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Energy Efficient Beamforming Design for MISO

Non-Orthogonal Multiple Access Systems
Haitham Alobiedollah, Kanapathippillai Cumanan, Jeyarajan Thiyagalingam, Alister G. Burr, Zhiguo Ding, and

Octavia A. Dobre

Abstract—When considering the future generation wireless
networks, non-orthogonal multiple access (NOMA) represents
a viable multiple access technique for improving the spectral
efficiency. The basic performance of NOMA is often enhanced
using downlink beamforming and power allocation techniques.
Although downlink beamforming has previously been studied
with different performance criteria, such as sum-rate and max-
min rate, it has not previously been studied in the multiuser,
multiple-input single-output (MISO) case, particularly with the
energy efficiency criteria. In this paper, we investigate the design
of an energy efficient beamforming technique for downlink
transmission in the context of a multiuser MISO-NOMA system.
In particular, this beamforming design is formulated as a global
energy efficiency (GEE) maximization problem with minimum
user rate requirements and transmit power constraints. By
using the sequential convex approximation (SCA) technique and
the Dinkelbach’s algorithm to handle the non-convex nature
of the GEE-Max problem, we propose two novel algorithms
for solving the downlink beamforming problem for the MISO-
NOMA system. Our evaluation of the proposed algorithms shows
that they offer similar optimal designs and are effective enough
to offer substantial energy efficiencies compared to the designs
based on conventional methods.

Index Terms—Non-orthogonal multiple access (NOMA), en-
ergy efficiency, beamforming design, convex optimization.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) is considered

to be a viable and a promising multiple access technique

to improve the spectral efficiency (SE) in future wireless

networks [1], [2]. More specifically, it is hailed as an avenue

to offer an array of benefits including high spectral efficiency,

better quality-of-service (QoS), lower latency and massive

connectivity [3], [4], [5]. In contrast to the conventional

orthogonal multiple access (OMA) technique, NOMA simul-

taneously sends signals to multiple users using the power-

domain multiplexing, while sharing the same time-frequency
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resources [6]. When performing the power-domain multiplex-

ing [7], multiple signals intended for different users are

multiplexed based on superposition coding [5] with different

power levels prior to the transmission. At the receiving end,

the successive interference cancellation (SIC) technique is em-

ployed to decode the incoming signals [8]. Furthermore, the

massive connectivity offered by NOMA is perfect for handling

the requirements of applications stemming from the area of

Internet-of-Things (IoT), where the transmission of very large

number of small messages is rather prevalent [9]. In particular,

NOMA can also be incorporated into a number of future key

distributive technologies, such as massive multi-input multi-

output (MIMO) systems and millimeter-wave (mmWave)

technologies [10] [11]. The key drive in such applications

is to further increase the throughput, particularly in the fifth

generation (5G) and beyond wireless networks [12], [13],

[14].

With the progressive adoption of 5G and beyond wireless

networks, one of the main goals is to achieve a higher spectral

efficiency compared to the ones available in contemporary

wireless communications systems. Higher spectral efficiency

will enable applications that demand different high data rates

and will provide massive connectivity for IoT [15]. With

limited available wireless resources, including radio spec-

trum and transmit power, meeting higher data requirements

will only be possible through novel techniques and efficient

resource utilizations [16]. Furthermore, the transmit power

required to meet the corresponding throughput requirements

with the conventional approaches will be significantly high.

This increased power consumption will subsequently induce

further issues such as extra CO2 emission and associated

climate changes [17]. Recently, energy efficient techniques

are considered as one of the key avenues for addressing

these issues in the development of future wireless systems

[16]. The energy efficient designs based on global energy

efficiency (GEE) performance metric have become one of

the key requirements in the development of future wireless

systems. These designs take the energy efficiency (EE) per-

formance metric into account rather than the achievable rate or

transmission power metrics. The GEE performance metric is

defined as the ratio between the achievable sum-rate and total

power consumption [18], [17]. Furthermore, the GEE design

can be viewed as a multi-objective design problem, which

aims to simultaneously optimize two conflicting performance

metrics, namely, the sum rate and the required power to

achieve this sum rate [18]. Furthermore, this performance

metric efficiently utilizes the available transmit power while
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striking a good balance between the achievable sum rate

and power consumption. Finally, unlike the conventional sum

rate maximization and power minimization designs, the GEE

design incorporates the power losses at the base station

as part of the design process [17]. The EE performance

metric plays a crucial role in the overall performance of

a NOMA system due to the fact that it exploits power-

domain multiplexing to simultaneously transmit signals to

multiple users [4]. Achieving the massive connectivity offered

by NOMA requires a huge amount of transmit power which

would only be possible by considering energy efficient designs

[5]. Therefore, the EE performance metric attracts a great deal

of attention from the community, which thrives to develop

various novel yet practical techniques including NOMA for

future wireless networks.

In the context of NOMA, the core component, the power

domain multiplexing, directly dictates the power allocation at

the transmitter-level, and thus indirectly controls the overall

energy consumption. Hence, the power domain multiplexing,

when combined with downlink beamforming, will decide the

overall energy performance of a NOMA system. Therefore,

considering all the parameters that affect the resulting EE

is very crucial for improving the EE of the entire system,

particularly at the design level. A number of approaches have

been proposed in the literature for this purpose. In [19], a

beamforming design to maximize the spectral efficiency is

proposed for MISO-NOMA systems using a variant of the

minorization-maximization algorithm (MMA) [20]. In [21],

a power minimization problem is considered in conjunction

with the QoS aspect, and an approach based on the second

order cone (SOC) programming is proposed. An energy

efficient-based power allocation scheme is developed in [22]

for a single-input single-output (SISO) NOMA system by

utilizing the Karush-Kuhn-Tucker (KKT) conditions [23].

These approaches are complemented by [24], where both the

EE and the computational complexity arising out of the SIC

operations are addressed. They have proposed a clustering

method for maximizing the EE for SISO-NOMA systems,

with the approach of assigning the same channel for multiple

users. In [25], a max-min fairness based energy efficient

design is studied in the context of downlink transmission for

SISO-NOMA systems. On the other hand, the authors in [26]

consider the EE maximization problem for MIMO-NOMA

systems, with multiple users are grouped in a cluster. Whereas,

multiple resource allocations strategies and clustering algo-

rithms have been introduced in [27] [28]. Furthermore, the

authors in [29] investigated an energy efficiency design for

a downlink NOMA single-cell network assuming imperfect

channel state information.

To-date, to the best of our knowledge, no study has been

conducted on downlink beamforming design for multiuser

MISO-NOMA systems, particularly with the focus of max-

imizing the EE. In this paper, we address this issue, by

proposing an energy-efficient downlink beamforming design.

