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Abstract� With the exponential growth of clinical data, and the 

fast development of AI technologies, researchers are facing 

unprecedented challenges in managing data storage, scalable 

processing, and analysis capabilities for heterogeneous multi-

sourced datasets. Beyond the complexity of executing data-

intensive workflows over large-scale distributed data, the 

reproducibility of computed results is of paramount importance to 

validate scientific discoveries. In this paper, we present MULTI-

X, a cross-domain research-oriented platform, designed for 

collaborative and reproducible science. This cloud-based 

framework simplifies the logistical challenges of implementing 

data analytics and AI solutions by providing pre-configured 

environments with ad-hoc scalable computing resources and 

secure distributed storage, to efficiently build, test, share and 

reproduce scientific pipelines. An exemplary use-case in the area 

of cardiac image analysis will be presented together with the 

practical application of the platform for the analysis of ~20.000 

subjects of the UK-Biobank database.    

 
Index Terms�biomedical informatics, precision medicine, 

cloud computing, population analysis. 

 

I. INTRODUCTION 

Y discovering the connections of patient�s unique genetic, 

biological, environmental, and lifestyle characteristics, 

precision medicine intends to determine how these 

individual aspects affect the evolution of the diseases and aims 

to develop tailored prevention and treatment strategies. Medical 

imaging has become a primary tool for such analytic approach 

towards personalised medicine. Non-invasive imaging data, 

together with a vast range of highly heterogeneous non-imaging 

patient health information ground the concept of medical big 

data. Machine learning (ML), as an emerging key discipline in 

data science, offers the unprecedented capacity to exploit and 

generate knowledge from such large, disparate, and 

multidimensional datasets. However, in biomedical research, 

tackling the computational complexity related to performing 

medical big data analysis requires a deep understanding of its 

particular technical requirements and limitations [1]. Even with 

the leverage of sophisticated cloud computing services, 

implementing big data analysis tools and high-throughput 

solutions is still highly complex, expensive and impractical in 

many cases [2].   

II. CURRENT CHALLENGES 

The implementation of precision medicine solutions, 

supported by Artificial Intelligence (AI) technologies and 

applied over medical big data is at a nascent stage [3, 4]. Several 

challenges must be addressed, not only to satisfy the 

requirements of such extreme-scale data analytics [5] but also, 

to leverage the full potential and capabilities of a growing and 

highly active community of scientist coming from different 

interdisciplinary fields. Besides the essential computational 

prerequisites, such as performance, capacity, and reliability, the 

most crucial challenges are related to the integration of many 

key practical, technical, and non-technical aspects. Here, we 

outline those specific challenges that a state-of-the-art research 

platform for precision medicine must address. 

Scalability. To reach the extreme-scale level in data 

processing, analytic solutions need to be able to coordinate a 

large number of concurrent service requests and automatically 

provide resources to satisfy the computational demands. 

Reproducibility. The ability to reproduce in-silico 

experiments is recognised to be a major need to validate and 

also verify the discoveries [6], and furthermore, to allow 

reusability. To enable replication, all the involved aspects need 

to be considered and reproduced: data, applications, 

computational resources, operating conditions and execution 

environment. 

Flexibility. Developers and data scientist produce invaluable 

material to enable scientific discovery. Methods, algorithms, 

analytics applications, models, visualisation tools, curated 

datasets, and other assets are being continuously generated and 

are made available to the broader community, many times with 

open access license terms. To leverage such heterogeneous 

resources, precision medicine frameworks need to support 

multiple programming environment and be capable of 

integrating new components as they become available 

regardless of their programming languages, operating systems, 

or hardware specifications requirements. 

Interoperability. As outlined by the FAIR principles [7], 

research requires data to be Findable (citable), Accessible 

(trackable), Interoperable (intelligible) and Re-usable 

(reproducible). Several regional and global initiatives have 

emerged to support this approach. Open data repositories, open-
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source applications and open access literature are freely 

available through those infrastructures. A modern research 

platform must be able, not only to take advantage of these 

resources but also be capable of exposing new resources and 

making them reachable and interoperable. Standards for APIs 

and workflow protocols, archetypes and ontology development 

are essential components to build such interoperability services. 

