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Abstract

In this paper, a novel localization method for mixed near-field (NF) and far-
field (FF) rectilinear or strictly noncircular sources is proposed using the
noncircular information for a symmetric uniform linear array (ULA). For
FF case, we adopt the NC-MUSIC method to achieve the DOA parameter,
for NF case, by exploiting the center symmetrical characteristic of the ULA,
we decouple the array steering vectors into two new vectors: one related
only to the DOA parameter, and the other dependent on both DOA and
range parameters. Based on the principle of rank reduction (RARE), three
MUSIC-like estimators are formed to estimate the direction of arrival (DOA)
and the range of mixed NF and FF rectilinear sources successively. Mean-
while, distinguishing the types of sources is also solved. The deterministic

Cramer-Rao bound (CRB) of the mixed rectilinear signals is derived by the
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Slepian-Bangs formulation. Simulation results are provided, showing that
the proposed method yields a performance better than existing ones.
Keywords:

DOA estimation, far-field, near-field, rectilinear signals, Cramer-Rao

bound (CRB).

1. Introduction

Source localization is a fundamental problem in array signal processing,
and has found numerous applications in radar, sonar, seismic exploration,
and wireless communications, etc.[1-3]. A large number of algorithms have
been proposed to deal with the problem in the past decades, and most
of them assume far-field (FF) signals, i.e., the direction of arrival (DOA)
parameters are estimated based on infinite distance of the sources to the
array [4-6]. On the contrary, when the incident sources are located close to
the array, i.e. they are near-field (NF) sources, both the DOA and range
need to be characterized. Various methods have been developed for NF
source localization [7-9]. However, in some practical applications, both NF
and FF signals can be present simultaneously, such as speaker localization
using microphone arrays and guidance (homing) systems [10]. Thus, the
algorithms designed for pure NF or FF sources would lead to inaccurate or
unreliable estimation results under such mixed circumstances.

Some recent progress on the estimation of DOA and range parameters
of mixed NF and FF sources using the fourth-order cumulant (FOC) was
reported in [10-14]. In [10], Liang et al. proposed a two-stage MUSIC al-
gorithm to estimate the DOA and range parameters by constructing two

special FOC matrices, one related to the DOA parameter, and the other to



both the DOA and the range. Following the two-stage idea, Wang et al.
[11] and Tian et al. [12] presented localization methods for mixed sources
based on sparse signal reconstruction. However, method in [12] can detect
more mixed sources utilizing symmetric nested array. In [13], a mixed-order
MUSIC algorithm based on a sparse symmetric array was proposed, which
estimates the DOAs of mixed sources with a cumulant matrix and the range
parameters with the traditional covariance matrix. In [14], another mixed-
order MUSIC algorithm was proposed, which estimates the DOAs of FF
sources with the traditional covariance matrix, and the DOA and range
parameters of NF sources with a special cumulant matrix. However, one
common issue with these cumulant-based methods is their high computa-
tional complexity, and their incapability of dealing with Gaussian sources.
Furthermore, for the methods in [10] and [13], the NF and FF sources cannot
share the same DOA.

To reduce the computational complexity, a series of second-order statis-
tics (SOS)-based methods were presented in [15-19]. In [15], He et al. pro-
posed a one-dimensional (1-D) MUSIC-based algorithm by resorting to the
oblique projection technique to separate the NF and FF sources, which
would unfortunately yield extra estimation errors . Then, an alternating
iterative method was developed without eigendecomposition to estimate the
mixed signals [17], which overcomes the “saturation behavior” in NF lo-
calization by recalculating the oblique projector. In [16], ESPRIT-like and
polynomial rooting methods were developed to solve the mixed localization
problem using the symmetry of the array. In [18], Liu. et al first obtained
the DOA and power information of FF sources, and then the NF sources
were estimated by eliminating the FF signals information from the signal

subspace. With the spatial differencing technique, a method was presented



in [19] to locate the mixed sources by eliminating the FF and noise compo-
nents, which have a Toeplitz structure, from the covariance matrix of the
array observation. However, by these SOS-based methods, the number of
the mixed sources that can be estimated is no more than half that of the
array elements due to loss of array aperture in the processing.

