are chosen and the

ciphertext is now calculated as c = m+ 2r+ 2
∑

i∈S xi

mod x0. The ciphertext is decrypted as previously de-
scribed. We could extend our HEkN schemes here to a

public key variant, using a similar device. However, we

do not do so, since public key systems appear to have

very little application in our model.
van Dijk et al. bootstrap their public key system

using Gentry’s method [44] to a fully homomorphic

scheme. In this case, the bootstrapping is done by ho-

momorphically making a suitable simulation of division

by p, thus obtaining an encryption of c mod p which

can be used to continue the computation. Our FHE

proposal is based on entirely different principles.
Coron et al. [25,30,31,32] have produced several re-

finements of the scheme in [35]. In [31], the authors

reduce the size of the public key by using a similar but

alternative encryption scheme. In this scheme, p is a

prime in the specified interval, x0 is an exact multiple

of p and the sum term in the ciphertext is quadratic
rather than linear. In [32], they apply the Brakerski

et al. [18] modulus switching technique to their sys-
tem from [31]. In [25], the authors apply the Smart and
Vercauteren optimisations [74] to their scheme. Finally,
in [30], they apply Brakerski’s scale-invariant technique

[17] to their system. Pisa et al. [64] generalise van Dijk

et al.’s scheme from base 2 to base B integers. This
scheme is similar to our HE1 scheme. However, our HE1

is a generalisation of van Dijk et al.’s SHE scheme to
an arbitrary prime base, rather than a generalisation
of the public key scheme. Ramaiah and Kumari [67]
produce a variant of van Dijk et al.’s scheme with sig-

nificantly smaller key sizes. Chen et al. [23] propose a

more efficient re-encryption scheme that enhances van

Dijk et al.’s scheme. Aggarwal et al. [2] devise a variant

without bootstrapping. Nuida and Kurosawa [62] pro-
duce a scheme for non binary messages. Most recently,
Wang et al. [83] have produce a variant similar to Coron

et al.’s original scheme, which reduces the public key

size by making the sum term cubic.

Several implementations of SHE and FHE schemes
have been produced. Lauter et al. [57] implement the

SHE scheme from [20]. However, they give results only
for degree two polynomials. Our schemes are capable
of computing degree three and four polynomials for

practical key and ciphertext sizes. HELib [49] is an

implementation of the BGV [18] FHE scheme. HELib-

MP [69] is an adaptation of HELib to support multi-

precision moduli. At the current time, it only supports

basic SHE features. The HEAT (Homomorphic Encryp-

tion Applications and Technology) project’s HE-API

[80] (Homomorphic Encryption Application Program-

ming Interface) has currently integrated HELib and
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FV-NFLib [33], an implementation of the Fan and Ver-

cauteren (FV) [42] SHE scheme, under a single API.

The authors appear to have made significant improve-

ments in circuit evaluation times, but few details have

been made available [15]. Microsoft’s SEAL library [56]

also implements the FV scheme, albeit, in a modified

form. FHEW [38] implements the FHE scheme given

in [37]. The performance of these implementations is
discussed in section 8.

Erkin et al. [41] exploit the linearly-homomorphic

properties of Paillier to compute feature vector matches
in their privacy-preserving face recognition algorithm.
Our schemes can likewise compute known linear func-
tions, simply by not encrypting the coefficients of the

function.

Catalano et al. [22] aim to extend a linearly homo-

morphic system, such as Paillier [63], to compute mul-

tivariate quadratics homomorphically. However, their

extension relies on pre-computing a product for each

pair of plaintexts and then applying a linear function

on the encryption of these products. As such, it does

not extend the underlying linear encryption scheme and

is not multiplicatively homomorphic. They claim that

their system can compute any degree 2 polynomial with

at most one multiplication. However, it is not clear how

they would compute the polynomial m1 ·(m2+. . .+mn)
without performing n−1 offline multiplications. By con-

trast, our scheme would only require one multiplication.

In [21], Catalano et al. extend their approach to cubics.

Zhou and Wornell [85] construct a scheme based on

integer vectors, similar, in some respects, to our HE2

(section 4.1) and HEk (section 5) schemes. Bogos et al.

[12,13] demonstrate that the system displays some the-
oretical insecurities. However, the question of whether

these are of practical importance is not addressed.
The symmetric MORE scheme [54] uses linear trans-

formations, as do our schemes but in a different way.

MORE has been shown [81] to be insecure against KPA,

at least as originally proposed. However, whether KPA

is relevant in applications of the scheme is unclear.
Recent work on functional encryption [46] should

also be noted. While these results are of great theor-

etical interest, the scenario where such schemes might

be applied is rather different from our model. Also, the

methods of [46] seem too computationally expensive to

be of practical interest in the immediate future.

We also note the work of Cheon et al. [26]. They use
the Chinese Remainder Theorem (CRT) in an HE sys-

tem. We make use of the CRT in our scheme HE2NCRT

below (section 6). However, our construction differs sig-

nificantly from theirs.

3 Initial Homomorphic Scheme

In this section we present details of our initial SWHE
schemes over the integers.

3.1 Sufficient Entropy (HE1)

We have n integer inputs m1,m2, . . . ,mn ∈ [0,M).

Negative integers can be handled as in van Dijk et

al. [35], by taking residues in [−(p − 1)/2, (p − 1)/2),
rather than [0, p). We wish to compute a polynomial

P of degree d in these inputs. The inputs are distrib-

uted with entropy ρ, where ρ is large enough, as dis-

cussed in section 2.3 above. In practical terms, ρ ≥ 32

will provide sufficient entropy for strong security, since

breaking the system would require more than a billion
guesses. Our HE scheme is the system (KGen, Pgen,

Enc, Dec, Add, Mult).

3.1.1 Key and Parameter Generation

Let λ be a security parameter, measured in bits. Let p

and q be randomly chosen large distinct primes such

that p ∈ [2λ−1, 2λ], and q ∈ [2η−1, 2η], where η ≈
λ2/ρ−λ. Here λ must be large enough to negate direct

factorisation of pq (see [55]), and p and q are chosen to
negate Coppersmith’s attack [29]. We will also require

p > (n+1)dMd to ensure that P (m1,m2, . . . ,mn) < p,

so that the result of the computation can be success-

fully decrypted. Our bounds are worst case, allowing

for polynomials which contain all possible monomial

terms. For some applications, they will be much larger

than required to ensure that P (m1,m2, . . . ,mn) < p
and smaller bounds will suffice. Our algorithms KGen

(Algorithm 1) and Pgen (Algorithm 2) will randomly
select p and q according to these bounds. Then p is the

private symmetric key for the system and pq is the mod-

ulus for arithmetic performed by Add and Mult. pq is

a public parameter of the system. We assume that the

entropy ρ ≫ lg λ, so that a brute force attack cannot
be carried out in polynomial time.

Algorithm 1: KGen: Key Generation Al-

gorithm

Input : λ ∈ S
Output: p ∈ K: secret key

1 p←p [2λ−1, 2λ]
2 return p
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Algorithm 2: Pgen: Parameter Generation

Algorithm

Input : λ ∈ S

Input : ρ ∈ Z: entropy of inputs
Input : p: secret key
Output: modulus ∈ Z: public modulus

1 η ← λ2/ρ− λ
2 q ←p [2η−1, 2η]
3 modulus← pq
4 return modulus

3.1.2 Security parameters

We can easily set the security parameters λ and η to
practical values. To recap, n is the number of inputs,

M is an exclusive upper bound on the inputs, d is the

degree of the polynomial we wish to calculate. We take

p ≈ 2λ and then q ≈ 2η, where η = λ2/ρ− λ, to guard

against the attacks of [28,50].

For HE1, we assume M ≈ 2ρ, n ≤
√
M . Therefore,

p > (n+ 1)dMd ≈ (nM)d for large n.

So, we may take

p = 2λ > M3d/2 ≈ 23dρ/2

i.e. λ ≈ 3dρ/2

and η ≈ λ2

ρ
− λ =

3dλ

2
− λ =

3dρ

2

(

3d

2
− 1

)

If n ≈
√
M , M ≈ 2ρ then we may take λ ≈ 3dρ/2

and η ≈ 3dλ/2 − λ. For, example, if ρ = 32, d = 4, we

can take any λ > 192, η > 960.
Note that λ scales linearly with d and η scales quad-

ratically. These bounds carry over to HE2 and HEk.

3.1.3 Encryption

We encrypt a plaintext integer m using Enc (Algorithm

3).

Algorithm 3: Enc: Encryption algorithm

Input : m ∈M
Input : p: secret key
Input : modulus: public modulus
Output: c ∈ C

1 q ← modulus/p
2 r←$ [1, q)
3 c← m+ rp (mod modulus)
4 return c

3.1.4 Decryption

We decrypt the ciphertext c using Dec (Algorithm 4).

Algorithm 4: Dec: Decryption algorithm

Input : c ∈ C
Input : p: secret key
Output: m ∈M

1 m← c (mod p)
2 return m

3.1.5 Addition

The sum modulo pq of two ciphertexts, c = m + rp
and c′ = m′+ r′p, is given by Add (Algorithm 5). Since

Algorithm 5: Add: addition algorithm

Input : c ∈ C

Input : c′ ∈ C
Input : modulus ∈ Z: public modulus
Output: result ∈ C

1 result← c+ c′ (mod modulus)
2 return result

Add(c, c′) = c + c′ = m + m′ + (r + r′)p, Add(c, c′)

decrypts to m+m′, provided m+m′ < p.

3.1.6 Multiplication

The product modulo pq of two ciphertexts, c = m +

rp and c′ = m′ + r′p, is given by Mult (Algorithm 6).

Since Mult(c, c′) = cc′ = mm′ + (rm′ + r′m+ rr′p)p, it

Algorithm 6: Mult: multiplication algorithm

Input : c ∈ C
Input : c′ ∈ C
Input : modulus ∈ Z: public modulus
Output: result ∈ C

1 result← cc′ (mod modulus)
2 return result

decrypts to mm′, provided mm′ < p.

3.1.7 Security

Security of the system is provided by the partial approx-

imate common divisor problem (PACDP), first posed
by Howgrave-Graham [50], but can be formulated [24,

28] as:

Definition 1 (Partial approximate common di-

visor problem.) Suppose we are given one input x0,

of the form pr0, and n inputs xi, of the form pri +mi,

i ∈ [1, n], where p is an unknown constant integer and

the mi and ri are unknown integers. We have a bound
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B such that |mi| < B for all i. Under what conditions

on the mi and ri, and the bound B, can an algorithm
be found that can uniquely determine p in time poly-

nomial in the total bit length of the numbers involved?

A straightforward attack on this problem is by brute
force. Consider x1. Assuming that m1 is sampled from

D, having entropy ρ, we successively try values for m1

and compute gcd(x0, x1 −m1) in polynomial time un-

til we find a divisor that is large enough to recover p.
Then we can recover mi as (xi mod p) for i ∈ [2, n]. As

discussed in section 2.3, the search will requires 2ρ gcd

operations in expectation. Note that publicly known

constants, need not, and should not be encrypted. En-

crypting them provides an obvious guessing attack.
Some attempts have been made to solve the PACDP

[24,28,50], resulting in theoretically faster algorithms

for some cases of the problem. The paper [24] gives an

algorithm requiring only
√
M polynomial time oper-

ations if D is the uniform distribution on [0,M), and

hence ρ = lgM . No algorithm running in time subexpo-

nential in ρ is known for this problem, so the encryption

will be secure if ρ is large enough. See [43] for a sur-

vey and evaluation of attacks on PACDP. We also note
the work of Cheon and Stehlé [27] which shows that
Regev’s “learning with errors” (LWE) problem [68] can

be reduced to the approximate common divisor problem

(ACDP), demonstrating that ACDP is at least as hard

as LWE. LWE is the basis of many lattice based FHE

schemes.

Our system is a special case of PACDP, since we use
the residues modulo a distinct semiprime. A semiprime

is a natural number that is the product of two primes. A
distinct semiprime is a semiprime where the primes are
distinct. We call this the semiprime partial approximate

common divisor problem (SPACDP). It is a restriction,

but there is no reason to believe that it is any easier
than PACDP.

Definition 2 (Semiprime factorisation problem.)

Given a semiprime s, the product of primes p and q, can
p and q be determined in polynomial time?

The computational complexity of this problem, which

lies at the heart of the widely-used RSA cryptosystem,

is open, other than for quantum computing, which cur-
rently remains impractical. Strong semiprimes, as are
used here, are generally believed to be the hardest to

factor. We will show that breaking HE1 is equivalent

to semiprime factorisation. Therefore, our scheme is at

least as secure as unpadded RSA [71].

Theorem 1 An attack against HE1 is successful in

polynomial time if and only if we can factorise a dis-

tinct semi-prime in polynomial time.

Proof Suppose that we have an unknown plaintext m,

encrypted as c = m+ rp mod pq, where r←$ [1, q).

If we can factor pq in polynomial time, we can de-
termine p and q in polynomial time, since we know

p < q. Therefore, we can determine m = c mod p.

If we can determine m given c for arbitrary m, then

we can determine rp = c − m. We are given qp, and
we know 0 < r < q, so gcd(rp, qp) must be p, and we

can compute p in polynomial time. Now, given p, we
can determine q as qp/p. Hence, we can factorise pq in

polynomial time. ⊓⊔
With low entropy plaintexts, there is a brute force

attack on this system, which we call a collision attack.

