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Abstract—Local practices in fault location require mea-
surements from one or more terminals of the faulted line to be 
available. On the other hand, the nonlinearity of circuit equations 
associated with wide-area fault location makes their solving 
process iterative and computationally demanding. This paper 
proposes a non-iterative method for wide-area fault location by 
taking advantage of the substitution theorem. Accordingly, a 
system of equations is constructed which can be easily solved 
using the linear least-squares method. The distributed-parameter 
line model is considered to provide a highly accurate estimation. 
Besides, due to inherent errors of current transformers, the 
current data is not taken into account to preserve the accuracy. 
In order to avoid uncertainties in relation with construction of 
zero-sequence network, just positive- and negative-sequence 
networks are exploited. Nonetheless, the method still is capable of 
pinpointing all types of short-circuit faults by using a restricted 
number of synchronized pre- and post-fault voltage phasors. 
Numerous simulation studies conducted on the WSCC 9-bus and 
New England 39-bus test systems verify the effectiveness and 
applicability of the proposed fault location method, even with 
limited coverage of synchronized measurements. 
 

Index Terms—Phasor measurement unit (PMU), sequence 
network, substitution theorem, wide-area fault location.  
 

 

NOMENCLATURE 

Ei,j Sum of squared residuals associated to the system of 

equations, provided that line i-j is the faulted line. 

I  Bus injected current vector. 

I(i,j) Post-fault bus injected current vector, while line i-j 

has been replaced with equivalent current sources. 

s
fI  Fault path current in the sth sequence network. 

li,j    Length of transmission line i-j. 

s
NP  Net power of the sth sequence network. 

r
NP  Net power of fault path. 

V Post-fault bus voltage vector. 

s
fV  Voltage of fault point f in the sth sequence network. 

Vpre Pre-fault bus voltage vector. 

Z Network impedance matrix. 

Z(i,j) Network impedance matrix while line i-j has been 

removed. 
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,
c
i jZ  Characteristic impedance of line i-j. 

Įi,j Calculated fault distance on line i-j. 

 

I. INTRODUCTION 

RANSMISSION networks are always prone to various 

short-circuit faults along their lines. Fast and accurate 

fault location is required to improve the system reliability by 

reducing the outage and service restoration time. Accordingly, 

the problem of fault location has attracted a great deal of 

attention in the recent decades [1-17]. This problem has 

become more interesting since the emergence of new 

measurement and communication technologies [1-3].  

Conventional fault location methods [4-12] necessitate one 

or more terminals of the faulted line to be equipped with 

measurement devices. Thus, if either of the measurement 

devices at the faulted line terminals fails to operate properly or 

is not in service during the fault, conventional methods would 

not be able to locate the fault [13]. Besides, some of these 

methods need the network model from the faulted line 

terminals, which should be regularly transmitted to the local 

substation from the dispatching center. On the other hand, 

fault location methods that utilize current data in their 

calculations are not immune to inherent errors of current 

transformers. This may considerably affect their accuracy. 

 Existing methods for wide-area fault location, as an 

application of wide-area monitoring system (WAMS), provide 

a good and viable solution for the fault location problem [2] 

and [13-17]. Meanwhile, they suffer from some technical 

difficulties such as need for iterative solution either by trial 

and error or by non-linear optimization techniques. Jiang et al. 

in [14] propose an algorithm to solve the nonlinear equations 

in relation to the wide-area fault location problem. This 

algorithm first determines the fault area using a voltage-based 

index and then locates the fault by a process of trial and error. 

A wide-area fault location scheme is presented in [15], which 

requires current and voltage phasors of at least one terminal of 

the faulted line. Furthermore, for this method to be applicable, 

a number of constraints over locations of phasor measurement 

units (PMUs) should be satisfied. The network impedance 

matrix along with the voltage measurements are deployed for 

wide-area fault location in [13]. This method, however, needs 

the faulted line to be pre-specified and can take advantage of 

only one or two different measurement devices at a time.  
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The fault area and location can be identified using the data 

of protective relays (PRs) and status of circuit breakers (CBs), 

provided that the main and backup protections are properly 

coordinated [18-20]. Nevertheless, such an approach becomes 

very complicated or even impossible after most power system 

blackouts, while the system is in an urgent need to be restored 

[21]. This is the case due to inclusion of data of mal-operated 

or failed PRs and CBs amongst the received data [22]. 