So far none of the existing methods for localization of mixed NF and FF
signals has considered the noncircularity of the impinging signals, which are
widely used in modern wireless communication systems, such as PAM and
BPSK signals. The estimation accuracy can be improved through expanding
the virtual array aperture when the noncircularity property of signals is
exploited properly [20-26, 28—-30]. Therefore, in this paper, based on a ULA,
we propose a localization method for mixed NF and FF sources by exploiting
the noncircular information of the signals. Based on the principle of rank
reduction (RARE) [31-33], three MUSIC-like estimators are developed to
estimate the DOA and range of mixed NF and FF rectilinear sources in
a successive way. Meanwhile, distinguishing the types of sources is also
solved. Based on the Slepian-Bangs formulation, the deterministic Cramer-
Rao bound (CRB) for the mixed NF and FF rectilinear signals is derived as
a benchmark.

Notations: (-)*, ()7, ()", and (-)~! represent operations of conjugation,
transpose, conjugate transpose, and inverse, respectively; E[] and diag{-}
stand for the expectation and diagonalization operations, respectively; I, de-
notes the p-dimensional identity matrix; the p X p matrix Il, is an exchange
matrix with ones on its anti-diagonal and zeros elsewhere; blkdiag{Z1,Zs}
represents a block diagonal matrix with diagonal entries Z; and Zo; Re{-}
denotes the real part of a complex number, while det{-} denotes the deter-

minant of a matrix. ® and © are the kronecker product and Hadamard
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Fig. 1: Uniform linear array configuration.

product operations, respectively.

2. Mixed Far-Field and Near-Field Array Signal Model

Consider a symmetric uniform linear array (ULA) with M = 2N + 1
sensors, as shown in Fig.1l. There are K uncorrelated narrowband non-
circular sources si(l) (k = 1,2,..., K) located in either NF or FF of the
array. Without loss of generality, we assume the first K; incoming sources
snk(l) are NF parameterized by (6k,ri) (K = 1,2,..., K1), while the re-
maining Ko = K — Ky sources spy(l) are FF parameterized by (6, 00)
(k = Ki+1,K; +2,...,K), and K is known in advance. Let the ar-
ray center indexed by 0 be the phase reference point. Then the observed
noisy signal (1) at sample [ (I = 1,2,...,L) received by the mth (m =
—N,...,0,...,N) sensor can be modeled as [36, 37]

K )
(1) = Y7 sk(l)e?mk + np (1)

K, j27r/\7‘k (\/1+(7;f>2—2md72n9k_1) (1)

+ 2 ser()e™ +nn(l)
k=K 1+1
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where n, (1) is the additive Gaussian noise with zero mean and variance oy,

at the mth sensor, which is uncorrelated with the impinging signals, and
wmi 1s the phase offset between the Oth and mth sensors associated with the

kth source. For the NF incident signals, wy,; has the form of

27Ty md\?2  2mdsin 6,
Wmk = ! \/1 + <> - SR —1 (2)
A Tk Tk

and with second-order expansion, (2) can be expressed as

Wk = MY + mQXk (3)
while for the FF ones, we have
Wmk = Mk (4)

where v, = —2mwdsinfp/\ and xx = md’cos’0y/(\ry) are called electric
angles with A being the wavelength of the incoming signal, 6y € [—%, %],
k=1,--- K, the DOA of the kth NF or FF signal, d the spacing between the
sensors satisfying d < A\/4 [10] and r the range of the kth NF signal that is
within the Fresnel region [15] and satisfies v, € [0.62(D3/X\)Y/2,2D?/A], k =
1,--- Ky, with D being the array aperture. Thus, (1) can be approximated

as
K1 ‘ )
()~ Y SN?k(l)e‘j(m’Yk—'—m Xk)

k=1 -
K A (5)
+ 2 see(l)e™* 4 nm(1)
k=Ki+1

as pointed out in [10], a FF source can be considered as a special NF one
where the range 7 approaches to oo.
By collecting L snapshots of the array output, and arranging them in a
matrix form, the received data vector at instant [ can be written as
x() = fe-n (D), 20(l), - an(@)]”
= As(l) + n(I)

(6)
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where n(l)= [n_y(1),--- ,no(l),- - ,nn(1)]" represents the circular Gaus-

sian noise vector. Using the partioned forms of A and s(I), i.e.,

A= [ Ay Arp } (7)