Suppose we have a pair of equal plaintexts m1 = m2.

The difference between their encryptions (c1 − c2) is

an encryption of 0, and KPA is possible. In fact, for

n plaintexts m1,m2, . . . ,mn, if there exist i, j ∈ [1, n]

with mi = mj , then
∏

1≤i<j≤n(cj−ci) is an encryption

of 0. However, if there is sufficient entropy, this attack

is not possible.

Lemma 1 If the inputs m have entropy ρ then, for any
two independent inputs m1,m2, Pr(m1 = m2) ≤ 2−ρ.

Proof Pr(m1 = m2) =
∑M−1

i=0 ξ2i = 2−H2 ≤ 2−ρ, since

H2 ≥ H∞ = ρ. ⊓⊔
Thus, for n inputs, m1,m2, . . . ,mn the probability

that there exist i, j ∈ [1, n] with mi = mj is at most
(

n
2

)

2−ρ. If n < 2−ρ/3, this probability is at most 2−ρ/3.

Hence, for large enough λ, collision attack is infeasible.

3.2 Insufficient Entropy (HE1N)

Suppose now that the integer inputs mi, i ∈ [1, n], are

distributed with entropy ρ, where ρ is not large enough

to negate a brute force guessing attack. Therefore, we

increase the entropy of the plaintext by adding an ad-

ditional “noise” term to the ciphertext. This will be

a multiple s (from 0 to κ) of an integer κ, chosen so
that the entropy ρ′ = ρ + lg κ is large enough to neg-

ate a brute force guessing attack. As a result of the

extra linear term in the ciphertext, we compute the

quantity P (m1, . . . ,mn, κ) instead. We can easily re-

trieve P (m1, . . . ,mn) from P (m1, . . . ,mn, κ).

3.2.1 Key and Parameter Generation

KGen (Algorithm 7) and Pgen(Algorithm 7) now ran-
domly choose p and q as in HE1, but with η = λ2/ρ′−λ,
and p > (n + 1)d(M + κ2)d so that P (m1 + s1κ,m2 +

s2κ, . . . ,mN + snκ) < p, when s1, s2, . . . , sn ∈ [0, κ).

KGen also randomly chooses κ, where κ > (n+ 1)dMd,

so that P (m1,m2, . . . ,mn) < κ. The secret key, sk, is

now (κ, p).
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Algorithm 7: KGen: Key Generation Al-

gorithm

Input : λ ∈ S

Input : ρ ∈ Z: entropy of input
Input : ρ′ ∈ Z: effective entropy of inputs
Output: (κ, p): secret key

1 p←p [2λ−1, 2λ]
2 ν ← ρ′ − ρ
3 κ←p [2ν−1, 2ν ]
4 return (κ, p)

Algorithm 8: Pgen: Parameter Generation

Algorithm

Input : λ ∈ S

Input : ρ′ ∈ Z: effective entropy of inputs
Input : (κ, p): secret key
Output: modulus ∈ Z: modulus for arithmetic

1 η ← λ2/ρ′ − λ

2 q ←p [2η−1, 2η]
3 modulus← pq
4 return modulus

3.2.2 Encryption

We encrypt plaintext m using Enc(Algorithm 9).

Algorithm 9: Enc: Encryption Algorithm

Input : m ∈M

Input : (κ, p): secret key
Input : modulus: public modulus
Output: c ∈ C

1 q ← modulus/p
2 r←$ [1, q)
3 s←$ [0, κ)
4 c← m+ sκ+ rp (mod modulus)
5 return c

3.2.3 Decryption

We decrypt ciphertext c using Dec(Algorithm 10).

Algorithm 10: Dec: Decryption Algorithm

Input : c ∈ C
Input : (κ, p): secret key
Output: m ∈M

1 m← (c mod p) mod κ
2 return m

3.2.4 Arithmetic

Addition and multiplication of ciphertexts is given by
Algorithms 5 and 6.

3.2.5 Security.

The use of random noise gives the encryption the follow-

ing “indistinguishability” property, which we will use to

show that HE1N satisfies IND-CPA [6,7].

Lemma 2 For any encryption c, c mod κ is polyno-

mial time indistinguishable from the uniform distribu-

tion on [0, κ).

Proof Let c = m + sκ + rp = m + rp mod κ, where

r←$ [1, q). Then, for i ∈ [0, κ),

Pr
(

c mod κ = i) = Pr(m+ rp = i mod κ
)

= Pr
(

r = p−1(i−m) mod κ
)

∈
{

⌊q/κ⌋1/q, ⌈q/κ⌉1/q
}

∈ [1/κ− 1/q, 1/κ+ 1/q],

where the inverse p−1 of p mod κ exists since p is a

prime. Hence the total variation distance from the uni-

form distribution is

1
2

κ−1
∑

i=0

|Pr
(

c mod κ = i)− 1/κ| < κ/q.

This is exponentially small in the security parameter
λ of the system, so the distribution of c mod κ cannot

be distinguished in polynomial time from the uniform
distribution. ⊓⊔

We can further show that an adversary learns noth-
ing about the plaintexts from the size of the corres-
ponding ciphertexts.

Lemma 3 The ciphertexts c1,c2 for any plaintexts m1,

m2 satisfy

Pr(c1 ≥ c2) ≤
1

2
± 1

2q
.

Proof

Pr(c1 ≥ c2) = Pr(m1 + s1κ+ r1p ≥ m2 + s2κ+ r2p)

≤ Pr(r1p ≥ r2p− κ2)

= Pr(r1 ≥ r2 − κ2
/p)

= Pr(r1 ≥ r2), since κ2
/p < 1

=

q
∑

i=1

i

q
· 1
q
=

q(q + 1)

q2
=

1

2
+

1

2q
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Similarly,

Pr(c2 ≥ c1) ≤
1

2
+

1

2q

=⇒ Pr(c1 ≥ c2) ≤
1

2
− 1

2q

So,

Pr(c1 ≥ c2) ≤
1

2
± 1

2q

⊓⊔

We now proceed to the proof of IND-CPA. First, we

define the general approximate common divisor problem

(GACDP)[50,24,28].

Definition 3 (General approximate common di-

visor problem.) Suppose we are given n inputs xi, of
the form pri+mi, i ∈ [1, n], where p is an unknown con-

stant integer and the mi and ri are unknown integers.

We have a bound B such that |mi| < B for all i. Under

what conditions on the mi and ri, and the bound B,

can an algorithm be found that can uniquely determ-

ine p in time polynomial in the total bit length of the
numbers involved?

Theorem 2 HE1N satisfies IND-CPA[6], under the as-

sumption that GACDP is not polynomial time solvable.

Proof Suppose that known plaintexts m1, . . . ,mn are
encrypted by an oracle for HE1N, producing cipher-

texts c1, . . . , cn. Then, for ri←$ [0, q), si←$ [0, κ), we

have an SPACDP with ciphertexts ci = mi + siκ+ rip,

and the approximate divisor p cannot be determined in

polynomial time in the worst case using non-quantum

methods. However, the offsets in this SPACDP are all

of the form mi+ siκ, for known mi, and we must make
sure this does not provide information about p. To show

this, we rewrite the SPACDP as

ci = mi + siκ+ rip = m′
i + s′iκ, (i = 1, 2, . . . , n), (1)

where s′i = si + ⌊(mi + rip)/κ⌋, and m′
i = mi + rip

(mod κ). Now we may view (1) as a GACDP, with “en-

cryptions” m′
i of the mi, and approximate divisor κ.

Since the offsets m′
i are polynomial time indistinguish-

able from uniform [0, κ), from Lemma 2, we will not

be able to determine κ in polynomial time. Now, the

offsets m′
1,m

′
2 of any two plaintexts m1,m2 are polyno-

mial time indistinguishable from m′
2,m

′
1, since they are

indistinguishable from two independent samples from

uniform [0, κ). Therefore, in polynomial time, we will

not be able to distinguish between the encryption c1 of

m1 and the encryption c2 of m2.

Therefore, if A is a polynomial time adversary, from

Lemmas 2 and 3 the advantage of A, is:

Adv
ind-cpa
A,HE1N (λ) ≤ 2

(

κ

q
+

1

2q

)

− 1 =
2κ+ 1

q
= negl(λ)

⊓⊔

Therefore, HE1N is resistant to both the “guessing”

and “collision” attacks discussed in section 3.1.

Lemma 4 Decrypting HE1N without knowledge of κ is

polynomial time Turing equivalent to GACDP.

Proof Suppose we can solve GACDP instances in poly-

nomial time. If p is unknown, we have an instance of

GACDP with offsets mi + siκ and approximate divisor

p. We can solve this to obtain the offsets mi + siκ.

These offsets form a new instance of GACDP with off-
set mi and approximate divisor κ. We can then solve

this to obtain mi. If p is known, we need only solve the

mi + siκ GACDP instance. Hence, we can decrypt any

ciphertext.

Conversely, suppose we can decrypt any HE1N sys-

tem in polynomial time. Then, if ti = mi + siκ is
an instance of GACDP with approximate divisor κ,

we choose p ≥ q ≥ max
i

mi and generate ciphertexts

ci. Then the decryption algorithm for HE1N will re-

cover the mi. Then κ can be recovered using gcd on the
(ti −mi) and we can solve the GACDP instance. ⊓⊔

Therefore, as a result of the additional term, κ, HE1N

is quantum resistant [11] despite the public semiprime
modulus pq.

3.2.6 Hybrid scheme

Note that mixed data, some of which has high entropy

and some low, can be encrypted with a hybrid of HE1

and HE1N. More generally, we can choose s to be smal-

ler for higher entropy and larger for lower entropy, say

s ∈ [0, χi), where 0 ≤ χi < κ, for the ith data type,

rather than [0, κ). However, κ itself remains the same

for all i, or we cannot decrypt. Then the entropy in-
creases to ρi + lgχi for data type i. The advantage is

a smaller blow-up in the noise. A possible disadvantage

is that this mixed scheme may not necessarily have the

IND-CPA property of Theorem 2. The same idea can

be applied to HE2 and HE2N below, and to the HEkN

schemes, for k > 2, described in section 5.2.

3.2.7 Noise Growth

So that the “noise” terms of the ciphertext do not grow

sufficiently large to cause the computational result to
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overflow the secret modulus p, we need to control the

growth of these terms. As a we are computing a poly-
nomial of degree d, each multiplication doubles the bit

length of the noise terms and each addition adds at

most one bit.

To avoid overflow, as stated earlier, we set p > (n+
1)d(M + κ2)d so that P (m1 + s1κ,m2 + s2κ, . . . ,mN +

snκ) < p. This is a worst case bound, based on the
largest possible coefficient of any term. Depending on

the particular polynomial to compute, a lower bound

on p may suffice to avoid overflow.

3.2.8 Security parameters

Again, we can set the security parameters λ and η to
practical values. For HE1N, we assume M ≈ 2ρ, and

we have ρ′ = ρ+ lg κ. Now,

κ > (n+ 1)dMd ≈ (nM)d for large n,

i.e. lg κ ≈ d(lg n+ ρ)

Therefore, since ρ = ρ′ − lg κ,

lg κ > d lg n+ d(ρ′ − lg κ)

i.e. lg κ ≈ d(lg n+ ρ′)

d+ 1

Since κ is much larger than M , we also have

p = 2λ > (n+ 1)d(M + κ2)d ≈ (nκ2)d for large n

i.e. λ ≈ d(lg n+ 2 lg κ),

and η ≈ λ2

ρ′
− λ =

3dλ

2
− λ =

3dρ′

2

(

3d

2
− 1

)

Then we can calculate η as for HE1 above. Again, λ

scales linearly with d and η scales quadratically. These

bounds carry over to HE2N and HEkN.

If we assume M ≈ 2ρ and large enough n, as in

section 3.1, then we may take lg κ > d(lg n + ρ), ρ′ =
ρ+lg κ, λ > d(lg n+2 lg κ). Then, for example, if d = 3,

lg n = 16, ρ = 8, then lg κ > 72, ρ′ = 80, λ > 480,
η > 2400. In the extreme case that the inputs are bits,

so ρ = 1, and d = 3, lg n = 16, then we can take

lg κ ≈ 51 and ρ′ ≈ 52, and we have λ > 354, η > 2056,

which is only 15% smaller than for ρ = 8.

We must also ensure that κ is large enough to make
the GACDP instances hard to solve (see [24,28,50] for

details). Note that κ≪ q for Theorem 2 to hold.

4 Adding a dimension

In this section we discuss adding an additional dimen-

sion to the ciphertext, which becomes a 2-vector. The

purpose of this is to increase the level of security beyond

HE1 and HE1N. In both schemes presented below, HE2

and HE2N, we add a further vector term, with two fur-

ther secret parameters. The two schemes presented be-

low have a constant factor overhead for arithmetic op-

erations. An addition operation in the plaintext space

requires two additions in the ciphertext space, and a

multiplication in the plaintext space requires nine mul-

tiplications and four additions in the ciphertext space.