Fast Prototyping. A user-friendly framework that simplifies 

operations and consistently integrates different components is 

crucial to develop, test, and efficiently deliver research 

solutions. Emerging container-based virtualisation frameworks 

can be used to reduce complexity and accelerate distribution, 

testing and deployment mechanisms. 

Workflow Management. The automation of the execution of 

computational tasks is a key factor to improve scientific 

productivity [8]. Workflows provide the interface between 

scientist and complex computing infrastructures. Extreme- 

scale workflow managers need to deliver sophisticated 

orchestration capabilities to operate efficiently in a complex 

and highly dispersed computing model. 

Data Management. Biomedical scientists face major 

difficulties in finding, using and publishing datasets. Modern 

data management systems must provide flexible and feature-

rich solutions to address present-day challenges: (i) data quality 

assessment, offer mechanisms to verify completeness, accuracy 

and consistency of the data processed; (ii) data heterogeneity, 

enable a highly adaptable and scalable storage architecture for 

the management of multi-scale and multidisciplinary datasets; 

(iii) big data warehousing, provide efficient petabyte-scale 

storage and querying capabilities for structured and non-

structured data across heterogeneous systems; (iv) data 

federation, deploy distributed file systems across diversified 

storage architectures facilitating local/global multi-location 

data access using unique identifiers and permissions; (v) data 

homogenisation, integrate semantic components, enable 

metadata annotation, semantic search, and semantic mediation 

to tackle any mismatches in the data or their format; (vi) data 

privacy, enable user interfaces to review and manage data usage 

agreements, granted permissions, and to inspect compliance 

with institutional policies and other legal considerations; (vii) 

data security, employ International Standards Organization 

(ISO) certiÞed protocols and system providers to establish a 

strong IT security strategy. (viii) data access, provide a unified 

identity management system to enable single sign-on services 

and granular permissions control across distributed systems and 

services; (ix) data publication; programmatically assign Data 

Object Identifiers (DOI), and facilitate the exposure and linkage 

of each data asset; (x) data interoperability, facilitate the 

injection and integration of external data sources, building on 

top of the existing standards in health and research domains [9], 

such as OpenEHR archetypes and CEN EN 13606, the 

European Patient Summary, HL7 C-CDA templates, HL7 FHIR 

Resource Profiles, CIMI archetypes, BRIDG Domain model, 

and the CDISC standards.  

Data visualisation. Visual analytics is an overarching factor 

that facilitates knowledge discovery. Similar to any other 

research areas, visualisation techniques need to be adapted to 

the characteristics of the big data paradigm [10]. Explore, 

aggregate, manipulate, analyse, and visualise highly dispersed 

healthcare datasets and correlating them to derive insights 

remains a challenge. 

Licensing and IP Management. During the last years, we 

have witnessed the exponential growth of big data generation 

and availability and also, great advances in ML and AI 

technologies.  Most of these solutions are cloud-native or are 

easily portable to a cloud or virtual environment. The sharing, 

distribution, and licencing of such disparate assets introduce an 

unprecedented level of complexity. Practical mechanisms must 

be implemented to facilitate the discovery and improve the 

leverage of these resources. Research frameworks have to be 

able to manage multiple data sources, software and service 

providers, enabling flexible handshaking protocols to access 

open and proprietary solutions, managing diverse licensing 

models and usage agreements. 

Cost Assessment. Budget estimation, allocation and 

monitoring are essential components of conducting scientific 

activities. Research platforms need to provide scientist 

advanced cost evaluation mechanisms which will have a direct 

impact on the scope and viability of their projects. 

Security and Compliance. IT security mechanism must be 

guaranteed using international standards. Furthermore, legal 

and regulatory aspects must be assessed and accomplished. 

Covering these mandatory areas require the involvement of 

experts in each field. Satisfying these requirements is 

challenging for small, and even for large organisations. 

Collaboration. Biomedical research depends upon the 

integration of different fields, methodologies and technologies. 