(6) can be rewritten as
X(l)=ANSN(l) + AFSF(Z) + Il(l) (9)

where sy (1) and sp(l) are the signal vectors of NF and that of FF sources,
respectively, and Ay and A are the array steering matrix of NF and FF
signals with ay (0, rg) and ap(6y) representing respectively the NF and the

FF steering vectors, i.e.,

An= [anl»Tl)v"' 7aN(9K1»TK1)] (10)

Ap=lan(0k,+1,00), - ,an(0k,o0)] an
= lar(Ox,+1), - ar(0x)]
with ay (8, rg) = [ef NN Lo L eI (NN T
ap(0p) = [e?NWw) o1 eI N T
Due to the rectilinearity of the sources, which can be modeled as the
product of a complex scalar e 7%/2 and a real valued signal s0(t), the signal

vectors sy (1) and sp(l) can be expressed as [26-29]

sx(1) = YN, sno(l) (12)
sp(l) = 9y spo(l) (13)
where sno(1) = [50.1(1), -+ 80,5, ()]F and spo(l) = [So.ry+1(1)s s So.ic (1)]F

arc the NF and FF real-valued signals, respectively. The diagonal matrices



7,b]lv/j = diag(e/¥1/2,. .. eI¥K1/2) and ’vbll?/c? = diag(e?VKi+1/2 ... eivK/?)
are the arbitrary phase shifts corresponding to the NF and FF strictly non-

circular sources sy (l) and sp(l), respectively.

3. The Proposed Method

In this section, we develop a two-stage RARE-based localization method
to determine the DOAs (6, k = 1,2, --- , K) and ranges (rg, k = 1,2,--- , K)
of the mixed NF and FF strictly noncircular sources.

In order to exploit the noncircular information of the mixed incident
signals, we construct a new vector z(l) by stacking the observed data vector

x(l) and its conjugate counterpart x*(I) as follows

x(l)
x*(1)

z(l) =

(14)
= AeNSN(l) + AeFSF(l) + Ile(l)
= Acs(l) + n.(I)
where
Ae: AeN AeF } (15)
with
Ay
A= = [aen(01,71,¢01), - ,aen (0K, T YK,)] (16)
AN Ypn*
an(Ok, 1)
acn Ok, T, i) = , (17)
aN*(Gk, Tk;)e_]wk’
Ar
AeF:
Ap*pr” (18)
= [acr(OKk,+1. VK 141), + » aer (0K, YK )]



ar (k)

acr (Or, Vi) = A (19)
ap*(0))e IVr
n(l)
n(l) = (20)
n* (1)
Using (17) and (19) into (15), we obtain the steering vector a. of A, as
follows,
a(b, i)
ac(Ok, e, Vi) = _ (21)
a*(&k,v'k)e_ﬂ¢k
with

a(fy,ry,) = [(ej(_]\”lc+1\72><k)7 RN T 7ej(N’Yk+N2xk)]T (22)

B=1 K € [0.62(D%/0)!V2, +00).

The covariance matrix of z(l) is

R = Ez(1)z" (1)]
= ARAY + 021,y
= ANRVAN + AcrRop Al + 02Ion
=Ry +Rp + 02y
where Ryy = E[sy(D)si(1)], Rsp = E[sp(l)si(1)] and Ry = E[s(1)s" (1))
are the covariance matrices of NF, FF and total mixed signals, respectively.

The eigenvalue decomposition of R is given by
R = U,AUY +U,A, U (24)

where the 2M x K matrix Ug and the 2M x (2M — K) matrix U, are
the signal subspace and noise subspace, respectively. The K x K matrix
Ag = diag{A1, No,..., Ak} and the 2M — K) x (2M — K) matrix A,, =
diag{ g +1, Ak +2,- - -, Aans} are diagonal matrices, where \; > Ay > -+ >

AR > Agp1="-- :AQM:O';%L are the eigenvalues of R.
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3.1. DOA FEstimation of FF Sources
Based on the orthogonality between U,, and acp (6, , ¥, ), the following

result can be obtained

ar(0)
Ullacp(0y, 1y) = U ,
aF*(Qk)e—ﬂ/)k (25)
1
= U,/ blkdiag{ar(Ok), a5 (00)} | _ =0
e I¥kp