We formulate the overall problem as a global energy effi-

ciency maximization (GEE-Max) problem that incorporates

the minimum rate requirements and transmit power constraints

as part of the formulation.1 However, as will be seen, due

to the non-convex nature of the constraints and because of

the overall fractional objective function, the overall GEE-Max

formulation is a non-convex optimization problem. With the

appropriate and necessary initial evaluations, and through suit-

able approximations, we overcome the non-convexity issues

for solving the GEE-Max problem. We make the following

key contributions:

1) Meta-approach for detecting the feasibility of solving

GEE-Max: Although the overarching problem can be

formulated as a GEE-Max problem, the formulation

does not guarantee the solvability of the GEE-Max

problem. In fact, it might turn out to be an infeasible

problem. We propose an approach to detect this infea-

sibility at the early stages of problem formulation, and

propose an alternative approach;

2) Algorithms for solving the GEE-Max problem: As

discussed above, the non-convexity of the GEE-Max

problem stems from two aspects: the non-convex nature

of the constraints and the fractional nature of the overall

objective function. We present two novel iterative algo-

rithms for handling these issues. The first algorithm uses

the sequential convex approximation (SCA) technique

to approximate the non-convex constraints while the

second algorithm utilizes the Dinkelbach’s technique

for handling the non-convex nature of the fractional

objective function; and

3) Optimality validation: We validate the optimality of

the proposed SCA-based GEE-Max algorithm by com-

paring the optimal solution of an equivalent power mini-

mization problem. In particular, both the algorithm and

power minimization problem should lead to identical

solutions. However, the power minimization problem is

a convex problem, and therefore, the solution is optimal

in terms of required transmit power to achieve the

corresponding minimum rate at each user. This confirms

the optimality of the results obtained through the SCA-

based algorithm.

The remainder of the paper is organized as follows. In Sec-

tion II we present a system model and formulate the problem

with necessary feasibility conditions. This is then followed

by Section III, where we propose two iterative algorithms,

a key part of our contributions. Detailed evaluations and

simulation results are presented in Section IV, demonstrating

the effectiveness of the proposed algorithms through compar-

ing their performance with different beamforming techniques

available in the literature. We then finally conclude the paper

in Section V.

In the rest of the paper, we adopt the following notations:

We use the lower-case boldface letters for vectors and upper-

case boldface letters for matrices; (·)H denotes complex con-

jugate transpose; ℜ(·) and ℑ(·) stand for real and imaginary

parts of a complex number, respectively; CN and R
N denote

the N -dimensional complex and real spaces, respectively; and

1In this paper, both the GEE and EE carry the same meaning.
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Fig. 1: A multiuser, MISO-NOMA system with a multi-

antenna base station, and K-single antenna users.

E(·), || · ||2 and | · | represent the expectation, the Euclidean

norm of a vector, and absolute value of a complex number,

respectively. Tr(·) stands for the trace of a matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink transmission of a MISO-NOMA

system with K users as shown in Figure 1, where a single base

station simultaneously transmits information to all users. We

assume that the base station here is equipped with N antennas

(i.e., N > 1) while there is a single antenna at the user’s end.

The signal transmitted from the base station can be expressed

as:

x =

K
∑

k=1

wksk, (1)

where sk and wk ∈ C
N×1 denote the signal intended for

the kth user and the corresponding beamforming vector,

respectively. Note that a digital beamforming is adopted in

this work. The power of the transmitted symbol is assumed

to be one, i.e., E(|sk|2) = 1.

The received signal at the ith user can be expressed as:

yi = hH
i wisi +

K
∑

j=1,j 6=i

hH
i wjsj + ni, (2)

where hi ∈ C
N×1 represents the channel coefficients between

the base station and the ith user, and ni represents the zero-

mean circularly symmetric complex additive white Gaussian

noise with variance σ2. Furthermore, we define hi such that

hi =
√

d−κ
i gi, where κ, di and gi denote the path loss

exponent, the distance between the ith user and the base

station, and small scale fading, respectively. In addition, it

is assumed that the base station has the perfect channel state

information (CSI) of each user. In NOMA, user ordering plays

a crucial role in implementing the SIC at the users’ ends,

and in fact, determines the overall performance of the system

[6]. However, determining optimal user ordering is an NP-

hard problem, which can only be solved through exhaustive

search, branch and bound methods or heuristic approaches [4],

[30]. In this paper, for the reasons of simplicity, the users are

ordered based on their respective channel strengths. Thus, the

first user will have the strongest channel strength, while the

channel strength of the Kth user will be the weakest. As such,

the channels can equivalently be ordered as follows:

||hK ||22 ≤ ||hK−1||22 ≤ · · · ≤ ||h1||22. (3)

By employing SIC, the ith user (Ui) should be able to

successively decode and subtract the signals intended for the

weaker users UK , · · · , Ui−1 from the received signal [31].

The received signal after eliminating the last K−i user signals

can expressed as:

∼
yi = hH

i wisi +

i−1
∑

j=1

hH
i wjsj + ni, (4)

where the first term in (4) represents the intended signal

for the ith user, while the second term denotes the in-

terference caused by the first i − 1 signals intended for

users {U1, · · · , Ui−1}. Note that Ui perfectly decodes the

messages intended to the weaker users without any errors.

The achievable signal to interference and noise ratio (SINR)

for the kth user to decode the signal that is intended to the

ith user is:

SINRi
k =

|hH
k wi|2

∑i−1
j=1 |hH

k wj |2 + σ2
k

, i ∈ K, ∀k ≤ i. (5)

It is inherently clear that (5) holds true only after per-

forming SIC on the preceding k − i signals. Furthermore,

K △
= {1, 2, · · · ,K}. To successfully decode the ith signal

at the k strong users (i.e., k < i), the achievable SINR

of decoding the ith signal at the kth user, γik, should be

greater than a predefined threshold γth. This condition can

be mathematically defined as in [19] [32]. Thus,

γi = min(γi1, γ
i
2, · · · , γik, · · · , γii) ≥ γth, (6)

therefore, the achievable rate Ri for the user Ui can be defined

as follows:

Ri = Bw log2(1 + γi), ∀i ∈ K, (7)

where Bw is the available bandwidth. For notational sim-

plicity, we assume that Bw = 1 in the rest of this paper.

Furthermore, the user with the weakest channel strength may

not be able to achieve a reasonable rate, owing to the fact that

significant amount of transmit power must have already been

allocated. To circumvent this problem, the following condition

should also be satisfied to maintain a rate fairness between

users with different channel strengths [33]:

|hH
i wK |2 ≥ |hH

i wK−1|2 ≥ · · · ≥ |hH
i w1|2, (8)

where i ∈ K. The constraint expressed in (8) will be referred

to as the SIC constraint in the rest of this paper.
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B. Problem Formulation

For the MISO-NOMA system defined above, we consider

an energy efficient maximization problem. In particular, this

energy efficient optimization problem is formulated to max-

imize the GEE of the system satisfying the available total

power at the base station, and the minimum rate requirement

of each user. The total power consumption at the base station

accounts for both the transmit power allocated for data trans-

mission and the power losses. As for the required transmit

power Ptr, it should satisfy the available power budget, Pava,

at the base station, which can be mathematically formulated

as the following constraint:

Ptr =

K
∑

i=1

||wi||22 ≤ Pava. (9)

As for the power losses at the base station, denoted by Ploss,

they should account both the dynamic and static power losses

pdyn and psta, respectively. The former primarily depends

on the number of transmit antennas N , whereas the latter is

intended to account for the power required to maintain the

system, such as through cooling and conditioning. The total

power losses can be defined as in [18]:

Ploss = psta +Npdyn. (10)

Hence, the total power consumption at the base station is:

Ptotal =
1

ǫ0
Ptr + Ploss, (11)

where 0 < ǫ0 ≤ 1 is the efficiency of the power amplifier.