4.1 Sufficient entropy (HE2)

As noted above, in this scheme we now add a multiple
of a secret vector, a = [a1a2]

T , to the ciphertext. There-

fore, we encrypt m as

c = (m+ rp)1+ sa,

where 1 is the vector [1 1]T and s←$ [0, pq). As with

HE1, it is assumed that the inputs mi (i ∈ [1, n]) are

of sufficient entropy.

We decrypt c by eliminating a1 and a2 from the

ciphertext and then taking the residue modulo p, i.e.

m = γT c mod p,

where γT = (a2 − a1)
−1[a2 − a1].

We can easily see that this construction is homo-

morphic over addition. For HE2, we now define mul-
tiplication of ciphertexts, c1 and c2 as the Hadamard
(elementwise) product of the augmented ciphertext vec-

tors c1⋆ and c1⋆ where the augmentation of c = [c1 c2]
T

is given by c⋆ = [c1 c2 c3]
T , where c3 = 2c1 − c2.

However, this Hadamard product will include addi-

tional a21 and a22 terms which means it is not a valid

ciphertext. Therefore we re-encrypt by applying a mat-

rix R to the Hadamard product to eliminate these quad-
ratic terms. The construction of R is detailed in sections

4.1.1 and 4.1.5.

4.1.1 Key and Parameter Generation

p and q are randomly chosen by KGen (Algorithm 11)

according to the bounds given in section 3.1. KGen sets

a = [a1 a2]
T , where ai←$ [1, pq) (i ∈ [1, 2]) such that

a1, a2, a1 − a2 6= 0 (mod p and mod q).3

Pgen(Algorithm 12) generates R, the re-encryption

matrix.

4.1.2 Encryption

We encrypt a plaintext integer m as the 2-vector c us-

ing Enc(Algorithm 13), where 1 = [1 1]T r and s are

3 The condition a1, a2, a1 − a2 6= 0, (mod p, mod q) fails
with exponentially small probability 3(1/p + 1/q). Thus,
a1 and a2 are indistinguishable in polynomial time from
a1, a2 ←$ [0, pq).
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Algorithm 11: KGen: Key Generation Al-

gorithm

Input : λ ∈ S

Input : ρ ∈ Z: entropy of inputs
Output: (p,a): secret key
Output: modulus: public modulus

1 p←p [2λ−1, 2λ]
2 η ← λ2/ρ− λ
3 q ←p [2η−1, 2η]
4 modulus← pq
5 repeat

6 ai ←$ [1,modulus) (i ∈ [1, 2])
7 until a1, a2, a1 − a2 6= 0 (mod p and mod q)
8 a← [a1 a2]T

9 return (p,a),modulus

Algorithm 12: Pgen: Parameter Generation

Algorithm

Input : (p,a): secret key
Input : modulus: public modulus
Output: R: public re-encryption matrix

1 q ← modulus/p
2 β ← 2(a2 − a1)2

3 ̺←$ [0, q)
4 σ ←$ [0,modulus)
5 α1 ← β−1(σa1 + ̺p− a21)
6 α2 ← β−1(σa2 + ̺p− a22)

7 R←

[

1− 2α1 α1 α1

−2α2 α2 + 1 α2

]

8 return R

Algorithm 13: Enc: Encryption Algorithm

Input : m ∈M

Input : (p,a): secret key
Input : modulus: public modulus
Output: c ∈ C

1 q ← modulus/p
2 r←$ [0, q)
3 s←$ [0,modulus)
4 c← (m+ rp)1+ sa (mod modulus)
5 return c

independent. We note that two encryptions of the same

plaintext are different with very high probability.

Theorem 3 The encryption scheme produces cipher-

texts with components which are random integers mod-

ulo pq.

Proof Consider a ciphertext vector which encrypts the

plaintext, m, and the expression m + rp + sa mod pq

which represents one of its elements. Then r←$ [0, q),

s←$ [0, pq).

Consider first m + sa. We know that a−1 mod pq

exists because a 6= 0 (mod p and mod q). Thus, con-

ditional on r,

Pr[m+ rp+ sa = i mod pq] =

Pr[s = a−1(i−m− rp) mod pq] =
1

pq
.

Since this holds for any i ∈ [0, pq), m+ra+sp mod pq

is a uniformly random integer from [0, pq). ⊓⊔

Note, however, that the components of the ciphertexts

are correlated, and this may be a vulnerability. We dis-

cuss this later in this section (“Cryptanalysis”).

4.1.3 Decryption

To decrypt, we use Algorithm 14. We call γ the decryp-

tion vector.

Algorithm 14: Dec: Decryption Algorithm

Input : c ∈ C
Input : (p,a): secret key
Output: m ∈M

1 γ
T ← (a2 − a1)−1[a2 − a1]

2 m← γ
T c mod p

3 return m

4.1.4 Addition

We define the addition operation on ciphertexts as the

vector sum modulo pq of the two ciphertext vectors c

and c′.

Algorithm 15: Add: addition algorithm

Input : c ∈ C

Input : c′ ∈ C
Input : modulus ∈ Z: modulus for arithmetic
Output: result ∈ C

1 result ← c+ c′ (mod modulus)
2 return result

Therefore, if inputs m,m′ encrypt as (m+rp)1+sa,
(m′ + r′p+)1+ s′a,

Add(c, c′) = c+ c′ = (m+m′ + (r+ r′)p)1+ (s+ s′)a.

which is a valid encryption of m+m′.

4.1.5 Multiplication

If c = [c1 c2]
T , we construct the augmented ciphertext

vector, c⋆ = [c1 c2 c3]
T , where c3 = 2c1 − c2. Thus,

c3 = (m+ rp) + sa3 mod pq, for a3 = 2a1 − a2.
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Now, consider the Hadamard product modulo pq,

c⋆ ◦c′⋆, of the two augmented ciphertext vectors c⋆ and
c⋆

′:

z⋆ = c⋆ ◦ c′⋆ =





c1c
′
1

c2c
′
2

c3c
′
3



 mod pq

Therefore, if inputs m,m′ are encrypted as (m +

rp)1+ sa, (m′ + r′p)1+ s′a, we first calculate

z⋆ = (m+ rp)(m′ + r′p)1⋆

+ [(m+ rp)s′ + (m′ + r′p)s]a⋆ + ss′a◦2⋆

= (mm′ + r1p)1⋆ + s1a⋆ + ss′a◦2⋆ mod pq,

where r1 = mr′ +m′r + rr′p, s1 = (m+ rp)s′ + (m′ +

r′p)s, and a◦2⋆ = [a21 a22 a23]
T .

As we can see, z⋆ is not a valid encryption of mm′.

We need to re-encrypt this product to eliminate the a◦2⋆
term.

We achieve this by multiplying z⋆ by R. It is easy

to check that R1⋆ = 1 and Ra⋆ = a, independently of

a1, a2. Now

(Ra◦2⋆ )1 = (1− 2α1)a
2
1 + α1a

2
2 + α1(2a1 − a2)

2

= a21 + α1((2a1 − a2)
2 + a22 − 2a21)

= a21 + 2α1(a2 − a1)
2

= a21 + α1β

= ̺p+ σa1

(Ra◦2⋆ )2 = −2α2a
2
1 + (α2 + 1)a22 + α2(2a1 − a2)

2

= a22 + α2((2a1 − a2)
2 + a22 − 2a21)

= a22 + 2α2(a2 − a1)
2

= a22 + α2β

= ̺p+ σa2

Thus, we obtain the identity Ra◦2⋆ = ̺p1+ σa.

So, applying R to z⋆, i.e. z
′ = Rz⋆, gives

z′ = (mm′ + r1p)R1+ s1Ra+ ss′Ra◦2

= (mm′ + r1p)1+ s1a+ ss′(σa+ ̺p1)

= (mm′ + r2p)1+ (s1 + σrr′)a

= (mm′ + r2p)1+ s2a (mod pq)

for some integers r2, s2. So z′ is a valid encryption of

mm′ and our homomorphic multiplication operation on

ciphertexts is R(c⋆ ◦ c′⋆).

Mult(c, c′) = c · c′ = R(c⋆ ◦ c′⋆) (mod pq),

where · is a product on Z2
pq and c⋆◦c′⋆ is the Hadamard

product modulo pq of the two augmented ciphertext

vectors c⋆ and c′⋆ (see Algorithm 16).

Observe that α1, α2 in R are public, but give only

two equations for the four parameters of the system
a1, a2, σ, ̺p. These equations are quadratic mod pq, so

solving them is as hard as semiprime factorisation in
the worst case [66].

Also, observe that, independently of a,

Rc⋆ = (m+ rp)R1⋆ + sRa⋆ = (m+ rp)1+ sa = c,

for any ciphertext c. Hence re-encrypting a ciphertext

gives the identity operation, and discloses no informa-
tion.

Algorithm 16: Mult: multiplication algorithm

Input : c = [c1 c2]T ∈ C
Input : c′ = [c′1 c′2]

T ∈ C
Input : modulus ∈ Z: public modulus
Input : R: re-encryption matrix
Output: result ∈ C

1 c3 ← 2c1 − c2
2 c⋆ ← [c1 c2 c3]T

3 c′3 ← 2c′1 − c′2
4 c′⋆ ← [c′1 c′2 c′3]

T

5 result← R(c⋆ ◦ c′⋆) (mod modulus)
6 return result

4.1.6 Hardness

We can show that this system is at least as hard as

SPACDP. In fact,

Theorem 4 SPACDP is of equivalent complexity to
the special case of HE2 where δ = a2 − a1 (0 < δ < p)

is known.

Proof Suppose we have a system of n approximate mul-
tiples of a prime p, mi + rip (i = 1, 2, . . . , n). Then

we generate values a, s1, s2, . . . , sn←$ [0, pq), and we
have an oracle set up the cryptosystem with a1 = a,

a2 = a+ δ. The oracle has access to p and provides us

with R, but no information about its choice of ̺ and σ.

We then generate the ciphertexts ci (i = 1, 2, . . . , n):
[

ci1
ci2

]

=

[

mi + rip+ sia

mi + rip+ si(a+ δ)

]

(mod pq). (2)

Thus ci1−sia = ci2−si(a+δ) = mi+rip. Thus finding

the mi in (2) in polynomial time solves SPACDP in
polynomial time.

Conversely, suppose we have any HE2 system with
a2 = a1 + δ. The ciphertext for mi (i = 1, 2, . . . , n) is

as in (2). So si = δ−1(ci2 − ci1). Since 0 < δ < p < q,

δ is coprime to both p and q, and hence δ−1 mod pq

exists. Thus breaking the system is equivalent to de-

termining the mi mod p from mi+δ−1(ci2−ci1)a+rip
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(i = 1, 2, . . . , n). Determining the mi + δ−1(ci2 − ci1)a

from the mi + δ−1(ci2− ci1)a+ rip (i = 1, 2, . . . , n) can
be done using SPACDP. However, we still need to de-

termine a in order to determine mi. This can be done

by “deciphering” R using SPACDP. We have

2δ2α1 = σa−a2+̺p, 2δ2α2 = σ(a+δ)−(a+δ)2+̺p,

so σ = 2δ2(α2−α1)−2δa−δ2. Now a can be determined

by first determining m0 = a(2δ2(α2−α1)− (2δ+1)a−
δ2) from m0 + ̺p = 2δ2α1. This can be done using
SPACDP. Then a can be determined by solving the

quadratic equation m0 = a(2δ2(α2 − α1)− (2δ + 1)a−
δ2) mod p for a. This can be done probabilistically in

polynomial time using, for example, the algorithm of

Berlekamp [10]. So the case a = [a a+ δ]T , with known
δ, can be attacked using SPACDP on the system

m0 + ̺p, m1 + δ−1(c11 − c12)a+ r1p, . . . ,

mn + δ−1(cn1 − cn2)a+ rnp.

⊓⊔
Without knowing the parameter δ = a2 − a1, HE2

cannot be reduced to SPACDP in this way, so HE2 is

more secure than HE1.

4.1.7 Cryptanalysis.

Each new ciphertext c introduces two new unknowns
r, s and two equations for c1, c2. Thus we gain no addi-

tional information from a new ciphertext. However, if
we can guess, m, m′ for any two ciphertexts c, c′, then

(c1 −m) = rp+ sa1, (c2 −m) = rp+ sa2,

(c′1 −m′) = r′p+ s′a1, (c′2 −m′) = r′p+ s′a2,

and so we have

(c1 −m)(c′2 −m′)− (c2 −m)(c′1 −m′)

= (a2 − a1)(rs
′ − r′s)p (mod pq).

Since a2 6= a1, and sr′ 6= s′r with high probability, this

is a nonzero multiple of p, νp say. We may assume ν < q,
so p = gcd(νp, pq). We can now solve the linear system

γT [c c′] = [m m′] mod p to recover the decryption
vector. This effectively breaks the system, since we can

now decrypt an arbitrary ciphertext. We could proceed

further, and attempt to infer a1 and a2, but we will not

do so.

Note that to break this system, we need to guess two
plaintexts, as opposed to one in HE1. The entropy of

a pair (m,m′) is 2ρ, so we have effectively squared the
number of guesses needed to break the system relative

to HE1. So HE2 can tolerate smaller entropy than HE1.

We note further that HE2 does not seem immediately

vulnerable to known cryptanalytic attacks on HE1 [50,

28,24].