Therefore, we can construct the estimator of 6 for far-field sources as follows

pr(0) = {det[Qp(0)]} . (26)

where Q(0) = VI (0) U, UV (0) with Vi (0) = blkdiag{ap(0), a}(0)} -
Based on the RARE principle where the required uniqueness condition en-
sures that the considered matrix drops rank (More details about RARE can
be found in [31-33]), the (4N + 2 — K) x 2 dimension matrix U2V (0)
should be of full column rank, satisfying the condition (4N +2—K) > 2, i.e.
K < 4N |, and then if and only if § = 6, the matrix Qx () becomes rank

deficient or equivalently det[Q;-(6)] = 0. By searching over the range of

2
of pr(0).

3.2. DOA FEstimation of NF Sources and Identification Types of Sources
Since the array is center symmetric about the Oth sensor, (22) can be
rewritten as [7, 16]
a0k, i) = K(0k)s(Or, 1) (27)
where K(0;) is a (2N 4+ 1) x (N + 1) matrix, whose elements depend only

on the DOA parameter, i.e.,
T
K(0)=| VI(6r) V5600 Vi) | (28)

10



where

Vi(0r) = [P1(0k), Onx1]nx(v41) (29)

with
P,(0),) = diag{eii(*N)ij ej(*NH)“wc7 - e*j’wc} (30)
va(tr) = [07 o0, 1]1><(N+1) (31)
Vi3(0k) = [TINP3(0k), Onx1]nx (v41) (32)

with
P3(6)) = diag{e? N d N0 edwy (33)

where P;(6)) denotes the diagonalization of the steering vector related to
the left side of the Oth sensor from the —Nth to the—1th sensor, and P3(6y)
denotes the anti-diagonalization of the steering vector related to the right
side of the Oth sensor from the 1th to the Nth sensor.

Meanwhile, ¢(6k, k) is dependent on both the DOA and range parame-

ters as given by
§(Or. 1) = [FN P N T (34)

Based on the orthogonality between U, and a.(0,r,1), the following

three-dimensional (3-D) scalar pseudo-spectrum function can be obtained:
9(0,7,0) = [ (6,7, 9)Un Uy ac (0,7, 0)] ! (35)

Via a 3-D peak-spectrum search, the NF strictly noncircular signals can be
located. However, the exhaustive search process is very time-consuming with
extremely high computational cost. To avoid the 3-D search, we present a
two-stage RARE-based MUSIC algorithm for both DOA and range estima-

tion through two one-dimensional (1-D) searches. Based on the principle
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of RARE, the DOAs of the NF signals are obtained by 1-D peak spectrum
search. Next, with the estimated DOAs of all incoming signals, another esti-
mator is constructed to find the range parameter using the RARE principle
again.

By left-multiplying (21) with U, and using (27), we have

0= Ula. (0,7, vr)

(36)
=U 0(0,)C 0k, i)t (1)
where
(0 =blkdiag{r(0), k*(04)} (37)
C (O, i) =blkdiag{< (O, k), <" (Ok, %) } (38)
1
=] (3

We now define a function p(#) that is related only to the DOA parameter
as follows
p(0) = {det[Q, (0)]} . (40)
where Q, () = v (0)U, UMv(6). Note that (0, 1) # 0, t(vy) # 0, and
Ul w(0,)¢(0k, r1)e(1x) = 0,k = 1,2... K. Based on the RARE principle,
the (4N + 2 — K) x (2N + 2) dimension matrix UZwv(0) should be of full
column rank, satisfying the condition (4N +2 — K) > (2N + 2), i.e. K <
2N , and then if and only if § = 0, the matrix Q,(6) is rank deficient
or equivalently det[Q,(6)] = 0. If searched over the confined region 6 €
[—g, g] the DOAs 6, of all NF signals can be obtained from the peaks of
p(0).
Here, it should be pointed out that the estimator (40) can also be adopted
for FF signals, and when some of the NF signals have the same DOAs as

the FF signals do, we only get K’ DOAs with K’ < K.