The GEE of the system is defined as the ratio between the

total achievable sum rate and the total power consumption,

GEE =

∑K
i=1Ri

Ptotal

. (12)

With these definitions in place, the beamforming design to

maximize the GEE in a MISO-NOMA system with K users

can be formulated into the following optimization framework:

OP 1: maximize
{wi}K

i=1

∑K
i=1 log (1 + γi)

1
ǫ0

∑K
i=1 ||wi||22 + Ploss

(13a)

subject to Ri ≥ Rmin
i , ∀i ∈ K, (13b)

K
∑

i=1

||wi||22 ≤ Pava, (13c)

(8), (13d)

where Rmin
i is the minimum rate requirement for the user

Ui, and (13d) ensures the successful implementation of the

SIC for all users while maintaining the rate fairness between

them.

C. Feasibility Conditions

The optimization problem OP1 defined in (13) is worth

solving only when it is feasible to solve for a given set

of constraints. For instance, the OP1 problem may not be

solvable because of insufficient available power budget at the

base station, or higher user data rate requirements. As such,

it is first worth verifying the feasibility conditions prior to

attempting to solve the GEE-Max problem. We outline an

approach for verifying the feasibility conditions using the

power minimization (P-Min) problem with minimum data rate

requirements and user rate fairness constraints:

OP2: P ∗= minimize
{wi}K

i=1

K
∑

i=1

||wi||22 (14a)

subject to Ri ≥ Rmin
i , ∀i ∈ K, (14b)

(8), (14c)

where P ∗ denotes the minimum power required to achieve

the minimum rate and satisfy the SIC constraints. The above

optimization problem, OP2, has been solved in [21] by

handling the non-convex constraints through a set of convex

approximation techniques, which are detailed in the next

section. If P ∗ > Pava, then the optimization problem in

OP1 can be classified as an infeasible problem. To overcome

this infeasibility issue, we consider the following sum-rate

maximization (SRM) problem, where the achievable sum-

rate is maximized with transmit power constraint and SIC

constraints. This SRM problem can be formulated as in [19]:

OP3: maximize
{wi}K

i=1

K
∑

i=1

log (1 + γi) (15a)

subject to

K
∑

i=1

||wi||22 ≤ Pava, (15b)

(8). (15c)

The optimization problem OP3 is solved as in [19] using

the SCA technique. It is worth to explore an efficient method

to solve the original GEE-Max problem in OP1, provided

that the problem is feasible. In the following section, we

develop two iterative algorithms to determine a solution with

the assumption that the minimum data requirements and the

SIC constraints can be met within the available power budget.

III. ALGORITHMS FOR SOLVING THE GEE-MAX

PROBLEM

The GEE-Max problem defined in (13) is a non-convex

problem due to non-convex objective function and constraints.

Hence, it is challenging to obtain an optimal solution. In this

section, we develop two iterative algorithms to determine the

beamforming vectors to maximize the GEE of the system

while satisfying the respective constraints. These algorithms

are proposed by approximating the non-convex objective

function and constraints to convex ones based on the SCA

and Dinkelbach’s algorithms. The details of the algorithms

are provided in the following two subsections.
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A. Approach based on the Sequential Convex Approximation

Sequential convex approximation or sequential convex pro-

gramming [34] is one of the well-known techniques that

has been widely adopted to approximate and transform non-

convex problems to convex problems. A number of studies

demonstrate the viability of this approach in real-world ap-

plications [19], [17]. The basic idea of SCA is to establish

a convex trust region around the original non-convex spatial

points, so that the overall objective function is sequentially

optimized for every spatial point. As such, it is a heuristic-

driven approach, where the optimality of the ultimate solution

may vary depending on the initialization. In our case, by

introducing a slack variable α, the original problem specified

by OP1 can be reformulated in the following epigraph form:

maximize
{wi}K

i=1

α (16a)

subject to

∑K
i=1 log (1 + γ)

1
ǫ0

∑K
i=1 ||wi||22 + Ploss

≥ √
α, (16b)

Ri ≥ Rmin
i , ∀i ∈ K, (16c)

K
∑

i=1

||wi||22 ≤ Pava, (16d)

(8), (16e)

where the objective function in the original problem (13)

is replaced by
√
α (or equivalently α). Without loss of

generality, the non-convex constraint with the slack variable

α in (16b) can equivalently be decomposed into the following

two constraints:

K
∑

i=1

log (1 + γi) ≥
√

αβ, (17a)

1

ǫ0

K
∑

i=1

||wi||22 + Ploss ≤
√

β. (17b)

By incorporating the definition of SINRi (i.e., γi) in (6),

the constraint in (17a) can be represented as follows:

K
∑

i=1

log (1 + min(γi1, γ
i
2, · · · , γik, · · · , γii)) ≥

√

αβ. (18)

To handle the non-convexity of (18), we firstly introduce a

set of new slack variables such that:

log (1 + min(γi1, γ
i
2, · · · , γik, · · · , γii)) ≥ δi, ∀i ∈ K, (19a)

(1 + min(γi1, γ
i
2, · · · , γik, · · · , γii)) ≥ ζi, ∀i ∈ K. (19b)

Based on these new slack variables, the constraint in (19a) can

equivalently be represented by the following set of constraints:

(19a) ⇔











K
∑

i=1

δi ≥
√

αβ, (20a)

ζi ≥ 2δi , ∀i ∈ K. (20b)

However, the constraint in (20a) still remains non-convex.

In order to relax this, we exploit the first-order Tay-

lor series, providing approximations around the values of

(α(n−1), β
(n−1)
k,i ). With this,

K
∑

i=1

δi ≥
√

α(n−1)β(n−1)+

0.5

√

α(n−1)

β(n−1)
(β(n) − β(n−1))

+ 0.5

√

β(n−1)

α(n−1)
(α(n) − α(n−1)). (21)

To handle the constraint expressed in (19b), we introduce

another slack variable, θk,i ∈ R
1
+ (∀i ∈ K, k ≤ i ), and

reformulate the constraint in (19b) into the following set of

equivalent constraints, with ∀i ∈ K and k ≤ i,

|hH
k wi|2 ≥ (ζi − 1)θk,i, (22a)

i−1
∑

j=1

|hH
k wj |2 + σ2

i ≤ θk,i. (22b)

Without any loss of generality, the constraint in (22a), can

be re-expressed by introducing an arbitrary rotation to the

phase of the beamforming vector wi such that hH
k wi becomes

real, while the imaginary part ℑ(hH
k wi) becomes zero. This

change, however, does not alter the original optimization

problem nor the solution owing to the fact that this change

in the beamformer does not modify the required transmit

power or the achieved SINR of any users [35]. Therefore,

the constraint covered by (22a) can equivalently be expressed

as follows:

ℜ(hH
k wi) ≥

√

(ζi − 1)θk,i, (23)

where the right side of the above inequality can be approx-

imated using the first-order Taylor series, and the inequality

in (23) becomes:

ℜ(hH
k w

(n)
i ) ≥

√

(ζ
(n−1)
i − 1)θ

(n−1)
k,i

+ 0.5

√

√

√

√

(ζ
(n−1)
i − 1)

θ
(n−1)
k,i

(θ
(n)
k,i − θ

(n−1)
k,i )

+ 0.5

√

√

√

√

θ
(n−1)
k,i

(ζ
(n−1)
i − 1)

(ζ
(n)
i − ζ

(n−1)
i ). (24)

On the other hand, the non-convex constraint in (22b) can
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be formulated into a SOC as in [36]:

θ
(n)
k,i − σ2

i + 1

2
≥ ||v(n)

k ||
2
, (25)

where

v
(n)
k =

[

hH
k w

(n)
1 . . .hH

k w
(n)
i−1 φi,k

]T

(26)

and

φni,k =
(θ

(n)
k,i − σ2

i )− 1

2
. (27)

The non-convexity of the constraint in (17b) can be handled

by introducing new slack variable ββ and expressed into

multiple, yet equivalent, constraints as follows:

√

β ≥ ββ , (28a)

ββ ≥ 1

ǫ0

K
∑

i=1

||wi||22 + Ploss. (28b)

This can further be formulated into the following SOC

constraints [23]:

β + 1

2
≥

∥

∥

∥

[β − 1

2
ββ

]T∥
∥

∥

2
, (29a)

(ββ − Ploss) + 1

2
≥

∥

∥

∥

[

w0
w1√
ǫ0
. . .

wK√
ǫ0

]T∥
∥

∥

2
, (29b)

where:

w0 =
(ββ − Ploss)− 1

2
. (30)

Having approximated the original non-convex objective

function in (13a) by introducing a number of slack variables,

the final form is such that the problem is same as:

(13a) ⇔







maximize α

subject to (20b), (21), (24),

(25), (29a), (29b).

With this, we handle other non-convex constraints in the

original GEE-Max problem expressed by OP1. Without the

loss of generality, the minimum rate constraint in (13b) can

be expressed as:

γik ≥ γmin
i , ∀i ∈ K, k ≤ i, (32)

where γmin
i = 2R

min

i − 1. Furthermore, this SINR constraint

can be formulated into an SOC by introducing an arbitrary

phase rotation as in (22a) and with ∀i ∈ K, k ≤ i

1
√

γmin
i

ℜ(hH
k wi) ≥

∥

∥

∥

[

hH
k w1 . . .h

H
k wi−1 σk

]T∥
∥

∥

2
. (33)

The non-convexity of the constraint in (13d) can be ap-

proximated to a convex constraint by applying the first-order

Taylor series approximation. However, instead of applying the

Taylor series expansion to the original equation, we define a

new proxy function f(ψi,j) by stacking the real and imaginary

parts of the product hH
i wj as follows:

f(ψi,j) = |hH
i wj |2

= ||[ℜ(hH
i wj) ℑ(hH

i wj)]
T ||2, (34)

where ψi,j = [ℜ(hH
i wj) ℑ(hH

i wj)]. We then apply the first-

order Taylor series expansion to this proxy function f(ψi,j),
and consider two most significant terms:

f(ψ
(n)
i,j )

∼= f(ψ
(n−1)
i,j ) + 2(ψ

(n−1)
i,j )T (ψ

(n)
i,j − ψ

(n−1)
i,j ). (35)

With this approximation in place, each element in the

inequality constraint in (13d) can be replaced by the following

linear function:

∥

∥

∥
hH
k w

(n)
j

∥

∥

∥

2

2

∼=
∥

∥

∥

∥

∥

[

r
(n−1)
k,j

i
(n−1)
k,j

]
∥

∥

∥

∥

∥

2

2

+ 2

[

r
(n−1)
k,j

i
(n−1)
k,j

][

r
(n)
k,j − r

(n−1)
k,j

i
(n)
k,j − i

(n−1)
k,j

]T

, (36)

where

r
(n)
k,j = ℜ(hH

k w
(n)
j ), (37)

and

i
(n)
k,j = ℑ(hH

k w
(n)
j ). (38)

By incorporating all of these approximations, the original

GEE-Max problem in (13) can be formulated into the follow-

ing approximated problem:

maximize
Λ

α (39a)

subject to (13d), (19b), (24), (25), (33), (39b)

(21), (29a), (29b), (13c). (39c)

Note that we replaced (36) instead of each term in the

inequality in (13d), and ∀i ∈ K, k ≤ i, wherever applicable.

Furthermore, the expression

Λ(n) △
= {w(n)

i , α(n), β(n), β
(n)
β , θ

(n)
k,i , ζ

(n)
i , δ

(n)
i }Ki=1

indicates the nth iteration of the optimization parameters. In

particular, the original GEE-Max problem will be iteratively

solved using the approximated convex problem in (39). As

such, the optimization parameter is initialized with Λ(0). In

particular, the random selection of Λ(0) determines both the

feasibility and the convergence of (39). Hence, we initialize

Λ(0) by evaluating the beamforming vectors first that satisfy

the constraints specified by the optimization problem in (14),

where the initial slack variables α(0), β(0), β
(0)
β , θ

(0)
k,i , ζ

(0)
i and

δ
(0)
i are found by substituting these initial beamforming
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vectors in (17a), (17b), (28a), (22b), (22a), and (19b), respec-

tively. We summarize the algorithm developed to determine

the solution of the original GEE-Max problem in Algorithm 1.

The algorithm is terminated when the absolute difference

between two sequential optimal values is less than a pre-

defined threshold ε (i.e., |α(n) − α(n−1)| < ε).

Algorithm 1 GEE-Max using SCA

Step 1: Initialization of Λ(0)

Step 2: Repeat

1) Solve the optimization problem in (39).

2) Update Λ(n) .

Step 3: Until required accuracy is achieved.

B. Approach based on the Dinkelbach’s Algorithm

In this subsection, we develop another approach based on

the Dinkelbach’s algorithm to solve the GEE-Max problem

in OP1. In addition to offering an alternative, this approach

also helps to compare and validate the performance of the

SCA-based algorithm, and minimize the number of required

slack variables in the algorithm. Furthermore, although the

SCA-based algorithm was useful in transforming the non-

convex constraints into convex ones, the fractional nature

of the objective function in OP1 still remains untouched.