A flexible framework to collaborate integrating 

multidisciplinary teams and their multi-field solutions provides 

a comprehensive ecosystem to underpin scientific research. 

III. RELATED WORK 

The working environment for researchers and scientific 

developers is quickly evolving from isolated institutional High-

Performance Computing (HPC) clusters to a global ecosystem 

of interconnected open cloud platforms. Exploiting the 

potential of scientific data and applications through internet-

accessible services is now a common approach for developing 

research solutions. Many initiatives have been introduced to 

make this possible. 

Comprehensible workflow execution systems have emerged 

providing versatile and efficient solutions. Among the most 

representative are Taverna, Pegasus, Kepler and KNIME, 

offering traditional desktop-based applications to create, edit, 

execute and share scientific workflows. Likewise, other 

exceptional tools, such as Swift, Nipype [11], Hyperflow, 

MOTEUR, Triana, VisTrails, Apache Airflow and GIMIAS, 

were built to support scientific pipelines in a variety of research 

areas. In all cases, the integration of these solutions with data 

components and computational resources varies according to 

each specific implementation. This variability of execution 

environments and data components is a major issue for 

reproducibility [6], scalability and collaboration. 

Other comprehensive development platforms, such as 



Galaxy [12], LONI [13], SADI and InterMine have been 

conceived with a significant emphasis on data integration. They 

are rather highly specialised frameworks. LONI, for example, 

is an exceptional resource for neuroimaging applications. 

Galaxy provides built-in libraries with a major focus on 

computational biology but is rather unsuitable for storage-

demanding medical imaging pipelines. They are massively used 

in their specific domains, although they often lack flexible 

models to integrate new components, or solutions for scalable 

computational resources. 

With a similar approach, Science Gateways [14] such as 

CBRAIN, NSG, CSGF, WS-PGRADE/gUSE, and Globus 

Galaxies, have been deployed to integrate efforts and share 

existing resources. These systems allow programmatic access 

to external data sources and include one or several workflow 

engines. Apache Airavata [15], is a software framework used 

by many scientific gateways to manage and execute workflows, 

it provides an abstraction layer to deploy tasks across 

distributed computing resources, via a ReST API. The 

complexity associated to execute and integrate new components 

on these platforms depends on their integration model and the 

instantiation type used in each case. For instance, Globus 

Galaxies, which is built upon Globus Genomics and Galaxy, 

delivers a domain-independent framework with a flexible 

cloud-based pay-as-you-go service. The integration model used 

to deploy and execute new applications in this framework 

requires the development of specific wrappers and 

contextualisation recipes. 

Other notable cloud-based integrative approaches are the 

iPlant Collaborative [16] framework, which offers a 

comprehensive cyberinfrastructure for life science research; 

and the American Heart Association Precision Medicine 

Platform1, which provides openly accessible datasets and state-

of-the-art tools in the cardiac field. Emerging examples in the 

private sectors are Philips HealthSuite Insights2, which aims to 

deliver the first AI ecosystem for the healthcare industry, it 

offers a comprehensive environment to build, share and deploy 

decision support solutions; and InSilicoTrials3, a collaborative 

framework for computational modeling and simulation 

primarily targeted to pharmaceutical and medical devices 

development. 

Although many of these frameworks are robust and 

integrative solutions, and can be deployed on scalable cloud 

environments, the way they handle data, computing resources, 

as well as their collaborative approaches, differs strongly from 

the comprehensive, modular and integrative strategy devised in 

this work. Our position is that most of the existing platforms 

lack interoperability between extreme-scale applications, 

computational resources, and heterogeneous datasets. 

Frameworks often lack usability, requiring often a cumbersome 

training phase before starting to work on them. Moreover, a 

global oversight of other essential functional aspects, such as 

those described in the previous section, are mostly unattended 

or insufficiently covered. 