12



3.8. Range Estimation of NF Sources

First, we substitute the achieved # from (40) into (36) and obtain the

following function of the range parameter r:

P(r) = {det[Qy(0,m)]) . (41)

where Q4 (6,7) = ¢ (0, )0 (0)U, UL v(0)¢(6,r). Similarly, the condition
K < 4N should be satisfied for Q4 (0, r) using the RARE criterion. Again, by
searching the range r € [0.62(D3/>\)1/2, 2D?/)). the corresponding range of
the mixed signals can be obtained from the peaks of p/(r). At this point, the
paired DOA and range parameters (6 and r) can be automatically obtained

without any additional operation. The proposed method is summarized in

Table 1.

Table 1: Summary of the proposed method.

Input: L snapshots of the new constructed array output vector, {z(t)}- .

Output: DOA and range estimates of all mixed NF and FF signals, 6, and 7y, .

. L
Step 1 Estimate the covariance matrix R = 1 3 z(1)z(1).
=1

A

Step 2 Perform subspace decomposition R = ﬂsAsﬂf +ﬂn1&nﬂf to get Ijn
Step 3 Construct and search pp(6) to obtain all DOAs 6, of FF signals with (26).
Step 4 Construct and search p(#) to obtain all DOAs 0, of NF signals with (40).
Step 5 Construct and search p'(r) to obtain all ranges 7 of NF signals

with the estimated 6}, with (41).

Remark 1: In practice, only a finite number of observed data samples is
available. Thus, R has to be estimated by

L
R=—-> z()z" (). (42)

=1

=
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Remark 2: In [34], Xie. et al have demonstrated that the maximum
number of identifiable mixed signals of the existing methods [15-19] is N
for a 2N 4+ 1 ULA. For the proposed method, this number is 2N, twice that
of the existing methods due to the use of noncircular information of the
mixed signals.

Remark 8: Tt is of interest to conduct complexity analysis in terms
of the number of complex-valued multiplications for the proposed method
including the construction of R, performing EVD of R. the determinant
calculation in the RARE step and spectral searching. The complexity of
He’s method in [15], Jiang’s method in [16], Zuo’s method in [17], and
Liu’s method in [18] are also compared. To calculate R, (2]\/) L flop-
s are needed. The computational complexity of the EVD on the covari-

ance matrix R is roughly (2M )3 flops. The computational complexity of

three determinant calculations is [8 + (2N + 2)3] %, + 82D2/)‘_0'22T(D3/)‘)1/2
flops. Define the scanning interval of 0 € [—%, %] with a stepsize A0,

and that of r € [0.62(D3/\)'/2,2D?/)\] with a stepsize Ar. The pro-
posed method employs three 1-D spatial spectrum searching procedures to

obtain the DOA and range of mixed signals, which has a computation-

al complexity of (21, (2M) + K 22 OgQ(Dg/’\)W (2M)?) flops, while a

direct 3-D spatial spectrum search entails a computational complexity of

ALQA_ZJQDZ//\ 022T(DS’//\)1/2 (2M)?* flops, where ¢ € [0,27] with a stepsize

Avp. For He’smethod, it is about M2L + (N +2)2N + M3 + (N +2)3
TN 4 2)? 4 F5 M2 4 Iy Z2EA0GADYNE 2 fhopg: for Jiang’s method,

it is M2L+ M3+ (2N)* %5 + 2NK + K'(2M + 1) K flops; for Zuo’s method,
we have M2L 43034 M2+ 75 (N + 1)%+ 5 M2+ K 22A06ADYN T j 2
flops; Liu’s method in [18] has a complexity of M2L + 2M3 4 (2N)3 xg +

14



ﬁ@N) + ZM? + K, 207/ A 062(D3/’\)1/2 M? flops. Obviously, the com-
putational complexity of the proposed method is higher than methods in
[15-18] due to the operations associated with the extended covariance ma-
trix; however, the proposed method based on the three 1-D spatial spectrum
searching procedures is more computationally efficient than the direct 3-D
operation for dense stepsizes Af, AS and A to achieve better estimation
performance. The computational complexity comparison for these methods

is summarized in Table 2.

Table 2: Computational complexity comparison for different methods.