4.2 Insufficient entropy (HE2N)

In this section we extend HE1N above (section 3.2) to
two dimensions. As with HE1N, we now encrypt by also

adding a multiple of κ to produce the ciphertext

c = (m+ rp+ sκ)1+ ta.

We decrypt by eliminating a1 and a2, as in HE2, but we

now take residues modulo p and modulo κ to recover

the plaintext,

m = (γT c mod p) mod κ.

Our addition and multiplication operations are identical

to HE2 above.

4.2.1 Key and Parameter Generation.

KGen (Algorithm 17) randomly chooses p, q and κ ac-
cording to the bounds given in section 3.2. R is gen-

erated by Pgen (which exactly the same as Algorithm

12). The secret key is (κ, p,a), and the public paramet-

ers are pq and R, defined in section 4.1.

Algorithm 17: KGen: Key Generation Al-

gorithm

Input : λ ∈ S
Input : ρ ∈ Z: entropy of input
Input : ρ′ ∈ Z: effective entropy of inputs
Output: (κ, p,a): secret key
Output: modulus: public modulus

1 ν ← ρ′ − ρ
2 κ←p [2ν−1, 2ν ]
3 p←p [2λ−1, 2λ]
4 η ← λ2/ρ′ − λ
5 q ←p [2η−1, 2η]
6 modulus← pq
7 repeat

8 ai ←$ [1,modulus) (i ∈ [1, 2])
9 until a1, a2, a1 − a2 6= 0 (mod p and mod q)

10 a← [a1 a2]T

11 return (κ, p,a),modulus

4.2.2 Encryption.

We encrypt a plaintext integer m ∈ [0,M) as a 2-

vector c, using Enc (Algorithm 18). 1 is defined as in

section 4.1.

4.2.3 Decryption.

We decrypt a ciphertext c using Dec (Algorithm 19).
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Algorithm 18: Enc: Encryption Algorithm

Input : m ∈M
Input : (κ, p,a): secret key
Input : modulus: public modulus
Output: c ∈ C

1 q ← modulus/p

2 r←$ [0, q)
3 s←$ [0, κ)
4 t←$ [0,modulus)
5 c← (m+ rp+ sκ)1+ ta (mod modulus)
6 return c

Algorithm 19: Dec: Decryption Algorithm

Input : c ∈ C
Input : (κ, p,a): secret key
Output: m ∈M

1 γ
T ← (a2 − a1)−1[a2 − a1]

2 m← (γT c mod p) mod κ
3 return m

4.2.4 Arithmetic.

Addition and multiplication of ciphertexts are done us-

ing algorithms Add and Mult (which are exactly the
same as Algorithms 5 and 16).

4.2.5 Security.

HE2N has all the properties of HE1N. However, it is

more secure, since there is an additional unknown para-
meter in the ciphertext. We also note that HE2N satis-
fies Theorem 2, so it inherits the IND-CPA property.

4.2.6 Noise Growth

The “noise” grows as detailed in section 3.2.7.

5 Generalisation to k dimensions

In this section, we generalise HE2 and HE2N to k-
vectors. HE1 and HE1N are the cases for k = 1 and

HE2 and HE2N are the cases for k = 2.

5.1 Sufficient entropy (HEk)

We generalise HE2 to k dimensions. We extend our

definition of an augmented vector v⋆, for a k-vector,

v, such that v⋆ is a
(

k+1

2

)

-vector, with components vi
(1 ≤ i ≤ k) followed by 2vi − vj (1 ≤ i < j ≤ k). For

example, if k = 3, then v⋆ = [v1, v2, v3, 2v1 − v2, 2v1 −
v3, 2v2 − v3]. In general, for ℓ > k, vℓ = 2vi − vj , where

ℓ =
(

i
2

)

+ k+ j− 1. Note that v⋆ = Ukv for a
(

k+1

2

)

× k

matrix with entries 0,±1, 2, and whose first k rows form

the k × k identity matrix Ik. For example, if k = 3,

U3 =

















1 0 0
0 1 0
0 0 1

2 −1 0

2 0 −1
0 2 −1

















Note that v⋆ = Ukv implies that 1⋆ is the
(

k
2

)

vector of

1’s, and that ∗ is a linear mapping, i.e. (r1v1+r2v2)⋆ =
r1v1∗ + r2v2∗.

5.1.1 Key Generation

Algorithm 20: KGen: Key Generation Al-
gorithm

Input : λ ∈ S
Input : ρ ∈ Z: entropy of inputs
Output: (p,a1, . . . ,ak−1): secret key
Output: modulus: public modulus

1 p←p [2λ−1, 2λ]
2 η ← λ2/ρ− λ
3 q ←p [2η−1, 2η]
4 modulus← pq
5 a0 ← 1

6 repeat

7 aj ←$ [1,modulus)k, j ∈ [1, k)
8 until aj , j ∈ [0, k), form a basis for Zk

pq

9 return (p,a1, . . . ,ak−1),modulus

KGen is detailed in Algorithm 20. It chooses p and q

randomly, according to the bounds given in section 4.1.
In addition to choosing p and q, KGen also randomly

chooses vectors a1, . . . ,ak−1 such that a0,a1, . . . ,ak−1

form a basis for Zk
pq, where a0 = 1, the k-vector whose

elements are all 1. We denote Ak as the k × k matrix
[a0 a1 . . . ak−1] where the columns of Ak are the ai, i ∈
[0, k). We show that the probability that a1, . . . ,ak−1

do not form a basis is negligible for large p and q in

Lemma 5.

Lemma 5 Pr(a0,a1, . . . ,ak−1 do not form a basis for

Zk
pq) ≤ (k − 1)(1/p+ 1/q).

Proof The a’s are a basis if A−1
k exists, since then v =

Akr when r = A−1
k v, for any v. Now A−1

k exists mod

pq if (detAk)
−1 mod pq exists, by constructing the ad-

jugate ofAk. Now (detAk)
−1 mod pq exists if detAk 6=

0 mod p and detAk 6= 0 mod q. Now detAk is a poly-

nomial of total degree (k− 1) in the aij (0 < i ≤ k, 0 <

j < k), and is not identically zero, since detAk = 1

if ai = ei+1 (1 < i < k). Also aij ←$ [0, pq) implies
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aij mod p←$ [0, p) and aij mod q←$ [0, q). Hence, us-

ing the Schwartz-Zippel Lemma (SZL) [61], we have
Pr(detAk = 0 mod p) ≤ (k − 1)/p and Pr(detAk =

0 mod q) ≤ (k − 1)/q, and it follows that

Pr(∄ (detAk)
−1 mod pq) ≤ (k − 1)(1/p+ 1/q). ⊓⊔

5.1.2 Parameter Generation

Algorithm 21: Pgen: Parameter Generation

Algorithm

Input : (p,a1, . . . ,ak−1): secret key
Input : modulus: public modulus
Output: R: public re-encryption matrix

1 q ← modulus/p

2 a0 ← 1

3 Ak ← [a0 a1 . . . ak−1]
4 foreach j ∈ [0, k) do

5 a⋆j ← Ukaj

6 end

7 foreach i, j ∈ [0, k), 0 ≤ i ≤ j < k do

8 a◦2
⋆,ij ← a⋆i ◦ a⋆j

9 end

10 A◦2
⋆k
← [a◦2

⋆,01 . . . a◦2
⋆,ij . . . a◦2

⋆,k−2,k−1
] // A◦2

⋆k
is a

(

k+1
2

)

×
(

k+1
2

)

matrix

11 if A◦2
⋆k

has no inverse then

12 return ⊥
13 end

14 foreach i, j ∈ [0, k), 0 ≤ i ≤ j < k do

15 ̺ij ←$ [0, q)
16 foreach l ∈ [1, k) do

17 σijl ←$ [0,modulus)
18 end

19 bij ← ̺ijp1+
∑k−1

l=1
σijl al

20 end

21 Ck ← [b01 . . . bij . . . bk−2,k−1] // Ck is a k ×
(

k
2

)

matrix

22 Dk ← [Ak | Ck] // Dk is a k ×
(

k+1
2

)

matrix

23 R← Dk(A◦2
⋆k
)−1 // R is a k ×

(

k+1
2

)

matrix

24 return R

Pgen generates the k ×
(

k+1

2

)

re-encryption matrix,

R, as detailed in Algorithm 21. We construct R so that

it satisfies equation 3

R(a⋆i ◦ a⋆j) = ̺ijp1+
∑k−1

l=1 σijlal (3)

This ensures that, if c is an encryption of m and c′ is

an encryption of m′, then R(c⋆◦c′⋆) (mod pq) is a valid

encryption of mm′.

We also construct R so that it satisfies the following
identity:

Lemma 6 Let A⋆k = [a⋆0 a⋆1 . . . a⋆,k−1], where the

columns of Ak form a basis for Zk
pq. If RA⋆k = Ak,

then Rv⋆ = v for all v ∈ Zk
pq.

Proof We have v = Akr for some r ∈ Zk
pq. Then A⋆k =

UkAk and v⋆k = Ukv, so Rv⋆ = RUkv = RUkAkr =
RA⋆kr = Akr = v. ⊓⊔

This guarantees that re-encrypting a ciphertext by ap-

plying R reveals no new information.

Pgen returns a valid matrix R provided the A◦2
⋆k has

an inverse. We prove that this is true with high prob-

ability in Theorem 5. In the unlikely event that this is

not true, Pgen exits and we use KGen to generate new

vectors a1, . . . ,ak−1 until it is.

Theorem 5 A◦2
⋆k has no inverse modpq with probabil-

ity at most (k2 − 1)(1/p+ 1/q).

Proof We use the same approach as in Lemma 5. Thus

A◦2
⋆k is invertible provided detA◦2

⋆k 6= 0 (mod p) and
detA◦2

⋆k 6= 0 (mod q). Let A denote the vector of aij ’s,

(aij : 1 ≤ i ≤ k, 1 ≤ j < k). The elements of A◦2
⋆k

are quadratic polynomials over A, except for the first

column, which has all 1’s, and columns 2, 3, . . . , k which

are linear polynomials. So detA◦2
⋆k is a polynomial over

A of total degree 2
(

k
2

)

+ k − 1 = k2 − 1. Thus, unless

detA◦2
⋆k is identically zero as a polynomial over A, the

SZL [61] implies Pr(∄ (detA◦2
⋆k)

−1 mod p) ≤ (k2 − 1)/p

and Pr(∄ (detA◦2
⋆k)

−1 mod q) ≤ (k2−1)/q. Therefore we
have Pr(∄ (detA◦2

⋆k)
−1 mod pq) ≤ (k2 − 1)(1/p+ 1/q).

It remains to prove that detA◦2
⋆k is not identically

zero as a polynomial over A in either Zp or Zq. We

prove this by induction on k. Consider Zp, the argument

for Zq being identical. Since Zp is a field, detA◦2
⋆k is

identically zero if and only if it has rank less than
(

k+1

2

)

for all A. That is, there exist λij(A) ∈ Zp (0 ≤ i ≤ j <
k), not all zero, so that

L(A) =
k−1
∑

0≤i≤j

λija⋆i ◦ a⋆j

= α+ a⋆,k−1 ◦ β + λk−1,k−1a
◦2
⋆,k−1 = 0,

where α =
∑k−2

0≤i≤j λija⋆i◦a⋆j and β =
∑k−2

i=0 λi,k−1a⋆i
are independent of a⋆,k−1.

Clearly λk−1,k−1 = 0. Otherwise, whatever α,β, we
can choose values for ak so that L 6= 0, a contradiction.

Now suppose λi,k−1 6= 0 for some 0 ≤ i < k − 1. The

matrix Â⋆ with columns a⋆i (0 ≤ i < k − 1) contains

Ak−1 as a submatrix, which has rank (k− 1) with high

probability by Lemma 5. Thus β 6= 0 and, whatever
α, we can choose values for ak so that L 6= 0. Thus

λi,k−1 = 0 for all 0 ≤ i < k. Thus λij 6= 0 for some
0 ≤ i ≤ j < k − 1. Now the matrix Â◦2

⋆ with
(

k
2

)

columns a⋆i ◦ a⋆j (0 ≤ i ≤ j < k − 1) contains A◦2
⋆,k−1

as a submatrix, and therefore has rank
(

k
2

)

by induction.

Hence α 6= 0, implying L 6= 0, a contradiction. ⊓⊔
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Note that Theorem 5 subsumes Lemma 5, since the

first k columns of A◦2
⋆k contain Ak as a submatrix, and

must be linearly independent.

5.1.3 Computational overhead

The computational overhead increases, since the num-
ber of arithmetic operations per plaintext multiplica-

tion is O(k3), and the space requirement per ciphertext
is O(k), by comparison with HE1.

5.1.4 Encryption

Algorithm 22: Enc: Encryption Algorithm

Input : m ∈M
Input : (p,a1, . . . ,ak−1): secret key
Input : modulus: public modulus
Output: c ∈ C

1 q ← modulus/p
2 r←$ [0, q)
3 foreach j ∈ [1, k) do

4 sj ←$ [0,modulus)
5 end

6 c← (m+ rp)1+
∑k−1

j=1
sjaj (mod modulus)

7 return c

A plaintext, m ∈ [0,M ], is enciphered as c, a k-

vector, using Algorithm 22.