 
1 https://precision.heart.org  
2 www.healthsuiteinsights.philips.com  
3 https://insilicotrials.com  

IV. IMPLEMENTATION 

A. Overview 

MULTI-X (https://multi-x.org) is a cross-domain research-

oriented platform, designed for collaborative and reproducible 

science. It provides a general-purpose, scalable, and integrative 

computational framework. It was designed to foster 

development, integration, and testing of scientific tools, 

facilitating their connection with large-scale federated data 

repositories and providing analysis tools to get immediate 

insights about the data processed. This comprehensive and 

modular framework relies on the interoperability of 6 

differentiated areas as depicted in Fig.  1. :  

1) DATA, a flexible repository of annotated data collections 

for structured and non-structured data. 

2) ANALISE, a catalogue of multi-domain scientific tools fed 

by a flexible development environment based on containers 

and virtual machines. 

3) COMPUTE, cloud-agnostic middleware providing efficient 

and scalable on-demand computational resources. 

4) WORKFLOW, a set of services for the composition, 

orchestration, schedule, and automated execution of data 

analytics processes. 

5) EXPLORE, analysis dashboards and visualisations tools 

providing coordinated representation and exploration of 

highly multivariate data.  

6) COLLABORATE, web-based user-friendly interfaces with 

fully managed sharing capabilities and functional 

components to streamline interaction within the various 

internal systems, and to enable interoperability with external 

infrastructures. 

B. Architecture 

MULTI-X is a Research as a Service (RaaS) platform. It is 

based on the Platform as a Service (PaaS) model, and a 

Fig.  1. Diagram of the MULTI-X components and the platform key 

capabilities. The user's process flow to produce or reproduce scientific 
results in MULTI-X typically involves the following steps: a) the access 

to a dataset, query, and selection of a subset; b) the deployment of an 

analysis tool; c) the use of a workflow engine to execute the tool 
developed over a large dataset; d) the visualisation of the results obtained 

in the previous step; e) the sharing of the results, tools or workflows 

generated.



Distributed Operating System (OS) architecture. PaaS is a 

category of cloud computing services which allow users to 

develop, run, and manage applications without the complexity 

of building and maintaining an IT infrastructure. PaaS services 

are hosted in the cloud and accessed by users using a web 

browser. On the other hand, Distributed OS are sophisticated 

infrastructure abstractions were multiple services, applications, 

and computational resources are orchestrated from a single 

interface, as a single distributed OS (Fig.  2).  

The platform takes advantage of 3 core technologies, (i) 

Infrastructure as Code (IaC), which refers to the provisioning 

of computing resources based on definition files; (ii) Cloud 

Computing, which enables ubiquitous access to scalable 

computational resources; (iii) Containers Orchestration, a 

flexible approach to manage hardware-agnostic virtualisation 

by accessing a shared operating system kernel.  

C. Specifications 

Below is a brief description of how MULTI-X addresses the 

challenges outlined in Section II. 

Scalability. The platform provides a highly-configurable 

execution engine for efficiently loading cloud computing 

resources. Different processing mechanisms can be defined to 

cope with varying workloads. Locally, in series or parallel, or 

distributed, using load-balanced dynamically generated 

computing clusters. 

Reproducibility. Full execution environments can be saved, 

shared and reproduced. Data provenance, applications 

parameters, workflow configuration and hardware instantiation 

methods, are stored for further development, validation or 

reuse. 

Flexibility. The most widely used programming languages 

and frameworks such as C/C++, C#, Java, Perl, R, Python, or 

Ruby are supported for the development of applications and 

also for workflow composition. Other open-source or 

commercial tools such as Matlab, Abaqus or Ansys can be 

easily incorporated using appropriate licenses. ML (including 

Deep Learning) libraries and frameworks with GPU support are 

also available on pre-installed environments. 

Interoperability. A flexible and extensible API framework is 

used to interoperate with external systems and allow the 

integration of new functionalities. Although still in a 

development stage, an RDF triple store based on HBase and 

existing domain ontologies will be integrated to enable 

semantic association discovery.  

Fast Prototyping. Development environments can be shared, 

instantiated and saved on different stages of the development 

process. With a similar approach, Docker and Singularity 

containers can be created or imported, and used for workflow 

composition and execution. 