Methods Computational complexity (flops)
He [15 M2L+ (N +2)2N + M? + (N +2) + Z5(N +2)* + £ M?
4K, QDZ/Afo.ZQT(Ds/)\)l/Z M2
Jiang [16] M?L+ M3+ (2N)* % + 2NK + K'(2M + 1)K
M2L + 3M3 + M? + Z5(N + 1) + S5 M?
Zuo [17] 2D2/X—0.62(D3 /)\)1/?
+K o M?
. M?L +2M° + (2N)3 E + Z(2N)? + J5 M?
1 [ ] e 2D2/A70.ZQI§D‘3/A) /2 ]\[Z
(2]‘[)2[/ + (2]\1)5 + [8 + (2N + 2)3}ﬁ + 82[)2/)\70.23(]_)3/,\)1/2
Proposed

+25 (2M)? + K ZEAZ0RDIA L (9

MD searching (2M)?L + (2M)® + 2 202/)‘ ngrwg/)‘)l/z (2M)?

Remark 4: Due to several 1-D spatial spectrum searching procedures
required in the proposed method, we can also use the computationally cheap
root-MUSIC method to estimate the DOA and range parameters to reduce

the complexity.
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Remark 5: The proposed method cannot directly be applied to non-
rectilinear sources (general noncircular sources), because non-rectilinear sources
do not have the extended array steering matrix structure in Egs.(13) and
(16), and thus the orthogonality between the extended array steering vector
and noise subspaces can not be ensured. Therefore, we need to revise the
proposed method by referring to the method in [35], which is beyond the

scope of this manuscript, and will be a topic of research in our further work.

4. Deterministic rectilinear CRB

In this section, we analyze the deterministic CRB of the estimates of
DOA and range parameters of mixed NF and FF rectilinear signals. With
the deterministic data assumption, we would like to derive a closed-form
expression of the deterministic CRB for both DOA and range parameters
of mixed sources, as an estimation benchmark for the scenario with mixed
NF and FF rectilinear signals. The derivation is based on the Slepian-Bangs
formula, and the result is summarized in the following.

First, we have to specify the parameters of the Gaussian distribution

of z(l) in (14) with exact NF model [36, 37] in (1). Define a real-valued

T

— T T T T T

vector of the unknown parameters as & = [ Oy ry ¥y O0p Pp
with BN = [91,92,...,6K1]T7 ry = [7,177,27_“77.[{1]'1—” \IIN = [wlw'wle]T’

BF = [9K1+176K1+27 ...,HK]T, and ‘I’F = WJKH—I: ...,d]K]T.
Then, the (p, ¢)th entry of the (3K, +2K>) x (3K + 2K3) CRB matrix

for the parameter £ estimates is given by [38]

(CRB(€)],q = £Re{

(43)

o2

aA‘jPL DA,
€, = A og,

16



where A, denotes the extended steering matrix (15) with exact NF model,
- < H~x ~H
PE = Liviz — AdAA)IA, L Py = Bls(l)s (1)] € CFXK,
Define

- oA OA. OA OA. OA 0A
DeNzl ¢ ¢ = c, == e,OzszKzl (44)

0017 00k, Ory T Org, T Oy T O

DeF: [02M><3K17 (45)

OA. dA, OA, OA.
g1’ 00k Mg 17 Ok
and further partition the matrix P into four matrices Py, € CK1XK1 P,

CK1><K27 P € OK2xK1 gnq P, € CE2XK2 g9 follows

P, = (46)

P53 Ps4

P, Py ]

After some simplification, we derive the closed-form expression for the

CRB ¢ as

-1
CRB(£)=f CRB1(§) CRB2(€) (47)
L | cRB3(¢) CRB4(¢)
where
CRB\(§) = {RelIn(DI\P; Dex)d%) @ (1@ 1} o PL)}  (48)

2, Den)IE) @ (1o ® 15 @ Ply)]

e
—1

DIk o (1521 o PN (50)
CRB;(€) = {Re[(Jr(DP% Der)d}) © (122 13 0 PL)] |
1

with Jy = [Isk,, 03k, x2k5 ], I = [02k, %355 Lare, ], 13 = [1,1,1] and 13 =
1,1] .
It is noted that when all the sources are NF sources, we have CRB(§) =

CRB;1(&), and when all the sources are FF sources, CRB(&) = CRB4().
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5. Simulation Results