Therefore, it would be a great advantage for a fault location 

algorithm to be able to identify the faulted line, as well.  

Practically speaking, it is difficult to obtain an accurate and 

reliable zero-sequence network. The reason is that the 

transmission line zero-sequence impedance is highly 

influenced by variable soil resistivity under the whole line 

route, and different weather conditions [26]. Accordingly, if 

possible, application of the zero-sequence network is better to 

be avoided in order not to deteriorate the fault location 

accuracy. 

This paper proposes a novel wide-area fault location 

method by applying a limited number of synchronized voltage 

measurements across the network. The associated 

methodology is fully described in Sections II and III. In doing 

so, the substitution theorem is deployed to eliminate the 

iterative procedure involved in the existing wide-area fault 

location methods. The linear least-squares technique is then 

used to obtain the faulted line, its terminal voltages and either 

side injecting current. Although the zero-sequence network is 

not exploited due to its respective uncertainties, the proposed 

method is still capable of identifying all fault types. Moreover, 

the method successfully determines the faulted line as well as 

the fault distance on it, even in the case of limited WAMS 

coverage.  

 

II. FAULT LOCATION ON SINGLE-PHASE NETWORKS 

In this section, the application of the substitution theorem in 

the normal operating condition is explained. Then, a technique 

based on the substitution theorem is developed to transform 

the fault location problem into an easier problem to be solved. 

Thus, the nonlinearity of formulations involved in the existing 

methods and required iterative solutions are eliminated. 

 

A. Normal Operating Condition Equations  

According to the substitution theorem, replacing a system 

component with a suitably adjusted current source injecting 

the same amount of current would change neither the system 

node voltages nor its branch currents. This property can be 

exploited to evaluate the network response while the 

equivalent network is easier to be solved than the original 

network [23]. Consequently, voltage and current phasors in 

the remaining networks of the original and equivalent 

networks shown in Figs. 1(a) and 1(b) would be identical. 

For formation of a nodal equivalent network, every voltage 

source in series with its impedance should be converted to a 

suitable current source in parallel with that impedance, as 

discussed in [23], [24]. Accordingly, for the original single-

phase network 1(a), the following equation can be written: 

 

 ,preV ZI  (1) 

 

where Z is the network impedance matrix in the normal 

operating condition and
preV is the N×1 vector of pre-fault bus 

voltage phasors. Besides,  1, , ,
T

NI I I where Ik is the 

complex sum of all source currents entering bus k.  

For the equivalent network 1(b), the relation between the 

injected currents and bus voltage phasors is as follows: 

( )
1 , ,
, , , , , ,

T
pre pre

i j Ni j j i
I I I I I I      pre i,jV Z  (2) 

 

where Z(i,j) is the pre-fault network impedance matrix while 

the line i-j has been removed. 

 

B. Faulted Branch Replacement  

Assume in a single-phase network, voltages of buses 1 to m 

are measured. As shown in Fig. 2(a), a fault has occurred on 

the line i-j of the system. Based on the substitution theorem, 

the faulted line can be replaced with two equivalent current 

sources as depicted in Fig. 2(b). For the voltage and current 

phasors of the equivalent network 2(b), a matrix equation can 

be constructed as follows: 

 i,j i,jV Z I( ) ( ) ,  (3)  

 

where ( , )
1 , ,, , , , ,

Ti j
i i f j j f NI I I I I I      I .  

If the substituted line i-j is actually the faulted line, the 

topology of the rest of network would be the same as that of 

the pre-fault network, independent of the fault distance along 

the line i-j. Consequently, Z(i,j) having been constructed  based 

on the pre-fault network topology would be still valid for 

calculation purposes under the fault condition. This is the key 

idea to get rid of the nonlinear impedance matrix as a function 

of the exact fault location on the faulted line.  