Workflow Management. The platform supports multiple 

state-of-the-art workflow engines such as Nipype, NextFlow 

and Taverna, providing enhanced mechanisms to orchestrate 

virtual, cloud and containerised environments. Comprehensive 

templates are available in different programming languages to 

facilitate the creation of cloud-based computing clusters and to 

execute computational pipelines from a user-friendly web 

interface or the command line. 

Data Management. For structured data, a fully managed 

columnar database cluster enabled for big data analysis is used 

for petabyte-scale data warehousing service. For non-structured 

data, a cloud-based distributed Object File System is made 

available through the integrated Rule-Oriented Data System 

(iRODS) which provides secure multi-protocol access using 

API, WebDAV or REST invocations. This Shared File System 

provides a reliable, robust and secure virtual file store capable 

of interconnecting all the pieces of information required for the 

execution of workflows, the analysis and visualisation of data, 

the extraction and management of metadata, and the 

implementation of policies for data control in the cloud 

environment. The underlying Identity and Access Management 

(AWS-IAM) system enable unified access and tight integration 

with other modular extensive components such as the MULTI-

X Data Collection, Data Injection, and Data Harmonisation 

services. 

Data visualisation. Predefined dashboards can be configured 

to showcase the results of the experiments enabling immediate 

analysis of the data processed. Graphs, charts, images, tables, 

2D and 3D viewers can be accessed from the web interface 

using secure sharing protocols based on JSON Web Tokens 

(JWT). To enhance dissemination, Jupyter notebooks can be 

linked to each asset created in MULTI-X. 

License and IP Management. A genuine marketplace is 

provided for sharing and distribution of data, applications, and 

full execution pipelines. The entire process of licensing and 

handshaking is supported and monitored. The system offers 

commonly used licensing models to choose from and editable 

templates for electronic agreement of Terms and Conditions. 

Cost Assessment. Users and organisations can bring their 

own cloud accounts; they can monitor expenditures, calculate 

the cost of large workflow executions, and explore options to 

reduce charges. Currently, Amazon Web Services (AWS) is 

fully supported, although other public cloud providers and 

OpenStack-based frameworks can be incorporated. 

Security and Compliance. Industry-level security protocols 

are integrated into all the different layers to guarantee restricted 

access only to authorised users, and to safeguard the transfer of 

information between all components using a centralised 

Identity and Access Management service and ISO certified 

cloud infrastructures. 

Fig.  2. The MULTI-X modular approach is underpinned by a flexible multi-

layer virtualised infrastructure (left), and a cloud-native backend distributed

system for service orchestration (right). 



Collaboration. Each asset deployed in the platform can be 

shared, and its usage monitored. The whole ecosystem has been 

designed for secure and controlled sharing, connecting people 

and organisations, enabling reproducibility, and making efforts 

available to the research community. 

V. USE CASE: AUTOMATIC BIVENTRICULAR SEGMENTATION 

AND QUANTIFICATION OF THE UK BIOBANK POPULATION 

COHORT 

A. Scope and limitations 

The effectiveness in addressing each of the challenges 

identified in Section II need to be considered in evaluating the 

level of usability and the overall efficacy of a research-oriented 

infrastructure such as MULTI-X. Although a full assessment 

would require a more detailed and extensive analysis, this paper 

focuses on two key relevant aspects. 

1) Demonstrate the applicability and practicality of the 

platform to deploy and reproduce high-throughput 

computational and data-intensive analysis using cost-

effective scalable resources.  

2) Expose the knowledge discovery capabilities of the 

platform by combining structured and non-structured data, 

integrating imaging and �omics� data with demographic, 

clinical, and patient-reported data, such as lifestyle 

factors and diet. 

B. Overview 

As an exemplary use case, a novel high-throughput pipeline 

in the area of cardiac magnetic resonance (CMR) image 

analysis was deployed in MULTI-X. Subsequently, employing 

the method incorporated, the platform was used to process a 

large scale cohort study (a population of 20,000 subjects 

imaged at 50 cardiac phases each, i.e. on 1 million CMR 

volumes), derived from the UK Biobank [17]. Finally, clinical 

and demographic data were integrated with the results and used 

to enrich the representation and the interpretation of the 

experiment. 