We address this issue by introducing an additional non-

negative variable, and by representing the objective function

by a parametrized, yet equivalent, non-fractional function. The

non-negative variable we introduce here, χ, based on [37], is

as follows:

OP5: maximize
(

K
∑

i=1

log (1 + γi)−

χ
( 1

ǫ0

K
∑

i=1

||wi||22 + Ploss

)

)

(40a)

subject to Ri ≥ Rmin
i , ∀i ∈ K, k ≤ i, (40b)

K
∑

i=1

||wi||22 ≤ Pava, (40c)

(8). (40d)

For the reasons of notational simplicity, we denote the

numerator and the denominator of the objective function in

OP1 by f1 and f2, respectively, such that

f1({wi}Ki=1) =

K
∑

i=1

log (1 + γi), (41a)

f2({wi}Ki=1) =
1

ǫ0

K
∑

i=1

||wi||22 + Ploss. (41b)

In order to realize the relationship between OP1 and OP5,

we present the following theorem [37]:

Theorem 1: A necessary and sufficient condition for

χ∗ = maximize
{wi}K

i=1

f1({wi}Ki=1)

f2({wi}Ki=1)
=
f1({w∗

i }Ki=1)

f2({w∗
i }Ki=1)

, (42)

is

F ({wi}Ki=1, χ
∗) =

maximize
{wi}K

i=1

(

f1({wi}Ki=1)− χ∗f2({wi}Ki=1)
)

= f1({w∗
i }Ki=1)− χ∗f2({w∗

i }Ki=1) = 0, (43)

where {w∗
i }Ki=1 are the solution of the original GEE-Max

problem.

Proof : Please refer to Appendix A.

Theorem 1 confirms that obtaining the beamforming vectors

that maximize the GEE in the original problem OP1 is the

same as solving the parametrized optimization problem OP5.

However, the precondition is that the non-negative parameter

χ is a solution of (43), while F (χ) has a unique solution for

any set of {wi}Ki=1 as in [37].

In this approach, the design variables χ and {wi}Ki=1 in

OP5 are iteratively optimized by exploiting the Dinkelbach’s

algorithm. First, the parameter χ is initialized with zero and

the parametrized optimization problem in (40) can be solved

using convex approximation techniques [23]. For a given set

of beamformers, the design parameter in the nth iteration χ

is updated as follows:

χ(n) =
f1({w(n−1)

i }Ki=1)

f2({w(n−1)
i }Ki=1)

. (44)

In particular, the beamforming vectors in the nth iteration

({w(n)
i }Ki=1) can be found by solving the following optimiza-

tion problem:

maximize
{w

(n)
i

}K

i=1

(

K
∑

i=1

log (1 + γi)−

χ(n−1)
( 1

ǫ0

K
∑

i=1

||w(n)
i ||22 + Ploss

)

)

(45a)

subject to Ri ≥ Rmin
i , ∀i ∈ K, k ≤ i, (45b)

K
∑

i=1

||w(n)
i ||22 ≤ Pava, (45c)

(8). (45d)

Due to the non-convex objective function and the non-

convex constraints of the optimization problem in (45), we de-

velop an iterative algorithm using the SCA approach. Hence,

the objective function is reformulated to a concave form and it

is obvious that
(

1
ǫ0

∑K
i=1 || w

(n)
i ||22+Ploss

)

is convex. Hence,

without any loss of generality, multiplying it with −χ(n) will

ensure the concavity of this part. On the other hand, the first
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part of the objective function (i.e.,
∑K

i=1 log (1 + γi)) requires

some relaxations to convert it to a concave form. To this end,

we first introduce a new slack variable such that:

K
∑

i=1

log (1 + γi) ≥ ν, (46)

where the left side of the inequality in (46) can be approx-

imated by incorporating new slack variables zi and qi, such

that

1 + γi ≥ zi, ∀i ∈ K, (47a)

zi ≥ 2qi , ∀i ∈ K. (47b)

Hence, the non-convex constraint in (46) can be equiva-

lently rewritten as

K
∑

i=1

qi ≥ ν. (47c)

Without any loss of generality, we can address the non-

convexity of the constraint in (47a) by following the same ap-

proach that has been developed to approximate the constraint

in (19b) in the previous subsection. In particular, we replace

ζi and θk,i in (22a) and (22b) by zi and ρk,i, respectively.

The constraint in (47a) can be equivalently re-written as a set

of the following convex constraints:

ℜ(hH
k w

(n)
i ) ≥

√

(z
(n−1)
i − 1)ρ

(n−1)
k,i

+ 0.5

√

√

√

√

(z
(n−1)
i − 1)

ρ
(n−1)
k,i

(ρ
(n)
k,i − ρ

(n−1)
k,i )

+ 0.5

√

√

√

√

ρ
(n−1)
k,i

(z
(n−1)
i − 1)

(z
(n)
i − z

(n−1)
i ), ∀i ∈ K, k ≤ i. (48)

(ρ
(n)
k,i − σ2

i ) + 1

2
≥ ||[hH

k w
(n)
1 hH

k w
(n)
2 · · ·hH

k w
(n)
i−1

(ρ
(n)
k,i − σ2

i )− 1

2
]||2, ∀i ∈ K, k ≤ i. (49)

So far, we have transformed the first part of the objective

function in OP5 into a concave form. Meanwhile, we will use

approaches that are similar to that of handling the constraints

of OP1, as both the optimization problems have the same

constraints. Based on these new transformations, the GEE-

Max problem based on the parametrized objective function

can be expressed as follows:

maximize
Υ(n)

ν(n) − χ(n−1)
( 1

ǫ0

K
∑

i=1

||w(n)
i ||22 + Ploss

)

(50a)

subject to (48), (49), (33), (13d), ∀i ∈ K, k ≤ i, (50b)

(47b), ∀i ∈ K, (50c)

(45c), (47c). (50d)

Furthermore, the parameters Υ obtained through the nth

iteration for the new relaxed optimization problem in (50) are

denoted by Υ(n), such as Υ(n) = {ν(n), z(n)i , ρ
(n)
k,i ,w

(n)
i }Ki=1.

In this Dinkelbach’s-based iterative algorithm, there are two

steps that have to be carried out to determine the solution

of the original GEE-Max problem, OP1. These steps involve

iteratively determining the optimal beamforming vectors that

would solve the optimization (50) for different values of

χ until the required accuracy thresholds (i.e., ε and ς) are

achieved. The overall process is outlined in Algorithm 2. In

particular, the parametrization offered by the Dinkelbach’s

algorithm might simplify the original problem, especially

when the design parameters are scalar variables, for example,

power allocations, time slots, and bandwidth allocations [18].

In such cases, dealing with non-fractional objective functions

are relatively easier in terms of computational complexity

than considering the original fractional objective functions.

However, the parametrization offered by the Dinkelbach’s

algorithm does not reduce much complexity in our original

GEE-Max problem due to the fact that the parametrized

problem still remains not-convex, and hence, an additional

SCA technique is yet required to handle this non-convexity

issue. Note that the Dinkelbach’s algorithm is presented as an

alternative method to validate the performance of the proposed

SCA technique.

Algorithm 2 GEE-Max using Dinkelbach’s Algorithm.

Step 1: Initialize χ(0) = 0, choose feasible values for ρ
(0)
k,i , ν

(0)

and z0i .

Step 2: Repeat

Step 3: Repeat

1) Solve the optimization problem in (50).

2) Update Υ(n).

Step 4: Until required accuracy is achieved.