In this section, computer simulation is conducted to demonstrate the ex-
perimental and theoretical results of the proposed method as compared with
some of the existing methods including He’s method [15], Jiang’s method
[16], Zuo’s method [17], Liu’s method [18] and deterministic CRB in (47)
for the scenario of mixed NF and FF rectilinear sources. For the first and
second sets of simulations, a ULA of 9 sensors (N = 4) with a quarter-
wavelength inter-sensor spacing (d = A/4) is employed, while for the third
simulation, a ULA of 5 sensors (N = 2) is used. The impinging sources
are equi-power, uncorrelated BPSK signals, and the additive noise is as-
sumed to be spatial white complex Gaussian, and the SNR is defined rel-

ative to each signal. The root mean square error (RMSE) RMSE(Vg,) =
Kz' M, ~ 2
ﬁ Yo > (Vg —Vk) , K = K1, Ko, is adopted for quantitative evalua-
T k=1 q=1
tion, where M, is the number of Monte Carlo simulations, K; is the number

of NF or FF signals, 19ch is the estimate of the parameter 0 or 7, in the kth
Monte Carlo simulation, and 9 is the true value standing for either 6; or
7. The results of the first and second sets of simulations are obtained from
500 independent Monte Carlo trials, while that of the third one is from 20
independent Monte Carlo trials.

In the first set of simulations, two NF sources and two FF sources impinge
upon the above nine-sensor ULA, and we examine the performance of the
proposed method in comparison with the existing methods versus the SNR.
Two NF signals are located at (5° 4 v1,1.9A + v2) and (30° + vy, 2.6\ 4 va),
and two FF signals are located at (5°+ v1,400) and (—25° 4 vy, +00),
where v; and vy are chosen randomly and uniformly within [-1°,1°] and

[—0.1X,0.1)] in each trial, respectively. The SNR varies from 0 dB to 20
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Fig. 3: RMSE of two NF and two FF sources versus snapshots number with SNR to be
10dB. (a) NF angle estimation. (b) NF range estimation. (c) FF angle estimation.

dB, with the number of snapshots fixed at 500. The RMSEs of the DOA
and range estimates for NF signals and the DOA estimates for FF signals
as a function of SNR are shown in Fig.2, respectively. From the results, we
can see that the proposed method outperforms consistently the other four
methods for both azimuth and range estimations. This is because the pro-
posed method exploits the noncircular information of mixed signals, which
increases the virtual array aperture to some extent. Furthermore, as SNR

varies, the results of the proposed method follow closely the deterministic

CRBs in (47).
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In the second set of simulations, we assess the performance of the pro-
posed method versus the number of snapshots. The simulation conditions
are similar to those in the first example, except that the SNR is set at 10dB,
and the number of snapshots varies from 50 to 1000. The proposed method
is compared with the four methods as in the first set of simulations in terms
of the number of snapshots. In addition, the theoretical results as well as the
deterministic CRBs are included as benchmarks. The results are presented
in Fig.3. As expected, the RMSEs of the proposed method decrease as the
number of snapshots increases, and they are much lower than that of the
existing methods and also closer to the benchmark.

In the third set of simulations, we illustrate the performance of the pro-
posed method versus variable ranges with a five-sensor ULA. Consider two
pure NF signals incident from (15° + vy, 0.3A+07) and (30° 4 vy, 1.3\ 407),
where dr varies from 0.1A to 1.9\. The SNR is 10dB and the number of
snapshots is 500. The resulting performance of the proposed method for

DOA and range estimation is shown in Fig. 4(a) and Fig. 4(b). Clearly,
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both the RMSEs and the CRB of DOAs and corresponding ranges of the
NF sources are sensitive to the varied ranges. In addition, the RMSEs of
DOA and range of the first NF are smaller than that of the second NF as
the second source is far from the array, which is in accordance with the

theoretical analyses in [10].

6. Conclusion

An effective localization method for a mixture of NF and FF rectilin-
ear sources has been proposed, based on a symmetric ULA structure and
the three-stage RARE principle, which avoids the direct 3-D peak-spectrum
search. By exploiting the extended array manifold, the noncircularity prop-
erty of the mixed sources is incorporated into the proposed method to in-
crease the array aperture to some extent, which improves the estimation
accuracy effectively. The deterministic CRB of the mixed NF and FF rec-
tilinear signals are derived. Simulation results have shown the effectiveness
of the proposed method as compared to that of all the considered existing

methods.
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