C. Analysis tools and workflows 

The analysis of cardiac structural and functional indexes in 

large-scale population-based studies can reveal patterns and 

linkages across population sub-groups, and provide data- driven 

insights into risk factors before cardiovascular diseases (CVDs) 

occur. In a very recent publication [18], Attar and colleagues 

presented a fully automatic workflow capable of performing 

end-to-end 3D cardiac image analysis. This pipeline 

encompasses several individual processing steps (Fig.  3), it was 

developed using different ML based methods in diverse 

programming languages and seamlessly integrated into a 

Nipype pipeline. 

The method is capable of segmenting the cardiac ventricles 

and generating global and regional clinical reference ranges that 

are statistically comparable to those obtained by human 

observers. Its clinical impact derives from the 3D analysis of 

left ventricle (LV) and right ventricle (RV) of the heart, as well 

as the extraction of key cardiac functional indexes from large 

CMR datasets. The following indexes are calculated from the 

automated segmentation and then compared to measurements 

from manual segmentation: LV end-diastolic volume 

(LVEDV), end-systolic volume (LVESV), LV stroke volume 

(LVSV), LV ejection-fraction (LVEF), LV myocardial mass 

(LVM), RV end-diastolic volume (RVEDV) and end-systolic 

volume (RVESV), RV stroke volume (RVSV) and RV ejection-

fraction (RVEF). 

A cohort of 800 healthy subjects selected from the UK 

Biobank for which manual delineations and reference ranges 

exist [19], was used by the authors to validate their results. The 

human-like reliability of the method was demonstrated by 

comparing the accuracy of the obtained segmentations with the 

error ranges observed between different human raters. 

Furthermore, significant statistic correlation was reported 

between the manually retrieved reference indexes and those 

automatically computed with the pipeline. From these results, 

it was demonstrated that the method can be used to fully 

automate the segmentation and quantification of large scale 

datasets where manual inputs are infeasible.  

Fig.  3  R.Attar et al. fully automatic image parsing workflow for the analysis 
of cardiac ventricles in parallel. Left: Modules integrating the pipeline: DO: 

Data Organisation, IQA: Image Quality Assessment, OD: Organ Detection, MI: 

Model Initialisation, S: Segmentation, SQA: Segmentation Quality 
Assessment, Q: Quantification, DS: Data Sink. Right: The quantitative 

functional analysis of a large database in parallel mode. DB: Database, DG: 

Data Grabber, n: number of subjects, and Si: i
th subject of the dataset. 

In this paper, we use the same pipeline introduced by [18] and 

up-scale from 800 to 20,000 subjects including their clinical 

metadata to demonstrate the scalability and knowledge 

discovery of our platform. 

D. Data 

The UK Biobank is a large prospective epidemiological 

cohort study. It includes extensive phenotypic and genotypic 

data together with detailed health and lifestyle information on 

500,000 participants, aged 40-69 years. Ongoing longitudinal 

follow-up studies will acquire and store additional multi-organ, 

multi-modality imaging data from 100,000 of the original 

volunteers by 2022. By the date of this study, CMR scans of 

20,000 volunteers were already collected and made available 

for further research. 

E. Implementation in MULTI-X 

To accomplish the objectives defined in Section V.A, the 

method developed by Attar et al. [18] was deployed in MULTI-

X, and 20,000 UK Biobank follow-up studies were analysed. 

The segmentation volumes and biventricular reference ranges 

for each of these subjects were obtained and stored. 

Furthermore, clinical and demographic information of these 

subjects, queried from the UK Biobank database, were used to 

generate data visualisation dashboards enabling a more in-depth 

analysis by combining the results with clinical, imaging and 

demographic data. 



Below is a brief description of the steps that were followed to 

implement this use case. It also represents an overview of the 

essential components of the platform. 

1) Integration of the analysis tools (ANALISE component) 

From the �ANALISE� area in MULTI-X, a new 

development machine was created and launched. Using an 

interactive form, the operating system, essential libraries, 

and computational resources, particularly CPU, RAM and 

disk I/O capabilities, were defined to create a cloud-based 

instance according to the required specifications. Once 

initiated, the system was accessed through standard 

protocols, using the command line or the graphic interface. 