,i jI ,j iI

,
pre
i j

I
,

pre
j i

I

Fig. 1. Response equivalency between (a) the original and (b) equivalent

branch-replaced single-phase networks under the normal operating condition. 

 
 

,i fI ,j fI
,i fI ,j fIfI

Fig. 2. Response equivalency between (a) the original and (b) equivalent

branch-replaced single-phase networks under the fault condition. 
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Let the ǻ symbol be used to denote the change in a variable 

due to the fault, i.e., the difference between its pre- and post-

fault values. It can be concluded from (2) and (3) that: 
( , )( , )
1,1,1

,

,( , ) ( , )
, ,

.

i ji j
ji

i j

j ii j i j
m

m i m j

ZZV
I

I
V Z Z

                       
 

    (4) 

 

where , ,,
pre

i fj ii j
I I I   and , ,,

pre
j fi jj i

I I I  are the 

unknowns. The reason for the negative sign on the right hand 

side of (4) is because the current sources whose reference 

directions exit the connected terminal have been assigned a 

negative sign in (2) and (3). 

The system of linear equations (4) is an over-determined 

system of equations having no solution in general. 

Nevertheless, it can be solved using the linear least-squares 

method to specify the values of the best two fitting current 

sources for each suspected line. Such a solution ensures that 

the sum of squared residuals is minimal, where a residual is 

defined as the difference between the measurement and its 

fitted value provided by the respective equation in (4).  

With the assumption that the line i-j is faulted and after 

calculation of ǻIi,j and ǻIj,i, the sum of squared residuals of (4) 

is derived as: 

  2
( , ) ( , )

, , ,, ,

1

m
i j i j

i j k i j j ik i k j

k

E V Z I Z I



          (5) 

 

It should be pointed out that the actual faulted line and the 

respective fault distance on it are the unknowns for which (4) 

is definitely satisfied. It means that Ei,j takes a very small 

value for the faulted line. Thus, the faulted line can be 

specified by comparing the calculated Ei,j�s for examined 

transmission lines, since the smallest one corresponds to it. 

Having calculated ǻIi,j and ǻIj,i from (4), ǻVi and ǻVj can 

be determined using (2) and (3) as: 

( , ) ( , )
, , ,

( , ) ( , )
,

, ,

.

i j i j
i i i j i ji

i j i jj j i
j i j j

Z Z IV

V IZ Z

                   

  (6) 

 

Assume the characteristic impedance of the faulted line, say 

the line i-j, is denoted by c
i, jZ  and its propagation constant is 

equal to Ȗi,j.  Let și,j= Ȗi,j×li,j where li,j is the line length. The 

closed form expression for the fault distance ,i j is derived 

by equating the KVL equations written from both ends of the 

faulted line to the fault point, as follows [25]: 

,
,

, , , ,1

, , , , , ,

1
(7)

cosh( ) sinh( )
tgh

sinh( ) cosh( )

i j
i j

c
i j j i j i j j i i

c c
i j j i j i j j i i j i j

V Z I V

V Z I Z I




 

 


 

     
 
      

 

III. FAULT LOCATION ON TRANSMISSION NETWORKS 

Following a fault, voltage and current phasors at different 

network buses and branches vary with respect to the fault type, 

location and resistance. Symmetrical components method 

transforms the solution of an unbalanced three-phase network 

into the solution of three balanced sequence networks [24]. 

Interconnection of these networks so as to satisfy the fault 

type constraints yields an integrated circuit to be solved. 

Meanwhile, according to the substitution theorem, each 

sequence network can be analyzed separately by replacing the 

remaining networks with a suitable current source. In the 

proposed method, only the positive- and negative-sequence 

networks are deployed to determine the fault type, faulted line 

and fault distance on it. 

 

A. Faulted Line Identification 

Figs. 3(a), 3(b) and 3(c) depict the basic models of various 

fault types as considered in most fault-location algorithms. 