5.1.5 Decryption.

Algorithm 23: Dec: Decryption Algorithm

Input : c ∈ C

Input : (p,a1, . . . ,ak−1)): secret key
Output: m ∈M

1 Ak ← [a0 a1 . . . ak−1]

2 γ
T ← (A−1

k
)1 // (A−1

k
)1 is the first row of A−1

k

3 m← γ
T c mod p

4 return m

A ciphertext is decrypted using Algorithm 23. We
call γ the decryption vector, as in HE2.

5.1.6 Addition.

Addition is the vector sum of the ciphertext vectors as

in HE2 (see section 4.1). The Add algorithm is identical

to Algorithm 15 with the exception that the vectors

involved are k-vectors rather than 2-vectors.

5.1.7 Multiplication

Consider a Hadamard product of two augmented cipher-
text vectors, c⋆ ◦ c′⋆. For notational brevity, let m̃ =

m+ rp.

c⋆ ◦ c′⋆ =
(

m̃1⋆ +
∑k−1

j=1 sja⋆j
)

◦
(

m̃′1⋆ +
∑k−1

j=1 s
′
ja⋆j

)

= m̃m̃′1⋆ +
∑k−1

j=1 (m̃s′j + m̃′sj)a⋆j

+
∑k−1

j=1 sjs
′
ja⋆j ◦ a⋆j

+
∑

1≤i<j≤k−1(sis
′
j + s′isj)a⋆i ◦ a⋆j ,

since 1⋆ ◦v⋆ = v⋆ for any v. There are
(

k
2

)

product vec-
tors, which we must eliminate using the re-encryption

matrix R, a k ×
(

k+1

2

)

matrix.

From Lemma 6, we have that Rv⋆k = v for all v ∈
Zk
pq. Therefore, RA⋆k = Ak. However, this condition

can be written more simply, since it is RUkAk = Ak.

Postmultiplying by A−1
k gives RUk = Ik. For example,

if k = 3,




R11 R12 R13 R14 R15 R16

R21 R22 R23 R24 R25 R26

R31 R32 R33 R34 R35 R36





















1 0 0
0 1 0

0 0 1
2 −1 0
2 0 −1
0 2 −1

















=





1 0 0
0 1 0
0 0 1



 .

So R11 + 2R14 + 2R15 = 1, R11 = 1− 2R14 − 2R15,

etc. Now, since RA⋆k = Ak, we have

R(c⋆ ◦ c′⋆) = (mm′ + r̂p)1+
∑k−1

j=1 ŝjaj

+
∑

1≤i≤j≤k−1 ŝijR(a⋆i ◦ a⋆j),

where r̂, ŝj and ŝij (1 ≤ i < j ≤ k − 1) are some
integers.

There are k
(

k
2

)

undetermined parameters Riℓ, 1 ≤
i ≤ k, k < ℓ ≤

(

k+1

2

)

. We now determine these by
setting

R(a⋆i ◦ a⋆j) = ̺ijp1+
∑k−1

l=1 σijlal

Thus we have k
(

k
2

)

new unknowns, the ̺’s and σ’s, and

k
(

k
2

)

linear equations for the k
(

k
2

)

unassigned Riℓ’s. Let

A◦2
⋆k be the

(

k+1

2

)

×
(

k+1

2

)

matrix with columns a⋆i ◦a⋆j
(0 ≤ i < j < k), and let Ck be the k ×

(

k
2

)

matrix with

columns ̺ijp1+
∑k−1

l=1 σijlal (0 < i < j < k). Then the

equations for the Riℓ can be written as

RA◦2
⋆k = [Ak | Ck] .

which by construction of R (Algorithm 21) has a solu-

tion.

The multiplication algorithm Mult is given by Al-
gorithm 24.
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Algorithm 24: Mult: multiplication algorithm

Input : c = [c1 c2]T ∈ C
Input : c′ = [c′1 c′2]

T ∈ C

Input : modulus ∈ Z: public modulus
Input : R: re-encryption matrix
Output: result ∈ C

1 c⋆ ← Ukc

2 c′⋆ ← Ukc
′

3 result← R(c⋆ ◦ c′⋆) (mod modulus)
4 return result

5.1.8 Security

We construct R so that it satisfies Equation 4:

RA◦2
⋆k = [Ak | Ck] . (4)

which gives k
(

k+1

2

)

linear equations for the k
(

k+1

2

)

ele-

ments of R in terms of quadratic functions of the k(k−
1) aij ’s (1 ≤ i ≤ k, 1 ≤ j ≤ k − 1), which are undeter-

mined. Thus the system has k(k − 1) parameters that

cannot be deduced from R.

Each c introduces k new parameters rp, s1, . . . , sk−1

and k equations, so the number of undetermined para-

meters is always k(k − 1).

5.1.9 Cryptanalysis

Note that p can be determined from mi for k cipher-

texts. Let

C = [c1 −m11 . . . ck −mk1],

Ak = [1 a1 . . . ak−1],

and let

W =











r1p r2p . . . rkp

s1,1 s2,1 . . . sk,1
...

...

s1,k−1 s2,k−1 . . . sk,k−1











,

W ′ =











r1 r2 . . . rk
s1,1 s2,1 . . . sk,1
...

...

s1,k−1 s2,k−1 . . . sk,k−1











,

where ri, sij refer to ci. Then C = AkW , and so detC =

detAk detW . Note that detW = p detW ′, so detC

is a multiple of p. Now detC can be determined in

O(k3) time and, if it is nonzero, p can be determined

as gcd(detC, pq).

Lemma 7 Pr(detC = 0 mod pq) ≤ (2k − 1)(1/p +

1/q).

Proof From Lemma 5, detA = 0 mod p or detA = 0

mod q with probability at most (k − 1)(1/p + 1/q).

So detA is not zero or a divisor of zero mod pq. The
entries of W ′ are random [0, pq), and detW ′ is a poly-

nomial of total degree k in its entries. It is a nonzero
polynomial, since W ′ = Ik is possible. Hence, using the

SZL [61], Pr(detW ′ = 0 mod p) ≤ k/p and Pr(detW ′ =

0 mod q) ≤ k/q. So detW ′ is zero or a divisor of zero

mod pq with probability at most k(1/p + 1/q). So we

have detA detW ′ = 0 mod pq with probability at most

(2k − 1)(1/p + 1/q). So detC 6= 0 with high probabil-
ity. ⊓⊔

Once we have recovered p, we can use the known
mi to determine the decryption vector γ, by solving a

set of linear equations. Let C0 = [c1 c2 . . . ck], and

mT = [m1 m2 . . . mk].

Lemma 8 Pr(detC0 = 0 mod pq) ≤ (2k − 1)(1/p +

1/q).

Proof Note that C0 = C if m1 = m2 = · · · = mk = 0.

Since Lemma 7 holds in that case, the result follows.

⊓⊔

Thus, with high probability, we can uniquely solve the

system γTC0 = mT mod p, to recover γ and enable

decryption of an arbitrary ciphertext. However, encryp-

tion of messages is not possible, since we gain little

information about a1, . . . ,ak. Note also that, if we de-

termined p by some means other than using k known

plaintexts, it is not clear how to recover γ.

To break this system, we need to guess k plaintexts.

The entropy of a k-tuple of plaintexts (m1,m2, . . . ,mk)

is kρ, so effectively we need µk guesses, where µ is the

number of guesses needed to break HE1. So HEk can
tolerate much smaller entropy than HE1, provided k

is large enough. If k is sufficiently large, the scheme
appears secure without adding noise, but does not have

the other advantages of adding noise.

5.1.10 Fixing an insecurity for k > 2

The decryption vector for HEk is γT = (A−1
k )1. Note

that γT1 = 1 and γTai = 0 (i ∈ [1, k − 1]), since

γTai = I1i (i ∈ [0, k − 1]). The equations

R(a⋆i ◦ a⋆j) = p̺ij 1+
∑k−1

l=1 σijlal, (5)

define a product · on Zk
pq so that c ·c′ = R(c⋆◦c′⋆). This

product is linear, commutative and distributive, since

R and ⋆ are linear operators, and ◦ is commutative
and distributive. So we have an algebra Ak, with unit

element 1 [72]. The ̺ij , σijl (i, j, l ∈ [1, k − 1]) are the

structure constants of the algebra. In general, Ak will
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Algorithm 25: Pgen: Parameter Generation

Algorithm (Revised)

Input : (p,a1, . . . ,ak−1): secret key
Input : modulus: public modulus
Output: R: public re-encryption matrix

1 q ← modulus/p
2 a0 ← 1

3 Ak ← [a0 a1 . . . ak−1]
4 foreach j ∈ [0, k) do

5 a⋆j ← Ukaj

6 end

7 foreach i, j ∈ [0, k), 0 ≤ i ≤ j < k do

8 a◦2
⋆,ij ← a⋆i ◦ a⋆j

9 end

10 A◦2
⋆k
← [a◦2

⋆,01 . . . a◦2
⋆,ij . . . a◦2

⋆,k−2,k−1
] // A◦2

⋆k
is a

(

k+1
2

)

×
(

k+1
2

)

matrix

11 if A◦2
⋆k

has no inverse then

12 return ⊥
13 end

14 foreach i, j ∈ [0, k), 0 ≤ i ≤ j < k do

15 ̺i ←$ [0, q)
16 ̺i ←$ [0, q)
17 ̺ij ← ̺i̺j mod q
18 repeat

19 τ ←$ [0, q)
20 foreach l ∈ [1, k) do

21 σ′

ijl
←$ [0, q)

22 end

23 until
∑k−1

l=1
σ′

ijl
̺i = τ̺i̺j mod q

24 foreach l ∈ [1, k) do

25 rijl ←$ [0, p)
26 σijl ← σ′

ijl
+ rijlq

27 end

28 bij ← ̺ijp1+
∑k−1

l=1
σijl al

29 end

30 Ck ← [b01 . . . bij . . . bk−2,k−1] // Ck is a k ×
(

k
2

)

matrix

31 Dk ← [Ak | Ck] // Dk is a k ×
(

k+1
2

)

matrix

32 R← Dk(A◦2
⋆k
)−1 // R is a k ×

(

k+1
2

)

matrix

33 return R

not be associative, i.e. we can have (c1 · c2) · c3 6= c1 ·
(c2 · c3) This leads to a potential insecurity. We must

have

γT ((c1 · c2) · c3) = γT (c1 · (c2 · c3)) (mod p), (6)

in order to have correct decryption. The associator for

Ak is

[ci, cj , cl] = ci · (cj · cl)− (ci · cj) · cl
= rp1+

∑k−1

l=1 sl cl (mod pq).

Thus [ci, cj , cl] is an encryption of 0. If we can find k

associators from c1, . . . , cn which violate (6), with high

probability we have k linearly independent associators.

We can use these to make a collision attack on HEk,

similar to that described in section 3.1. We use the gcd

method to determine p, and then γ, as described in

section 5.1.9. In fact all we need is that (6) holds for
any associator. That is, for all c1, c2, c3, we need

γT ((c1 · c2) · c3) = γT (c1(·c2 · c3)) (mod pq),

or, equivalently, using the Chinese Remainder Theorem,

γT ((c1 · c2) · c3) = γT (c1 · (c2 · c3)) (mod q). (7)

By linearity, (7) holds if and only if it holds for all
basis elements, excluding the identity. That is, for all
i, j, l ∈ [1, k − 1], we need

γT (ai · (aj · al)) = γT ((ai · aj) · al) (mod q). (8)

The associator for Ak is

[ai,aj ,al] = ai · (aj · al)− (ai · aj) · al
= rp1+

∑k−1

l=1 slal (mod pq),

for some integers r, s1, . . . , sk−1, and so γT [ai,aj ,al] =

rp.

IfAk is associative, the problem does not arise, since

(8) will be satisfied automatically. Associativity holds if
k ≤ 2. All we have to check is that a · (a ·a) = (a ·a) ·a,
which is true by commutativity. Thus HE1, HE2 cannot
be attacked in this way. However, this collision attack

becomes possible even when k = 3.

Example 1 Suppose that a1 ·a1 = a2 ·a2 = p1+a1−a2,
a1 ·a2 = 2p1+a2. Then a1 · (a1 ·a2) = a1 · (2p1+a2) =

2pa1 + a1 · a2 = 2p1 + 2pa1 + a2, and (a1 · a1) · a2 =

pa2+a1 ·a2+a2 ·a2 = 3p1+a1+pa2. So [a1,a1,a2] =

p1− (2p− 1)a1 + (p+ 1)a2, and γT [a1,a1,a2] = p.
Requiring associativity inAk overconstrains the sys-

tem, imposing k
(

k+1

2

)

equations on the k
(

k+1

2

)

structure

constants. With only k(k − 1) undetermined paramet-

ers, this is too much. But all we need is that (8) holds.
We have

Lemma 9 Equation (8) holds if and only if, for all

i, j, l ∈ [1, k−1],
∑k−1

t=1 σjlt̺it =
∑k−1

t=1 σijt̺lt (mod q).

Proof Since γT1 = 1 and γTai = 0, i ∈ [1, k − 1],
γT (ai · aj) = γT

(

p̺ij 1+
∑k−1

l=1 σijlal
)

= p̺ij . Thus

ai · (aj · al) = ai ·
(

p̺jl1+
∑k−1

t=1 σjltat
)

= p̺jlai +
∑k−1

t=1 σjltai · at,

and hence γT [ai · (aj · al)] = p
∑k−1

t=1 σjlt̺it. Similarly

γT [(ai ·aj) ·al] = p
∑k−1

t=1 σijt̺lt, and the lemma follows.