All the execution modules involved in the 3D cardiac image 

analysis (Fig.  3) together with the Nipype code were 

uploaded and tested in the new environment. During the 

implementation process, the machine was saved and 

stopped, and subsequently re-launched until the imported 

applications were fully operational. 

2) Data upload (DATA component) 

Using secure protocols and encryption mechanisms, the UK 

Biobank anonymised data were imported into the MULTI-

X object storage backend. Thereafter, each time an instance 

of the development machine was launched, the CMR scans 

were made available as input for the executions. 

Subsequently, the structured data containing the Electronic 

Health Records (EHR) of the same follow-up study were 

uploaded to the core database. In the �DATA� section of 

MULTI-X, extensive information about the new dataset, 

including usage logs, permissions, user agreements, 

provenance, modalities and data types were generated and 

stored for monitoring and further modification.  

3) Pipeline integration (WORKFLOW component) 

A standard procedure in MULTI-X is to generate a bespoke 

pipeline of processing steps by editing an existing template. 

However, in this case, the original pipeline was developed 

in Nipype, a workflow framework that is out-of-the-box 

supported in the platform. Thus, the Nipype code was 

uploaded to the development machine and used 

straightforward with minor modifications. The execution of 

the 20,000 subjects was configured and launched from the 

�WORKFLOW� area of MULTI-X. The pipeline file was 

displayed on the web interface allowing quick modifications 

and immediate testing. An interactive wizard was used to 

define the parallelisation variables, the number and type of 

machines, and the location of the input and output files. 

4) Full Cohort execution (COMPUTE component) 

Preliminary tests were performed to estimate the scalability, 

cost and performance of the parallelisation of the full 

pipeline (Fig.  5). The execution was finally configured to 

launch a cloud-based cluster with 120 mid-spec machines 

(AWS c4.8xlarge), each one with 36 virtual CPU (vCPU) 

and 60 GiB RAM. The full analysis of the 20,000 subjects 

was completed in 2 hrs 39 min. For each subject, an average 

of 1400 files (650MB) were generated, including the output 

of the segmentation, images and VTK files for each of the 

50 timepoints of the cardiac cycle, CSV files containing the 

functional indexes calculated by the quantification module, 

and other control files. In total, the pipeline generated 27M 

files, 10TB of unstructured data. The execution was 

monitored in real time from the �COMPUTE� area of 

MULTI-X, and a comprehensive set of logs, configuration 

files, and usage costs were stored in the history area for 

further evaluation. 

5) Results analysis (EXPLORE component) 

An automated script was used to parse the massive 

unstructured data created in the previous step. All new 

subjects and their cardiac indexes were extracted and 

uploaded to the core database to enable data visualisation. 

Furthermore, the UK Biobank clinical and demographic 

data of these anonymised subjects were queried and made 

available from the analysis dashboards. Hence, a simple 

exploratory approach was enabled to allow the 

identification of meaningful relationships between the 

cardiac function indexes derived from the automatic 

segmentation and the patients� clinical data. Four 

dashboards were created, based on the users� request, in 

MULTI-X: a) General Population (Fig.  4), for global 

analysis, combining clinical and demographic data and 

advanced filtering; b) Individual Exploration (Fig.  6), for 

subject selection and comparison; c) Parameter 

Optimisation (Fig.  7, left), to visually examine the output of 

the analysis by changing variables or input parameters; d) 

Method Evaluation (Fig.  7, right), to compare the results of 

different methods. Finally, using standard Python libraries, 

a Jupyter notebook was deployed to validate the analysis by 

representing the correlation between the manual and the 

automated method used to calculate the cardiac function 

indexes (Fig.  8). 

Fig.  4 General Population analysis dashboard deployed in MULTI-X to 

interactively explore the results of the Biventricular segmentation and 

quantification pipeline. It combines the cardiac function indexes obtained 
from the automatic segmentation of 20,000 subjects together with the 

clinical, demographic and lifestyle data queried from the UK Biobank 

study. 