These models represent single-phase-to-ground (1-ph-g), two-

phase-to-ground (2-ph-g), and three-phase-to-ground (3-ph-g) 

faults, respectively. It should be noted that 2-ph and 3-ph 

faults can be considered as particular cases of 2-ph-g and 3-

ph-g faults while Rg is infinite. The proper interconnections of 

the sequence networks corresponding to these fault types are 

illustrated in Figs. 4(a), 4(b) and 4(c), respectively. Besides, a 

proof for such interconnection in the general case of 2-ph-g 

fault, i.e., Fig. 4(b), is provided in Appendix.  

Owing to symmetry, the negative-sequence voltages and 

currents all over the network are quite negligible for a 3-ph-g 

fault [26]. Thus, if PMUs observe no negative-sequence 

quantities during the fault, it implies that a symmetrical fault is 

encountered. In such a case, it is only required to pinpoint the 

fault on the positive-sequence network. The procedure would 

be exactly similar to the one explained in the previous section 

for the single-phase networks.  

The both of positive- and negative-sequence networks 

should be analyzed in the case of asymmetrical faults. 

According to the substitution theorem, each of these two 

networks can be treated as a single-phase network. Similarly, 

the faulted line can be replaced with two suitably adjusted 

current sources so that the response of the associated 

remaining network is unaffected. As such, all variables, 

matrices and parameters in (1)-(7) can be labeled with the 

superscripts �s� representing them in the sth sequence 

network. Accordingly, s
i , jI , s

j ,iI , s
iV , s

jV  and ,
s
i j  

can be obtained for each sequence network, independently. 

fa

b

c

fa

b

c

fa

b

c

gR

fR fR fR fR R

gR gR

Fig. 3. The basic models of various fault types, (a) single-phase-to-ground,

(b) two-phase-to-ground, and (c) three-phase-to-ground faults. 
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 Consider Fig. 5 which illustrates the faulted line i-j in the 

sth sequence network. The superscript �s� can take values of 

�z�, �p� and �n� for zero-, positive-, and negative-sequence 

networks, respectively. If the ABCD parameters of 

, ,
s
i j i jl and , ,(1 )s

i j i jl portions of the faulted transmission 

line are calculated based on [24], the voltage dropped across 

the fault path, and fault path current can be derived as: 

, , , , , ,cosh( ) sinh( ) ,s s s c s s
f i j i j i i j i j i j i fV V Z I        (8) 

, , , , , ,

, , , ,

, ,

cosh( ) cosh((1 ) )

1 1
sinh( ) sinh((1 ) ) .

s s s s s
f i j i j i f i j i j j f

s s s s
i j i j i i j i j jc c

i j i j

I I I

V V
Z Z

    

    

   

   
 (9) 

 

To obtain s
fV and s

fI , every signal in (8) and (9) should 

be replaced with its pre- and post-fault difference, which can 

be readily calculated from (4) and (6). On the other hand, 
s
fI = s

fI which means the fault path current can be obtained 

independent of the pre-fault signals of the faulted line. 

The methodology presented in Section II can be exploited to 

pinpoint the fault distance on the line i-j in the positive- and 

negative-sequence networks. Let the calculated fault distances 

on the line i-j in the positive- and negative-sequence networks 

be 
,

p
i j

  and ,
n
i j , respectively. If the line i-j is actually the 

faulted line, the following constraint must be satisfied: 

 ,,
0 1.

p n
i ji j

      (10) 

 

Constraint (10) is the first constraint that has to be checked 

for determining whether or not the examined line is the faulted 

line.  

Let z
NP ,

p
NP , n

NP  and r
NP  be the net power of the zero-, 

positive- and negative-sequence networks, and the fault path, 

respectively. On the basis of the energy conservation law, it 

can be concluded that:  

 0
pz n r

N N NNP P P P .     (11) 

 

The fault path is passive and mainly demonstrates resistive 

characteristics [26]. Thus, the equivalent r
NP  resulting from 

the faulted line replacement with current sources must be 

negative and can be utilized as a constraint to identify the 

faulted line. However, this constraint cannot be directly 

checked since the fault path resistance is not known. If the 

pre-fault state of the faulted line, and hence the pre-fault 

voltage of the fault point is available, passivity of the fault 

path can be identified from (11). Nonetheless, it is intended in 

this paper not to use the zero-sequence quantities. Therefore, 

another proper constraint would be used as an alternative.  