⊓⊔

Now we can ensure (8) by giving the ̺ij a multiplicative

structure.



20 James Dyer et al.

Lemma 10 Let τ, ̺i←$ [0, q) (i ∈ [1, k − 1]), let ̺ij =

̺i̺j mod q, and let the σijl satisfy
∑k−1

l=1 σijl̺l = τ̺i̺j
(mod q) for all i, j ∈ [1, k − 1]. Then, for all i, j, ℓ ∈
[1, k − 1], γT (ai · (aj · al)) = τ̺i̺j̺l mod q, the sym-
metry of which implies (8).

Proof We have γT (aj · al) = p̺ij = p̺j̺l for all j, ℓ ∈
[1, k − 1]. Hence, mod q,

γT (ai · (aj · al)) = p
∑k−1

t=1 σjlt̺it

= p
∑k−1

t=1 σjlt̺i̺t

= p̺i
∑k−1

t=1 σjlt̺t

= p̺iτ̺j̺l = pτ̺i̺j̺l.

Thus the conditions of Lemma 10 are sufficient to re-

move the insecurity. The price is that we now have

(k−1)
(

k
2

)

+(k−1)+k(k−1) = (k+1)
(

k
2

)

+k−1 para-

meters and k
(

k
2

)

equations. There are
(

k
2

)

+ (k − 1) =
(k+2)(k− 1)/2 independent parameters. This is fewer

than the original k(k − 1), but remains Ω(k2).

As a result, the parameter generation algorithm Pgen

is amended to Algorithm 25.

5.2 Insufficient entropy (HEkN)

We generalise HE2N to k dimensions.

5.2.1 Key generation

Algorithm 26: KGen: Key Generation Al-

gorithm

Input : λ ∈ S
Input : ρ ∈ Z: entropy of inputs
Input : ρ′ ∈ Z: entropy of inputs
Output: (p,a1, . . . ,ak−1): secret key
Output: modulus: public modulus

1 ν ← ρ′ − ρ

2 κ←p [2ν−1, 2ν ]
3 p←p [2λ−1, 2λ]
4 η ← λ2/ρ− λ
5 q ←p [2η−1, 2η]
6 modulus← pq
7 a0 ← 1

8 repeat

9 aj ←$ [1,modulus)k, j ∈ [1, k)
10 until aj , j ∈ [0, k), form a basis for Zk

pq

11 return (p,a1, . . . ,ak−1),modulus

KGen (Algorithm 26, randomly chooses κ, p and q

according to the bounds outlined in section 4.2, and

sets aj ∀j. Note that, as a result of adding the “noise”

term, defence against non-associativity is not required.

Therefore, Pgen, which generates R, is Algorithm 21.

The secret key, sk, is (κ, p, a1, . . ., ak−1), and the public
parameters are pq and R.

5.2.2 Encryption

Algorithm 27: Enc: Encryption Algorithm

Input : m ∈M
Input : (p,a1, . . . ,ak−1): secret key
Input : modulus: public modulus
Output: c ∈ C

1 q ← modulus/p

2 r←$ [0, q)
3 s←$ [0, κ)
4 foreach j ∈ [1, k) do

5 tj ←$ [0,modulus)
6 end

7 c← (m+ rp+ sκ)1+
∑k−1

j=1
tjaj (mod modulus)

8 return c

A plaintext, m ∈ [0,M ], is enciphered by Algorithm

27.

5.2.3 Decryption

Algorithm 28: Dec: Decryption Algorithm

Input : c ∈ C
Input : (p,a1, . . . ,ak−1)): secret key
Output: m ∈M

1 Ak ← [a0 a1 . . . ak−1]

2 γ
T ← (A−1

k
)1 // (A−1

k
)1 is the first row of A−1

k

3 m← (γT c mod p) mod κ
4 return m

A ciphertext is deciphered by Algorithm 28.

5.2.4 Arithmetic

The addition and multiplication algorithms are as in

section 5.1.

5.2.5 Security

The effective entropy of HEkN is ρ′ = k(ρ+lg κ). Thus,
as we increase k, the “noise” term can be made smaller

while still providing the requisite level of entropy.
Clearly HEkN also inherits the conclusions of The-

orem 2, so this system also satisfies IND-CPA.

5.2.6 Noise Growth

The “noise” grows as detailed in section 3.2.7.
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6 An extension of HE2N using the Chinese

Remainder Theorem (HE2NCRT)

As an interesting aside, we extend HE2N (section 4.2)

using a technique inspired by Chinese Remainder The-

orem (CRT) secret sharing, so that we compute the

final result modulo a product of primes
∏K

j=1 pj rather

than modulo p, where K is the number of primes.

In this scheme, we distribute the computation. We
have K sets of processors. Each processor computes

arithmetic on ciphertexts modulo pjqj , where pj , qj are

suitable primes. Each plaintext is encrypted asK cipher-

texts where each processor receives the jth ciphertext

vector. Addition and multiplication of ciphertexts on

processor j is as defined in section 4.1, except that it is

performed modulo pjqj .
This serves two purposes. The first is to be able to

handle larger moduli by dividing the computation into

subcomputations on smaller moduli. The second is to

mitigate against exposure of the secret key p in the sys-
tem presented in section 4.2, by not distributing the

modulus pq to each processor. Instead, we distribute
pjqj to the jth processor, for j ∈ [1,K]. This allows

us to replicate the computation where each subcompu-

tation is encrypted using different parameters. Thus,

should an attacker compromise one subcomputation,

they may gain no knowledge of other subcomputations.

6.0.1 Key Generation

Algorithm 29: KGen: Key Generation Al-

gorithm

Input : λ ∈ S
Input : ρ ∈ Z: entropy of input
Input : ρ′ ∈ Z: effective entropy of inputs
Output: (κ, p1, p2, . . . , pK ,a1, . . . ,aK): secret key
Output: modulus1,modulus2, . . . ,modulusK : public

moduli
1 ν ← ρ′ − ρ
2 κ←p [2ν−1, 2ν ]
3 η ← λ2/ρ′ − λ
4 foreach j ∈ [1,K] do
5 pj ←p [2λ−1, 2λ]
6 qj ←p [2η−1, 2η]
7 modulusj ← pjqj
8 repeat

9 aji←$ [1,modulusj) (i ∈ [1, 2])
10 until aj1, aj2, aj1 − aj2 6= 0 (mod p and mod q)
11 aj ← [aj1 aj2]T

12 end

13 return (κ, p1, p2, . . ., pK , a1, . . ., aK), modulus1,
modulus2, . . ., modulusK

The key generation process, KGen (Algorithm 29)

randomly chooses κ as in section 3.2. For all j ∈ [1,K],

Algorithm 30: Pgen: Parameter Generation

Algorithm

Input : (κ, p1, p2, . . . , pK ,a1, . . . ,aK): secret key
Input : modulus1,modulus2, . . . ,modulusK : public

moduli
Output: R1, R2, . . . , RK : public re-encryption

matrices
1 foreach j ∈ [1,K] do
2 qj ← modulusj/pj
3 βj ← 2(aj2 − aj1)2

4 ̺j ←$ [0, qj)
5 σj ←$ [0,modulusj)

6 αj1 ← β−1
j (σjaj1 + ̺jp− a2j1)

7 αj2 ← β−1
j (σjaj2 + ̺jp− a2j2)

8 Rj ←

[

1− 2αj1 αj1 αj1

−2αj2 αj2 + 1 αj2

]

9 end

10 return R1, . . . , RK

it randomly chooses a prime pj such that pj satisfies

2λ−1 < pj < 2λ and

Π =

K
∏

j=1

pj > (n+ 1)d(M + κ2)d.

It also randomly chooses qj , j ∈ [1,K], as for q

in section 3.1. Finally, it sets aj = [aj1 aj2]
T , where

ajk←$ [1, pjqj) (j ∈ [1,K], k ∈ [1, 2]) such that aj1 6=
aj2 (mod p) and aj1 6= aj2 (mod q).

The parameter generation routine Pgen (Algorithm

30) generates each re-encrytion matrix Rj (j ∈ [1,K]).
The secret key, sk, is (κ, p1, . . . , pK ,a1, . . . ,aK), and

the public parameters are pjqj (j ∈ [1,K]) and Rj (j ∈
[1,K]).

6.0.2 Encryption

Algorithm 31: Enc: Encryption Algorithm

Input : m ∈M
Input : (κ, p1, p2, . . . , pK ,a1, . . . ,aK): secret key
Input : modulus1,modulus2, . . . ,modulusK : public

moduli
Output: c1, c2, . . . , cK ∈ C

1 foreach j ∈ [1,K] do
2 qj ← modulusj/pj
3 rj ←$ [0, qj)
4 sj ←$ [0, κ)
5 tj ←$ [0,modulusj)
6 cj ← (m+ rjpj + sjκ)1+ tjaj (mod modulusj)

7 end

8 return c1, c2, . . . , cK

We encrypt an integer, m ∈ M, as the set of K

2-vectors, cj using Algorithm 31.
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6.0.3 Decryption

Algorithm 32: Dec: Decryption Algorithm

Input : c1, c2, . . . , cK ∈ C
Input : (κ, p1, p2, . . . , pK ,a1, . . . ,aK): secret key
Output: m ∈M

1 Π ←
∏K

j=1
pj

2 foreach j ∈ [1,K] do
3 γ

T
j ← (aj2 − aj1)−1[aj2 − aj1]

4 dj ← (γT
j cj mod pj)

5 Mj ← Π/pj

6 µj ←M−1
j (mod pj)

7 end

8 m←

(

K
∑

j=1

djMjµj (mod Π)

)

(mod κ)

9 return m

To decrypt a set of K ciphertexts we use Algorithm

32. We first decrypt the jth ciphertext of the computa-

tional result, cj , as in section 4.1, to give

Pj = (aj2 − aj1)
−1(aj2cj1 − aj1cj2) (mod pj),

where Pj = P (m1,m2, . . . ,mn, κ) (mod pj).

We then use the Chinese Remainder Theorem to

compute the plaintext as

P (m1,m2, . . . ,mn) =

( K
∑

j=1

PjMjµj (mod Π)

)

(mod κ),

where Mj = Π/pj and µj = M−1
j (mod pj). Note that

µj is a residue rather than a plaintext value.

Note that learning pj on one processor, does not

allow an attacker to reconstruct the mi. Rather they

only learn mi + sijκ (mod p)j .

6.0.4 Arithmetic

Algorithm 33: Addj : addition algorithm for

processor j

Input : cj ∈ C
Input : c′j ∈ C
Input : modulusj ∈ Z: modulus for arithmetic
Output: resultj ∈ C

1 resultj ← cj + c′j (mod modulusj)

2 return resultj

Addition of ciphertexts on processor j is performed

using Algorithm 33. Multiplication of ciphertexts on

processor j is performed by Algorithm 34.

Algorithm 34: Multj : multiplication al-

gorithm for processor j

Input : cj = [cj1 cj2]T ∈ C
Input : c′j = [c′j1 c′j2]

T ∈ C
Input : modulusj ∈ Z: public modulus
Input : Rj : re-encryption matrix
Output: resultj ∈ C

1 cj3 ← 2cj1 − cj2
2 cj⋆ ← [cj1 cj2 cj3]T

3 c′j3 ← 2c′j1 − c′j2
4 c′j⋆ ← [c′j1 c′j2 c′j3]

T

5 resultj ← Rj(cj⋆ ◦ c′j⋆) (mod modulusj)

6 return resultj

6.0.5 Extending HE2NCRT to k-vectors

Clearly HEkN could be extended to HEkNCRT in a

similar way to the extension of HE2 to HEk. Future
work will discuss the details of such a scheme.

7 Fully Homomorphic System

We return to HEk, presented above in section 5.1. We

will show that, for large enough k, this can be made
into a fully homomorphic system.

Suppose we have inputsm1,m2, . . . ,mn, wheremi ∈
[0,M ], i ∈ [1, n], p, q are large primes, and we want to

evaluate an arithmetic circuit, Φ, over the ring Zpq, on

these inputs.
From [51], the definition of an arithmetic circuit is:

Definition 4 (Arithmetic Circuits.) An arithmetic

circuit Φ over the ring R and variablesX = {x1, . . . , xn}
is a directed acyclic graph with every node of in-degree
either two or zero, labelled in the following manner:

every vertex of in-degree 0 is labelled by either a vari-
able in X or an element of R. Every other node in Φ

has in-degree two and is labelled by either × or +. A

circuit Φ computes a polynomial f ∈ R[X] in the obvi-

ous manner. An arithmetic circuit is called a formula if
the out-degree of each node in it is one (and so the un-
derlying graph is a directed tree). The size of a circuit

is the number of nodes in it, and the depth of a circuit
is the length of the longest directed path in it.

To transform HEk to a fully homomorphic system,

we define encryption of the circuit inputs as in HEk.
Similarly, addition and multiplication of ciphertexts at

each arithmetic node of the circuit is defined as in the

HEk scheme. This way we are able to compute the

arithmetic circuit homomorphically. However, this sys-

tem is still “somewhat” homomorphic. If the compu-

tational result grows larger than p, we are unable to
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successfully decrypt the result. This restricts us to cir-

cuits of bounded depth to avoid this plaintext blow up.