Step 5: Update χ(n) = ν(n−1)

1
ǫ0

∑
K

i=1 ||w
(n−1)
i

||22+Ploss

.

Step 6: Until required accuracy is achieved.

This iterative algorithm for obtaining the solution termi-

nates when the absolute difference between two consecutive

solutions of the parameter is less than a predefined threshold

of ε. Furthermore, we introduce the following Lemma to

confirm the convergence of the proposed algorithm.

Lemma 1: The GEE-Max using Dinkelbach’s Algorithm

converges to the solution after finite iterations.

That is

lim
n→∞

F ({w(n)
i }Ki=1, χ

(n)) → 0.

Proof : Please refer to Appendix B.

It is worth making two important observations regarding the

solution of the original GEE-Max problem OP1 here. First,

unlike the sum-rate (i.e.,
∑K

i=1 log(1+γi)) in OP3, GEE is not
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monotonically increasing with the available power. However,

the maximum GEE in OP1 is achieved within certain available

power budget, which is referred to as the green power. In

particular, the GEE remains constant for any available power

that is more than the green power. Secondly, the GEE-Max

problem OP1 and SRM problem OP3 provide similar or same

set of solutions (i.e., beamforming vectors and GEE) for any

available power budget that is less than the green power.

C. Optimality Validation for the GEE-Max Algorithms

In the previous subsections, the original GEE-Max problem

OP1 is solved through two iterative algorithms, which are

developed by approximating non-convex functions. However,

it is important to validate the optimality of the corresponding

solutions and evaluate their performances by comparing them

with the optimal results. To validate the optimality of the

SCA based algorithm, we formulate an equivalent convex

problem and compare the corresponding performance with

the developed algorithms. In particular, we revisit the P-

Min problem in OP2 and reformulate it into a semidefinite

program (SDP) by relaxing non-convex rank-one constraint.

Furthermore, the achieved SINRs (
∗
γi) in the solution to

the original GEE-Max problem OP1 are set as the target

SINRs in this P-Min problem. Without loss of generality, we

introduce new rank-one matrices such that Wi = wiw
H
i and

reformulate the problem OP2 in the following SDP [38] [39]:

∼

OP2: P ∗=minimize
{Wi}K

i=1

K
∑

i=1

Tr[Wi] (51a)

subject to Tr[HkWi]− γi

i−1
∑

j=1

Tr[HkWj ] ≥

γiσ
2
k, ∀i ∈ K, k ≤ i, (51b)

Tr[HiW1] ≤ Tr[HiW2] ≤ · · ·
≤ Tr[HiWK ], ∀i ∈ K, (51c)

Wi = WH
i ,Wi � 0, ∀i ∈ K. (51d)

The above problem
∼

OP2 is a standard SDP problem [40],

and therefore, it leads to an optimal solution. However, this

solution will also be the solution to the original P-Min prob-

lem in OP2, provided that they are rank-one matrices [41].

The required beamforming vectors in OP2 can be determined

by extracting the eigenvector corresponding to the maximum

eigenvalue of this rank-one matrices.

As will be discussed in Section IV, this SDP problem

always provides rank-one solutions that same to the solutions

to the GEE-Max problem. This confirms the optimality of

the solutions obtained through the proposed SCA algorithm.

Note that the P-Min design for the OP2 cannot be directly

employed to solve the original GEE-Max problem without

knowing the achieved SINRs (
∗
γi) that maximize the GEE

of the system. On the other hand, note that the same

performance can be achieved in Dinkelbach’s algorithm by

setting a high accuracy. This can be carried out by setting the

termination threshold to zero in the Dinkelbach’s algorithm

(i.e., ς = 0 in Step 6 of Algorithm 2).

D. Complexity Analysis of the Proposed Schemes

The computational complexities of the proposed algorithms

to solve the GEE-Max optimization problem are defined as

follows:

1) The SCA Technique: An iterative algorithm is developed

to solve the original GEE-Max optimization problem OP1

by exploiting the SCA technique in which an approximated

optimization problem provided in (39) is solved in each

iteration and the approximated terms are updated in the

next iteration. In particular, a standard second-order cone

programme (SOCP) is solved with a number of second-

order cone (SOC) and linear constraints. Hence, the worst-

case complexity of the SCA technique can be examined

through defining the complexity of this SOCP, which is

solved through the interior-point methods [42], [43]. Fur-

thermore, the total number of constraints associated with

this problem is (2.5K2 + 5.5K + 6 + qc), where qc is a

constant related to the number of constraints that arise due

to the relaxation of the exponential constraints in interior-

point methods [44]. Hence, the total number of iterations

that are required to converge to the solution is bounded by

O(
√

2.5K2 + 5.5K + 6 + qc log(
1
ǫ
)), where ǫ is the required

accuracy. On the other hand, at each iteration, the work

required to achieve the solution is at most O(N 2M) [43],

where N and M denote the number of optimization vari-

ables and the total dimensions of the optimization problems,

respectively. For the developed SCA based algorithm, N and

M are estimated as (1.5K2 + 3.5K + 2NK + 3 + qc) and

(5.5K2 + 4K + 2NK + 4 + qc), respectively.

2) The Dinkelbach’s Algorithm: Now, we define the

computational complexity of the proposed Dinkelbach’s

algorithm in which the convex parametrized problem

provided in (50) is iteratively solved at each iteration

for each non-negative parameter χ. In particular, similar

to the SCA technique, a standard SOCP with a set

of SOC constraints is solved through the interior-point

methods. Furthermore, this SOCP mainly determines the

computational complexity of the algorithm. Note that

the number of constraints in the SCA technique and the

Dinkelbach’s algorithm are approximately the same. Hence,

the estimated work to determine the solution at each iteration

is approximately similar to that required in the SCA based

algorithm. However, due to the parametrization required in

the Dinkelbach’s algorithm, an additional iterative algorithm

is required to obtain the optimal χ, as shown in Algorithm

2. The total maximum number of required iterations can be

defined by O(
√

4K2 + 4K + 4 + qc log(
1
ǫ
) log( 1

ς
)), which

is higher than that required in the SCA based algorithm.

E. Convergence Analysis of the Proposed Schemes

SCA Technique: The convergence of the SCA-based

technique proposed to solve the GEE-Max problem can be
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examined similar to the extensive anaylsis presented in [34].

In particular, as shown in Algorithm 1, the optimization

parameters at the nth iteration (i.e., Λ(n)) are updated based

on the solution that obtained by solving the approximated

optimization problem in (39). In this convergence analysis,

three key conditions should be satisfied. First, initializing the

optimization problem with appropriate initial parameters Λ(0)

ensures the feasibility of the problem at each iteration, which

provides a feasible solution to update the parameters for next

iteration. Second, it is obvious that the optimization parameter

α is linear, and hence, non-decreasing (i.e., α(n+1) ≥ α(n)).

Finally, as shown in constraint (9), the available power is

upper bounded by Pava, such that Pava << ∞, which

implies that α is upper bounded, as well. The satisfaction

of these three conditions ensures that the developed SCA

technique converges to the solution with finite number of

iterations.