 

Fig.  6 Individual Exploration dashboard; by clicking on the upper-left 

histogram blocks, different subjects can be chosen from the upper-right selector 

to load the patient's specific cardiac function indexes, the AHA 17 myocardial 
segments, and the corresponding end-systolic and end-diastolic VTK file of 3D 

surface meshes generated by the pipeline. 

Fig.  7 Parameter Optimisation dashboard (left), an interface to visually 

evaluate the best values for a given set of parameters; the optimal combination 
is the best-matching superposition between the ground truth (red) and the 

automatically calculated (blue) probability histograms for cardiac indexes. 

Method Evaluation dashboard (right), Bland-Altman plots used for a 
comparative analysis between two methods. 

F. Cost and performance 

The final workflow was configured to optimise time and cost. 

The number of concurrent instances and the type of computing 

resources were defined using a setup wizard from the MULTI-

X web interface. An intermediate number of parallel machines 

with high specifications were used to execute the pipeline (Fig.  

5). The final expenditures were within the range of the initial 

estimates (USD 577.57). During the executions, the monitoring 

dashboards reported an average of 80% of CPU utilisation and 

memory peaks at 75% on the execution nodes indicating an 

efficient use of resources. 

 
Fig.  8 Partial view of the MULTI-X Jupyter notebook deployed to evaluate the 
results of the workflow execution. The normalised histograms representing the 

cardiac function indexes automatically calculated from 20,000 subjects are 

significantly correlated to those manually obtained. 

VI. DISCUSSION AND CONCLUSION 

As technologies such as machine learning, big data analysis, 

and knowledge discovery evolve, it is essential to provide easy-

to-use, time-saving solutions that make them accessible to 

researchers and developers. We introduce MULTI-X, a 

comprehensive cloud-based ecosystem tailored for biomedical 

research, an integrative approach to streamline the 

development, execution, and sharing of scientific applications 

and workflows.  

In this article, we described the implementation of a complex 

pipeline which includes modeling, imaging, and machine 

learning techniques. To demonstrate scalability, a large cohort 

was analysed using high-throughput analysis workflows. 

Finally, combining state-of-the-art visualisation techniques and 

big-data querying capabilities, the data produced were 

associated with clinical and demographic information and 

exposed for further analysis into comprehensive visualisation 

dashboards and Jupyter notebooks. 

With a focus on open science and reproducibility, the platform 

was designed to address emerging challenges related to the 

Fig.  5 Performance speedup for running a workflow in MULTI-X, with 256 
and 512 subjects, on a different number of virtual machines executed in parallel.

Each machine has 32 vCPU. The figure reveals an inverse correlation between 

the workflow execution time and the cost of running the workflow. These
estimations allow selecting the most cost/time efficient option. 



design and deployment of multiscale/multi-domain analysis 

pipelines. With a modular and extensible approach, the 

platform is able to meet the needs of a wide range of research 

communities and disciplines, e.g. to support the growth of 

radiomics, and the promise of precision medicine.  

VII. FURTHER WORK 

Current and emerging technology frameworks, scientific 

applications, programming languages, workflow packages, and 

visualisation tools are systematically reviewed, tested, and 

integrated into the MULTI-X platform. Further use cases in the 

areas of genomics, data mining and semantic harmonisation 

will be soon deployed in the platform to demonstrate its 

capabilities to analyse and estimate genotypic and phenotypic 

correlation. 

Furthermore, MULTI-X is being used as the underlying 

integration framework for the European funded Back-UP 

project which aims to produce patient-specific multifactorial 

prognostic models to support an effective and efficient 

management of non-specific Neck and Low Back Pain (NLBP). 

The platform will facilitate collaboration across diverse 

research communities and disciplines, integrating data and 

models derived from biological, psychological, social and 

economic fields. 

The massive development of AI and big data technologies 

applied to healthcare and life sciences let us envisage a 

landscape where experiments of unprecedented size and 

complexity will be conducted in scalable computing 

environments. Similarly as what it happens with open data and 

open publication initiatives, the availability of open tools and 

workflows in a shared environment will boost collaboration and 

promote the reusability of research assets. 
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