To make it fully homomorphic, we consider Boolean

circuits [82]. A Boolean circuit is defined in [82] as:

Definition 5 (Boolean circuit.) We define a basis

of Boolean functions, B, where each member of B is a
function, f : [0, 1]m → [0, 1], for some m ∈ N. There-
fore, a Boolean circuit over a basis B, with n inputs and

m outputs, is then defined as a finite directed acyclic

graph. Each vertex corresponds to either a basis func-

tion, which we call a gate, or one of the inputs, and
there are a set of exactly m nodes which are labeled as

the outputs. The edges must also have some ordering,

to distinguish between different arguments to the same

Boolean function.

We note that any finite computation can be represented
as a Boolean circuit.

Typically, the basis B will be the Boolean functions,

AND, OR, and NOT. However, a Boolean circuit may
be alternatively represented using only NAND gates
[73]. The indegree of any gate in the directed acyclic

graph G = (V,E) is then always 2, but the outdegree
may be arbitrary. We will refer to the directed edges of

this graph as wires. We note that, for a Boolean circuit,

the inputs to each gate are bits, as are the outputs. We

will denote the set of inputs to the circuit by I ⊆ V ,

and the set of outputs from the circuit by O ⊆ V . In

G, the inputs have indegree 0, and the outputs have

outdegree 0, but we will regard the inputs as having in-

degree 1, and the outputs as having outdegree 1, with

wires from and to the external environment Λ.

Note that, if we represent the bit values 0, 1 with

known constants α0, α1, the system is open to attack,

even though the inputs are encrypted with HEk. For

any ciphertext c, we can take

c′ =

{

c− α01, with probability 1
2
,

c− α11, with probability 1
2
.

Then c′ is an encryption of 0 with probability 1
2
. If

we multiply ν of these ciphertexts, the probability that

none of them is an encryption of zero is 2−ν , so we

obtain an encryption of zero with probability 1 − 2−ν .

So, with ν repetitions of this process, if ν = 2 lg k, this is

1−1/k. By repeating the whole process Ω(k) times, we

can obtain k encryptions of zero with high probability.
Once we have done this, we can use the gcd method

of 5.1.9 to determine p.

Therefore, we encrypt both the inputs to the circuit,

and the values on the wires, using HEk. On each wire

e ∈ E, we will represent the bit value be ∈ {0, 1} by

we ∈ {ω0e, ω1e}, where ω0e, ω1e ∈ [0, q) are random

even and odd integers respectively. Thus be = we mod

L(x, y)

x ∈ {α0, α1}

w ∈ {γ0, γ1}

Figure 1 A wire from an input

Q(x, y)

x ∈ {α0, α1} y ∈ {β0, β1}

w ∈ {γ0, γ1}

Figure 2 An output wire on a NAND gate

2. For each input i ∈ I, we represent the input bit value

bi similarly, by xi ∈ {ω0i, ω1i}.
An input i ∈ I has a wire (Λ, i) on which the (en-

crypted) input value xi is stored. For any wire e = (i, v)

from input i, we have a linear function L(x) = a + bx,

which converts the plaintext input value x ∈ {α0, α1}
to the wire value w ∈ {γ0, γ1}. It is easy to check that

this requires

a = (α1 − α0)
−1(α1γ0 − α0γ1),

b = (α1 − α0)
−1(γ1 − γ0).

The encrypted coefficients of this function are stored

as data for the wire e (see Fig. 1). Note that all com-
putations are mod pq, and the required inverses exist

because the numbers involved are less than q.

For each output wire e = (v, v′) of a NAND gate v,

we have a quadratic function Q(x, y) = a + bx + cy +

dxy, which converts the values on the input wires of

the gate, x ∈ {α0, α1}, y ∈ {β0, β1}, to the wire value
w ∈ {γ0, γ1}. It is easy to check that this requires

a = γ0 + α1β1ϑ, b = −β1ϑ, c = −α1ϑ, d = ϑ,

where ϑ =
(

(α1 −α0)(β1 − β0)
)−1

(γ1 − γ0). Again, the

encrypted coefficients of this function are stored as data

for the wire e (see Fig. 2).

For each output NAND gate v ∈ O, we decrypt the

value w ∈ {γ0, γ1} computed by its (unique) output
wire (v, Λ). Then the output bit is w mod 2.

Thus we have replaced the logical operations of the

Boolean circuit by evaluation of low degree polynomi-

als. For simplicity, we have chosen to use only NAND
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gates, but we can represent any binary Boolean function

by a quadratic polynomial in the way described above.

Since the quadratic polynomials are encrypted in our

system, they conceal the binary Boolean function they

represent. Thus the circuit can be “garbled” [8,45], to

minimise inference about the inputs and outputs of the

circuit from its structure.

However, there is a price to be paid for controlling
the noise. The encrypted circuit is not securely reusable

with the same values ω0e, ω1e for we. Suppose we can

observe the encrypted value on wire e three times giving

cyphertexts c1, c2, c3. Two of these are encryptions of

the same value 2s0,e or 1+ 2s1,e. Thus (c1 − c2) · (c1 −
c3) · (c2− c3) is an encryption of 0. By doing this for k

wires, we can break the system. This is essentially the

collision attack described in section 3.

Some reuse of the encrypted circuit is possible by

using multiple values on the wires, and higher degree

polynomials for the gates. However, we will not con-

sider this refinement, since the idea seems to have little

practical interest.

As we discuss in section 5.1, the security of HEk

is exponential in k, So by setting k large enough we

make brute force attacks on the system infeasible. (A

brute force attack succeeds in polynomial time only if

k = O(log log p).) Therefore, if we compute encrypted
Boolean circuits, our system is fully homomorphic.

8 Experimental Results

HE1, HE1N, HE2, and HE2N have been implemented in

pure unoptimised Java using the JScience mathematics

library [34]. Secure pseudo-random numbers are gener-

ated using the ISAAC algorithm [52], seeded using the

Linux /dev/random source. This prevents the weakness in

ISAAC shown by Aumasson [5].

The evaluation experiment generated 24,000 encryp-

ted inputs and evaluated a polynomial homomorphic-

ally on the inputs, using a Hadoop MapReduce (MR)
algorithm. On the secure client side, the MR input is
generated as pseudo-random ρ-bit integers which are

encrypted and written to a file with d inputs per line,

where d is the degree of the polynomial to be computed.

The security parameters λ and η were selected to be the
minimum values required to satisfy the conditions give

in sections 3.1, 3.2, 4.1, and 4.2. In addition, the unen-
crypted result of the computation is computed so that it
may checked against the decrypted result of the homo-

morphic computation. On the Hadoop cluster side, each

mapper processes a line of input by homomorphically

multiplying together each input on a line and outputs

this product. A single reducer homomorphically sums

the products. The MR algorithm divides the input file

so that each mapper receives an equal number of lines

of input, ensuring maximum parallelisation. Finally, on
the secure client side, the MR output is decrypted.

Our test environment consisted of a single secure

client (an Ubuntu Linux VM with 16GB RAM) and a
Hadoop 2.7.3 cluster running in a heterogeneous Open-
Nebula cloud. The Hadoop cluster consisted of 17 Linux
VMs, one master and 16 slaves, each allocated 2GB of

RAM. Each experimental configuration of algorithm,

polynomial degree (d), integer size (ρ), and effective

entropy of inputs after adding “noise” (ρ′, for the ‘N’

variant algorithms only), was executed 10 times. The

means are tabulated in Table 1.
There are some small anomalies in our data. JS-

cience implements arbitrary precision integers as an ar-

ray of Java long (64-bit) integers. This underlying rep-

resentation may be optimal in some of our test config-

urations and suboptimal in others, causing anomalous

results. Another possibility is that the unexpected res-

ults are due to garbage collection in the JVM heap,

which may be more prevalent in certain test configura-

tions.
We may compare these results with those repor-

ted in the literature. Our results compare extremely

favourably with Table 2 of [57]. For encryption, our

results are, in the best case, 1000 times faster than

those presented there, and, in the worst case, 10 times

faster. For decryption, our results are comparable. How-

ever, it should be noted that to decrypt our results we
take the moduli for large primes rather than 2 as in
[57], which is obviously less efficient. For homomorphic
sums and products, our algorithms perform approxim-

ately 100 times faster. [57] only provides experimental

data for computing degree 2 polynomials. We provide

experimental results for higher degree polynomials.

Similarly, compared with Fig. 13 of Popa et al. [65],

our encryption times for a 32-bit integer are consider-

ably faster. While a time for computing a homomorphic

sum on a column is given in Fig. 12, it is unclear how

many rows exist in their test database. Nevertheless,

our results for computing homomorphic sums compare

favourably with those given. Since CryptDB [65] only

supports homomorphic sums and cannot compute an

inner product, we can only compare the homomorphic

sum timings.

Table 1 of [76] is unclear whether the timings are

aggregate or per operation. Even assuming that they

are aggregate, our results are approximately 100 times

faster for homomorphic sum and product operations.
Crypsis [76] uses two different encryption schemes for
integers, ElGamal [40] and Paillier [63], which only sup-
port addition or multiplication but not both. No discus-

sion of computation of an inner product is made in [76]
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Table 1 Timings for each experimental configuration (n = 24000 in all cases, λ > 96). Init is the initialisation time for the
encryption algorithm, Enc is the mean time to encrypt a single integer, Exec is the total MR job execution time, Prod is the
mean time to homomorphically compute the product of two encrypted integers, Sum is the mean time to homomorphically
compute the sum of two encrypted integers.

Alg. Parameters Encryption MR Job Decrypt
d ρ ρ′ Init(s) Enc(µs) Exec(s) Prod(µs) Sum(µs) (ms)

HE1 2 32 n/a 0.12 13.52 23.82 54.41 9.06 0.21
HE1 2 64 n/a 0.12 16.24 23.85 60.38 8.04 0.49
HE1 2 128 n/a 0.15 25.73 23.77 84.69 8.43 0.28
HE1 3 32 n/a 0.17 22.98 23.65 87.75 11.46 0.35
HE1 3 64 n/a 0.19 34.63 24.72 95.68 12.37 0.45
HE1 3 128 n/a 0.42 54.83 26.05 196.71 14.07 0.55
HE1 4 32 n/a 0.28 43.36 24.48 108.72 13.75 0.5
HE1 4 64 n/a 0.53 58.85 26.41 227.44 15.85 3.59
HE1 4 128 n/a 1.36 104.95 28.33 484.95 16.92 5.67
HE1N 2 1 32 0.22 32.99 22.94 88.38 8.53 3.35
HE1N 2 1 64 0.39 52.63 26.24 168.54 12.39 3.56
HE1N 2 1 128 1.2 89.01 26.18 226.2 13.16 8.1
HE1N 2 8 32 0.6 57.88 25.9 177.36 11.17 7.18
HE1N 2 8 64 0.32 43.93 26.53 96.78 12.18 2.27
HE1N 2 8 128 1.13 78.11 24.42 212.75 11.07 8.4
HE1N 2 16 64 0.33 53.97 27.15 168 13.67 4.47
HE1N 2 16 128 0.63 68.73 25.22 194.42 11.01 7.65
HE1N 3 1 32 8.54 183.19 24.24 522.07 12.06 9.09
HE1N 3 1 64 3.67 125 29.49 467.36 18.22 11.43
HE1N 3 1 128 27.84 313.76 26.94 1235.77 15.04 11.75
HE1N 3 8 32 115 462.45 32.61 1556.17 21.11 19.79
HE1N 3 8 64 9.75 180.08 25.87 500.62 15.03 10.39
HE1N 3 8 128 36.05 259.15 30.1 836.27 20.68 11.45
HE1N 3 16 64 30.96 378.99 28.24 1338.33 15.51 13.3
HE1N 3 16 128 8.13 226.32 27.92 621.95 18.01 10.89
HE2 2 32 n/a 0.16 85.79 26.82 305.52 11.68 4.83
HE2 2 64 n/a 0.17 95.92 29.71 354.79 16.9 3.26
HE2 2 128 n/a 0.22 132.53 32.84 540.78 22.83 4.92
HE2 3 32 n/a 0.23 130.3 31.18 513.93 23.77 6.52
HE2 3 64 n/a 0.29 145.62 32.84 615.9 24.61 6.3
HE2 3 128 n/a 0.52 249.47 29.54 1443.82 16.56 18.34
HE2 4 32 n/a 0.39 175.63 29.5 733.23 20.69 6.01
HE2 4 64 n/a 0.7 255.3 29.55 1578.39 18.29 16.24
HE2 4 128 n/a 2.7 465.51 37.47 2943.91 22.15 15.41
HE2N 2 1 32 0.27 147.83 29.74 571.94 16.58 5.66
HE2N 2 1 64 0.43 202.74 33.36 1291.68 18.3 13.23
HE2N 2 1 128 1.58 354.19 33.76 1977.51 17.13 12.46
HE2N 2 8 32 0.59 234.83 31.42 1413.31 15.21 14.92
HE2N 2 8 64 0.33 163.78 27.42 635.64 13.6 6.18
HE2N 2 8 128 0.9 307.68 36.32 1850.83 21.71 15.79
HE2N 2 16 64 0.42 208.1 29.96 1230.56 13.41 13.16
HE2N 2 16 128 0.73 274.48 30.82 1585.1 14.85 15.04
HE2N 3 1 32 5.72 651.1 36.49 3438.96 18.67 19.05
HE2N 3 1 64 4.45 477.52 35.33 3073.46 18.75 19.77
HE2N 3 1 128 26.83 1192.79 43.23 6416.43 22.48 25.12
HE2N 3 8 32 87.38 1658.36 49.63 8139.19 23.71 27.24
HE2N 3 8 64 5.21 607.75 36.54 3337.1 22.28 17.39
HE2N 3 8 128 17.14 945.64 40.49 4620.69 25.91 22.41
HE2N 3 16 64 39.19 1368.18 44.88 7005.7 24.1 28.3
HE2N 3 16 128 11.39 774.07 36.05 3845.1 20.29 20.74

but we expect that the timings would be considerably
worse as data encrypted using ElGamal to compute the
products would have to be shipped back to the secure

client to be re-encrypted using Paillier so that the final

inner product could be computed.