The Dinkelbach’s Algorithm: The convergence analysis

of the proposed algorithm based on Dinkelbach’s algorithm

to solve the GEE-Max problem can be developed similar

to that of the SCA technique. Algorithm 2 consists of two

iterative algorithms which are alternately solved to determine

the solution to the original GEE-Max problem. In particular,

the convergence in term of χ of the parametrized problem

in (50) towards the solution is introduced in Lemma 1.

Furthermore, for each χ, the convergence of the developed

SCA technique can be proved by following the same pro-

cedure as for the convergence of the SCA technique. This

confirms the convergence of the proposed algorithm based

on Dinkelbach’s algorithm. Hence, we can state that the

Dinkelbach’s algorithm converges to the solution with finite

number of iterations.

IV. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate

the effectiveness of the proposed GEE-Max algorithms. We

compare the performance of these algorithms against the

existing conventional beamforming designs in the literature.

In simulations, we consider a system with a base station that

communicates with K single-antenna users, which are located

at different distances. The Table I shows different parameters

we adopted in simulations. Note that these parameters are

similar to the parameters used in [19] [17].

The performance of the system is evaluated in terms of

the achieved EE against different normalized transmit powers.

This is defined by TX-SNR in dB as follows:

TX-SNR (dB) = 10 log10
Pava

σ2
.

TABLE I: Parameter values used in the simulations.

Parameter Value(s)

Transmit antennas (N ) 3
User distances (m) [1.0, 5.5, 10.0]
Path loss exponent (κ) 1.0
Noise variance of users (σ2) 2.0
Threshold for algorithm 1 (ǫ) 0.01
Threshold for algorithm 2 (ς) 0.01
Power-amp efficiencies (ǫ0) 0.65
User SINR thresholds for OP1 10−2

Bandwidth Bw (MHz) 1
Small scale fading gi Rayleigh fading
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Fig. 2: Achieved EE for GEE-Max-based design through

Algorithms 1 and 2.

Figure 2 shows the achieved EE for the GEE-Max-based

designs with different TX-SNR using the algorithms devel-

oped through the SCA and Dinkelbach’s techniques. The

performance gap between these two approaches is not sig-

nificant in terms of the achieved EE. However, the design

based on the SCA approach outperforms the latter due to

the parametrization of the objective function in the latter. As

seen in Figure 2, the achieved EE increases with the available

transmit power until it reaches the corresponding maximum

green power, where it saturates.

In order to demonstrate the advantages of the proposed

GEE-Max-based design, we compare the EE of the proposed

design with the existing conventional beamforming designs in

the literature, namely, beamforming design for SRM in MISO-

NOMA system [19], and maximizing the sum rate in MISO-

OMA [45], [46] based on the zero-forcing beamforming

designs (ZFBF). As evidenced by results in Figure 3, the

GEE-Max based design outperforms the other designs in

terms of achieved EE. On the other hand, the EE of the

SRM-based designs declines dramatically when the transmit

power exceeds the green power. This is particularly the case

for the SRM-based designs for both NOMA and OMA (i.e.,

ZFBF), where these design consume all available power for

maximizing the achieved sum rate, as will be seen below.
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TABLE II: Power allocations and the achieved SINRs for different GEE-Max designs using the SCA, TX-SNR= 2dB.

Channels
User 1 User 2 User 3

∗
γ1 P1 (W)

∗
γ2 P2 (W)

∗
γ3 P3 (W)

Channel 1 1.2468 0.9095 0.1848 0.9095 0.1482 1.3507

Channel 2 0.9975 0.8660 0.1535 0.8660 0.1381 1.4378

Channel 3 1.3353 0.9115 0.1789 0.9115 0.1512 1.3082

Channel 4 1.8190 0.9815 0.2485 0.9815 0.1640 1.2068

Channel 5 1.4606 0.9400 0.2098 0.9400 0.1551 1.2898
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Fig. 3: EE for different design criteria.

In order to demonstrate the trade-off between the achieved

EE and the sum-rate across different beamforming designs,

we evaluate the performance of the proposed schemes in

terms of the achieved sum-rate of the overall system. Figure 4

illustrates the achieved sum-rates of different designs against a

range of transmit powers. As expected, the SRM-based design

shows the same performance as the GEE-Max design up to

the green power, and outperforms the GEE-Max scheme when

the available transmit power exceeds the green power. The

sum-rate of the GEE-Max-based scheme remains constant in

this region, where it achieves the maximum EE as shown in

Figure 3. On the other hand, the achieved sum rates of both

SRM and ZFBF schemes increases with the available transmit

power while decreasing their of EE performance (Figure 3).

To further evaluate the transmit power consumption (i.e.,

Ptr), we compare the transmit power requirements for dif-

ferent NOMA beamforming designs. As shown in Figure 5,

the P-Min beamforming design [21] outperforms the SRM-

and GEE-Max-based designs. This is because the P-Min-

based beamforming design uses the transmit power to satisfy

the required SINR constraints. On the other hand, the SRM-

based scheme makes use of all the available transmit power

to achieve the maximum sum rate, while the GEE-Max-based

scheme consumes a certain amount of transmit power (i.e.,

green power) to maximize the GEE of the system. From these

observations, the GEE-Max-based design can be considered

as the scheme that strikes a good balance between the SRM
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Fig. 4: Achieved sum rates of different beamforming designs

against transmit power.
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design criteria.

and P-Min-based designs.

Furthermore, we evaluate the impact of the power losses on

the performance of the proposed GEE-Max design. Figure 6

shows the achieved EE against different power losses. There

are two key observations to be drawn from Figure 6. Firstly,

the achievable EE decreases as the power loss increases.

Secondly, the green power that achieves the maximum EE



12

5 10 15 20 25
TX-SNR (dB) 

2

4

6

8

10

12

14
E

ne
rg

y 
ef

fic
ie

nc
y 

(b
its

/J
ou

le
) 

104

pl=45 dBm
pl=37 dBm

Fig. 6: Achieved EE of GEE-Max design with different power

losses.

increases as the power losses increases.

TABLE III: Power allocations for the achieved SINRs in

Table II using the P-Min design.

Channels
Pi=Tr[Wi]

P1 (W) P2 (W) P3 (W)

Channel 1 0.9094 0.9095 1.3508

Channel 2 0.8660 0.8660 1.4379

Channel 3 0.9113 0.9115 1.3082

Channel 4 0.9815 0.9815 1.2068

Channel 5 0.9400 0.9400 1.2897

Next, we provide results to validate the optimality of the

proposed SCA-based GEE-Max algorithm. We compare the

achieved SINRs and power allocations of the proposed scheme

with the P-Min-based scheme, which assumes to use the

same SINR targets obtained in the GEE-Max-based scheme.

The power allocations and the achieved SINRs using the

proposed SCA- and GEE-Max-based schemes are given for

five different random channels in Table II. For the same set

of channels used in Table II, the power allocations obtained

through solving the P-Min
∼

OP2 are given in Table III where

the achieved SINRs in Table II have been set as the target

SINRs in
∼

OP2. By comparing the results provided in Tables II

and III, it can be concluded that both problems provide the

same solutions in terms of power allocation. It can also be

noticed that the beamforming vectors obtained in both case

are the same, and they are not presented here for the reasons

of brevity. Therefore, we can confirm that the SCA algorithm

yields the optimal solution to the original GEE-Max problem

within a few cycles of iterations.