Varia et al. [79] present experimental results of ap-
plying their HETest framework to HELib [48]. Varia

et al. show timings 104 to 106 times slower than that

of computations on unencrypted data. Although it is

unclear exactly which circuits are being computed, the

timings given are in seconds, so we believe that HELib

will not be a serious candidate for SSCC in the imme-

diate future.

As reported in [37], the current computational per-

formance of FHEW [38] is poor compared with un-

encrypted operations. The authors report that FHEW

processed a single homomorphic NAND operation fol-

lowed by a re-encryption in 0.69s and using 2.2GB of
RAM. Therefore, we also believe that FHEW is not a
candidate for SCCC, as it currently stands.
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Although claims regarding its performance have ap-

peared in the press [78], no benchmarking statistics
have been made publicly available for Microsoft’s SEAL
library [56]. However, in [3], it is reported that, for

SEAL v1, the time to perform one multiplication is ap-

proximately 140ms.
With regard to FV-NFLib [33], Bonte et al. [15] re-

cently reported a significant decrease in the time to

evaluate a four layer Group Method of Data Handling

(GMDH) neural network [16] from 32s to 2.5s, as a res-

ult of their novel encoding of the inputs.

Aguilar-Melchor et al [3] report experimental find-

ings regarding HELib-MP [69]. They show that HELib-
MP outperforms FV-NFLib for large (2048-bit) plain-

texts. They further go on to benchmark HELib-MP

by computing RSA-2048 and ECC-ElGamal-P256. An

exponentiation in RSA-2048 takes between 157ms and

1.8s depending on the window size and number of multi-

plications required. For ECC-ElGamal-P256, an elliptic

curve multiplication takes between 96ms and 242ms de-

pending on window size and number of elliptic curve

additions.

Catalano et al. [22] provide experimental results for

their work. For 128-bit plaintexts, our algorithms are

approximately 10 to 1000 times faster at performing

a multiplication operation and our most complex al-

gorithm, HE2N, is roughly equal to their fastest, an

extension of Joye-Libert [53], for additions.
Yu et al. [84] give experimental results for their

implementation of the Zhou and Wornell scheme [85].

From their Figures 3 to 5, it is hard to compare our

scheme with theirs directly but it would appear that

our vector based schemes are at least comparable in

performance to theirs.

8.1 Microsoft Azure Cloud

In addition to performing our experiments in a small

private cloud, we also scaled our experiment to a large

cluster in Microsoft’s Azure public cloud 4. Our exper-

imental environment consisted of a HDInsight cluster

comprising two D13v2 head nodes and 123 D4v2 worker
nodes (984 worker cores).

The number of inputs was increased to 106,272,000

for each experimental configuration. As a result of the

large volume of input data, our experiments were altered

to create and encrypt the data in situ. This encrypted
data is then consumed by our experimental program.

As before, the output from out experiment was down-
loaded to a secure client and decrypted to verify the

4 This work was aided by a Microsoft Azure for Research
sponsorship.[60]

result. In addition, as a result of the larger number of

inputs, we employed a tighter upper bound (nMd/d) on
the values of p and κ required to successfully decrypt

the HE1/HE2 and HE1N/HE2N variants respectively.

The results for each experimental configuration are

presented in Table 2. Comparing it with Table 1, shows

only an increase of approximately 300% in average en-

cryption and product calculation times for our most
complex algorithm (HE2N), despite the 4,428-fold in-
crease in the number of inputs. The fact that these

times did not scale linearly with the number of inputs

may largely be attributed to the increased memory per

worker node (28GB versus 2GB) and the tighter bounds

on p and κ. However, we also note that the bit size of

the arbitrary precision integers involved will scale log-

arithmically in the number of inputs as a result of the

tighter bound. Hence, the timings for arithmetic oper-

ations on those integers will also scale logarithmically.

9 Conclusion

In this paper we have presented several new homo-

morphic encryption schemes intended for use in secure

single-party computation in the cloud (SSCC). We en-

visage that the majority of computation on integer big

data, outside of scientific computing, will be comput-

ing low degree polynomials on integers, or fixed-point

decimals which can be converted to integers. Our some-

what homomorphic schemes are perfectly suited to these

types of computation.

Our evaluations have concerned only one- or two-

dimensional ciphertexts and polynomials of degree up

to four. We intend to investigate higher degree polyno-

mials in future work. We believe that HE1N and HE2N

provide strong security, even for low-entropy data, as

they satisfy the desirable IND-CPA property. If a user

has a high confidence in the entropy of the input data,

HE2 may provide sufficient security.

As they are only somewhat homomorphic, each of
these schemes require that the computational result

cannot grow bigger than the secret modulus. In the

case of the “noise” variants, we also have to consider

the noise term growing large. So, as they stand, these

schemes can only compute polynomials of a suitably

bounded degree. However, we believe this is adequate

for most practical purposes.
A further concern is that the ciphertext space is

much larger than the plaintext space. This is as a res-

ult of adding multiples of large primes to the plain-

text. However, we have shown that values exist which

makes the system practical for computing low degree

polynomials. Similar schemes [31,35] produce cipher-

texts infeasibly larger than the corresponding plaintext,
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Table 2 Timings for each experimental configuration (n = 106272000 in all cases, λ > 96). Init is the initialisation time for
the encryption algorithm, Enc is the mean time to encrypt a single integer, Exec is the total MR job execution time, Prod is
the mean time to homomorphically compute the product of two encrypted integers, Sum is the mean time to homomorphically
compute the sum of two encrypted integers.

Alg. Parameters Encryption MR Job Decrypt
d ρ ρ′ Init(ms) Enc(µs) Exec(s) Prod(µs) Sum(µs) (ms)

HE1 2 32 - 85.53 32.28 28.29 11.47 2.73 245
HE1 2 64 - 94.9 39.92 27.81 11.45 2.51 647
HE1 2 128 - 108.41 54.96 32.37 29.65 2.42 315
HE1 3 32 - 103.05 47.72 28.39 17.19 2.55 380
HE1 3 64 - 133.23 65.26 35.3 41.01 2.62 347
HE1 3 128 - 146.93 105.08 66.31 283.02 1.76 555
HE1 4 32 - 110.88 62.83 34.23 41.86 2.54 561
HE1 4 64 - 157.18 101.26 70.7 298.73 1.96 601
HE1 4 128 - 2244.7 201.59 86.06 398.64 2.77 27720
HE1N 2 1 32 120.36 81.56 33.04 31.19 2.46 4757
HE1N 2 1 64 254.62 113.8 60.43 226.07 1.71 6093
HE1N 2 1 128 543.44 214.76 68.83 289.12 2.25 34792
HE1N 2 8 32 220.88 121.43 62.32 234.7 2.01 5854
HE1N 2 8 64 197.35 96.82 35.99 40.38 2.2 5371
HE1N 2 8 128 558.05 190.3 71.05 287.43 2.25 35071
HE1N 2 16 64 159.33 112.72 35.5 42.87 2.59 5697
HE1N 2 16 128 433.71 171.56 64.5 261.45 2.23 33943
HE1N 3 1 32 617.06 130.88 68.5 300.76 1.91 32622
HE1N 3 1 64 1656.53 265 284 1520.65 3.08 41454
HE1N 3 1 128 43002.78 709.31 626.21 3671.64 4.89 34996
HE1N 3 8 32 16850.53 402.77 307.76 1659.24 3.25 33540
HE1N 3 8 64 2807.49 197.57 75.14 352.67 2.31 33591
HE1N 3 8 128 3701.99 585.24 340.2 1834.74 4.59 37663
HE1N 3 16 64 18828.28 415.87 309.18 1696.96 3.36 35064
HE1N 3 16 128 4672.69 474.73 315.1 1708.43 3.41 38737
HE2 2 32 - 122.25 525.64 103.38 75.11 1.86 784
HE2 2 64 - 116.27 549.24 118.68 84.28 1.91 1308
HE2 2 128 - 131.78 624.37 120.37 168.72 2.12 1482
HE2 3 32 - 152.55 560.01 103.56 111.55 2.14 960
HE2 3 64 - 180.11 650.07 122.14 211.68 2.24 1650
HE2 3 128 - 214.22 1462.87 452.92 2423.63 2.81 2399
HE2 4 32 - 160.11 658.37 130.34 219.3 2.43 1687
HE2 4 64 - 257.11 1446.8 448.06 2432.22 2.87 2610
HE2 4 128 - 1102.95 1921.06 601.83 3147.91 3.84 4200
HE2N 2 1 32 154.46 677.64 121.81 197.3 2.32 1149
HE2N 2 1 64 360.2 1464.05 422.87 2256.1 2.54 2889
HE2N 2 1 128 869.88 1992.68 511.34 2896.89 3.43 3257
HE2N 2 8 32 384.53 1472.49 433.05 2275.24 2.71 2515
HE2N 2 8 64 196.91 713.34 140.85 290.54 2.33 1154
HE2N 2 8 128 363.02 1803.51 503.41 2789.1 3.54 2740
HE2N 2 16 64 411.43 764.95 146.27 336.36 2.5 1833
HE2N 2 16 128 228.27 1660.48 466.07 2528.7 2.87 2565
HE2N 3 1 32 331.43 1553.09 446.9 2450.82 2.86 5360
HE2N 3 1 64 1197.62 5841.29 3120.64 16400 4.99 8129
HE2N 3 1 128 2805.34 12600 7193.61 40300 8.25 12565
HE2N 3 8 32 2658.76 5828.94 3317.31 17900 5.36 8676
HE2N 3 8 64 1047.95 1852.06 537.16 2996.51 3.59 3753
HE2N 3 8 128 7375.87 7292.07 4344.95 19500 7.31 11014
HE2N 3 16 64 850.94 6375.15 3359.67 18300 5.27 10942
HE2N 3 16 128 7057.17 6986.84 3358.11 17900 5.45 6026

which is a single bit. For example, it should be noted,

that even the practical CryptDB [65], which is only ad-

ditively homomorphic, enciphers a 32-bit integer as a

2048-bit ciphertext. Our schemes will produce cipher-

text of similar size, if high security is required. However,

if the security is only intended to prevent casual snoop-

ing, rather than a determined cryptographic attack, the

ciphertext size can be reduced. Observe that the para-

meters of the system will change for each computation,

so a sustained attack has constantly to re-learn these

parameters. Of course, if the attacker is able to export

data for off-line cryptanalysis, only high security suf-

fices.
The schemes presented in sections 3 and 4 extend

to a hierarchy of systems, HEk, with increasing levels

of security. These are presented in section 5 and may

be investigated further in future work. As stated in sec-

tion 6, we can extend HE2NCRT to k-vectors to create
a HEkNCRT scheme. The discussion will appear in fu-

ture work. We also showed that our HEk system can

be extended to an FHE system. We may also investig-

ate several enhancements of this FHE system. First, we
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could implement a packed ciphertext optimisation for

our scheme where an operation is performed on a vec-

tor of ciphertexts rather than a single ciphertext [75].

We can also investigate an improvement to address cir-

cuit privacy [19]. Finally, we can investigate applying

the Chinese Remainder Theorem secret sharing method

employed in HE2NCRT (section 6) to our fully homo-

morphic scheme (section 7).
We have implemented and evaluated the schemes

HE1, HE1N, HE2 and HE2N as part of an SSCC system

as discussed in section 8. Our results are extremely fa-

vourable by comparison with existing methods. In some

cases, they outperform those methods by a factor of

1000. We have also performed extensive experiments

with large data sets (approximately 100 million inputs)

and shown that the increase in time to perform en-

cryption and arithmetic operations grows sublinearly

in the number of inputs. This clearly demonstrates the

practical applicability of our schemes. Furthermore, our

MapReduce job execution times remain low even when

using the largest set of parameters for HE2N. We be-

lieve that this demonstrates the advantages of these

schemes for encrypted computations on fixed-point data

in the cloud.

To conclude, we believe that the work in this paper,

has achieved our goal of providing a homomorphic en-

cryption scheme over the integers suitable for SSCC.

In particular, our work significantly outperforms re-
lated work [65,76,77] with regard to the running time
of arithmetic operations on encrypted data.
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