Now, we consider the effect of the path loss exponent κ

on the achieved EE for the GEE-Max design in Table IV.

As expected, the achieved EE decreases as κ increases. On

the other hand, the base station requires additional transmit

power (i.e., Ptr) to maximize EE when the path loss exponent

κ increases, as shown in Table IV.

TABLE IV: Achieved EE of the proposed GEE-Max design

with different path loss exponents κ under TX-SNR= 25 dB.

Path Loss Exponent (κ)
GEE-Max design

Achieved EE (Mbits/Joule) Ptr (W)

1 0.0532 22.6202

2 0.0450 24.9749

3 0.0254 64.2730

4 0.0101 287.4765

In addition, Figure 7 illustrates the achieved EE against

different number of transmit antennas for the proposed GEE-

Max and the SRM designs. In general, the increase in the

number of the transmit antennas provides additional degrees

of freedom, and hence, improves the achieved sum-rate of

the system through efficient interference mitigation [17].

However, the achieved EE shows a different performance

behaviour, as the increase of N will also increase Ploss,

accordingly. With the GEE-Max design, two different be-

haviours can be observed in Figure 7, as follows. First, the

achievable EE increases with the number of transmit antennas.

This is due to the fact that the rate improvement offered by

the additional number of antennas is dominant in achieved

EE than the power loss (i.e., the increase of Ploss due to

the increase of N ) introduced by those antennas. Hence, the

achieved EE increases gradually until it reaches its maximum

with N = 3. Then, the power loss with more number of

transmit antennas becomes more dominant in the achieved EE

than the rate improvement offered by those antennas. Hence,

with more number of antennas, the achieved EE begins to

decrease and shows the same performance as in the SRM

design as seen in Figure 7. However, the EE achieved through

the GEE-Max design outperforms the SRM design. Based on

these observations, we can conclude that there is an optimal

number of transmit antennas which can achieve the maximum

EE and employing a larger number of antennas than the

optimal number will introduce a loss in the achievable EE

performance of the system. Note that this optimal number

of transmit antennas depends on the system parameters (i.e.,

K, pdyn, psta, etc.). Furthermore, both the SRM design and

GEE-Max design achieve the same EE when the number of

transmit antennas is greater than 7. This is due to the fact that

the available power (i.e., Pava) is less than the green power,

hence, both designs will provide the same solution and achieve

the same EE performance.
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respectively.

Finally, we evaluate the number of iterations required

for the convergence of the proposed SCA-based GEE-Max

algorithm. Figure 8 depicts the convergence of the proposed

SCA algorithm with different set of channels. The threshold

(ε in Algorithm 1) to terminate the algorithm has been set to

0.01. As seen in Figure 8, the algorithm converges within a

few iterations.
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Fig. 8: The convergence of SCA based GEE-Max algorithm

for different set of random channels. The TX-SNR and Ploss

are set to be 20 dB and 40 dBm, respectively.

V. CONCLUSIONS

In this paper, we proposed two different algorithms for

energy efficient beamforming designs to maximize the GEE

for MISO-NOMA systems. These two algorithms stem from

an approach whereby we transformed the original, non-convex

GEE-Max optimization problem into an approximated convex

problem. These algorithms are based on the sequential convex

programming and the Dinkelbach’s approaches. Our evalua-

tion, benchmarked against a baseline, show that the proposed

algorithms converge and produce similar results, and also

outperform the benchmark approaches. Our evaluation also

verified the optimality of the proposed SCA-based design by

comparing the power allocations with the an equivalent P-Min

design with the same set of random channels. Furthermore,

it was shown that the GEE-Max based design is capable

of achieving a good trade-off between the designs with

conflicting performance metrics that maximize the sum rate

and minimize the transmit power.

APPENDIX A

PROOF OF THEOREM 1

To prove Theorem 1, we firstly rewrite (42) such as

χ∗ =
f1({w∗

i }Ki=1)

f2({w∗
i }Ki=1)

≥ f1({wi}Ki=1)

f2({wi}Ki=1)
, (52)

where {w∗
i }Ki=1 denote the beamforming vectors that maxi-

mize the original problem OP1. Without loss of generality,

the condition in (52) can be decomposed as

f1({wi}Ki=1)− χ∗f2({wi}Ki=1) ≤ 0, (53a)

f1({w∗
i }Ki=1)− χ∗f2({w∗

i }Ki=1) = 0, (53b)

where the left side of (53a) denotes the objective func-

tion of the parametrized optimization problem OP5 (i.e.,

F ({wi}Ki=1, χ
∗)). The inequality in (53a) reveals that any

feasible beamforming set {wi}Ki=1 (rather than the optimal

set) will provide F ({wi}Ki=1, χ
∗) to be less than zero, whereas

the optimal beamfroming vectors {w∗
i }Ki=1 could be achieved

if and only if the condition in (53b) is satisfied. Hence, we

can determine the optimal beamforming vectors of the original

fractional problem OP1 by solving the non-fractional one in

OP5 with the assumption that the maximum objective value

of OP5 is zero. This completes the proof of Theorem 1. �

APPENDIX B

PROOF OF LEMMA 1

In order to prove the convergence of the Dinkelbach’s itera-

tive approach to the optimal solution, the following conditions

can be equivalently proven [37]:

χ(n+1) ≥ χ(n), (54a)

lim
n→∞

χ(n) = χ∗. (54b)

We start with χ(n+1) ≥ χ(n), and it is known that F (χ) is a

non-decreasing function. Therefore

{F (χ(n)) ≥ F (χ∗) ≥ 0|χ(n) ≤ χ∗},
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which implies that

f1({w(n)
i }Ki=1)− χnf2({w(n)

i }Ki=1) ≥ 0. (55)

On the other hand, the following holds based on (44):

f1({wn
i }Ki=1) = χ(n+1)f2({w(n)

i }Ki=1). (56)

By substituting (56) in (55), we have:

(χ(n+1) − χ(n))f2({w(n)
i }Ki=1) > 0.

Since f2({w(n)
i }Ki=1) is assumed to be always positive, then

(χ(n+1) − χ(n)) > 0,

which confirms the inequality in (54a). Now, we consider

the second condition in (54b) and prove this through

contradiction. First, we assume that the condition in (54b)

does not hold and there exists another non-negative parameter

(χ+) such that

lim
n→∞

χ(n) = χ+ < χ∗.

Based on this argument, the following holds:

F (χ+) = 0.

However, F (χ) is a non-decreasing function, which means

that

{F (χ+) = 0 > F (χ∗) = 0|χ+ < χ∗}, (57)

which is obviously not true and contradicts the assumption

made at the beginning of this proof. Therefore,

lim
n→∞

χ(n) = χ∗.

This confirms that the Dinkelbach’s iterative algorithm con-

verges to the optimal solution, which completes the proof of

Lemma 1. �
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