Zero- and negative-sequence networks are passive similar to 

the fault path, and their net generated powers are negative. 

Mathematically speaking, 

 0,r
NP   (12) 

  *=Real ( ) 0,z z z
N f fP V I   (13) 

  *=Real ( ) 0.n n n
N f fP V I   (14) 

Since ( )
p z n r

N N NNP P P P   and z
NP , n

NP  and r
NP are all 

negative, it follows that: 

  *Real ( ) 0.
p p p

N f f
P V I     (15) 

Pos. seq. net.

f

g

Neg. seq. net.

f

g

Pos. seq. net.

f

g

z
fI

Zero seq. net.

f

g

Neg. seq. net.

f

g
3 gR

Pos. seq. net.

f

g

z
fI

Zero seq. net.

f

g

z
fV

Neg. seq. net.

f

g

fR

z
fV

fR

fR fR

3 gR

z
fI

Zero seq. net.

f

g

n
fI

p
fI

z
fV

n
fV

p
fV

p
fV

n
fV

n
fI

p
fI

p
fI

n
fI

n
fV

p
fV

Fig. 4. Sequence networks interconnection corresponding to (a) single-phase-to-ground, (b) two-phase-to-ground, and (c) three-phase-to-ground faults. 

 

 

,
s
i f

I
,

s
j f

I

s
f

I

s
iV

s
jV

s
i, j i , jl (1 )s

i, j i , jl

s
f

V

 
Fig. 5. Distributed-parameter model of the faulted line in the sth sequence

network. 



 5

By rearranging equation (11), it is obtained that 

( ).
p n z r

N N NNP P P P     With respect to (12) and (13), z
NP  

and r
NP are both negative, which means their sum is negative 

as well. It directly follows that: 

   * *Real ( ) ( ) 0.
p p pn n n

N f fN f f
P P V I V I       (16) 

 

Now, it is possible to express (14)-(16) as a single 

inequality constraint as: 

 0
p pn

NN NP P P   (17) 

 

To summarize, the negativeness of r
NP  could be directly 

checked, if the zero-sequence network model would be 

accurate enough. Not using the zero-sequence quantities, 

constraint (17) should be satisfied as a necessary condition for 
r

NP to be negative. 

 

B. Fault Location Algorithm  

Based on the formulations derived in Sections II and III-A, 

a systematic algorithm is presented in this part for wide-area 

fault location. In fact, the suitable equations proposed in the 

previous sections are used to transform the problem into a 

regular two-terminal fault location problem. This is possible 

with the assumption that the network positive- and negative-

sequence impedance matrices are constructible thanks to the 

SCADA or WAMS. Additionally, the pre- and post-fault 

voltage measurements at a limited number of buses, i.e., buses 

1 to m, are utilized.  

Upon a short-circuit fault, every transmission line should be 

examined to specify if it is faulted. This could be achieved by 

replacing the line with two current sources in either of the 

sequence networks as described earlier. Meanwhile, this 

procedure can be limited only to the suspected transmission 

lines to further reduce the computational burden. For the 

actual faulted line, the calculated 
,

p
i j

  and ,
n
i j  would be 

equal and lie between 0 and 1, which is evaluated by 

constraint (10). The passivity of the fault path can be also 

checked using (17).  

The flowchart of the proposed fault location method is 

depicted in Fig. 6. As shown, the fault location process is 

pursued for all NL transmission lines in the network. It is quite 

reasonable to expect that the obtained fault distance for 

healthy transmission lines lies out of the acceptable range or is 

not even a real number. However, in some rare cases, the 

estimated fault distance for a healthy line might be a real 

number in the range [0,1]. This is more likely to happen for 

adjacent lines to the faulted line. In such a condition, the sum 

of squared residuals is checked to indicate the faulted line. The 

reason is because the sum of squared residuals of the system 

of equations (4), i.e., Ei,j, would be ideally equal to zero if the 

line replaced with the current sources is the faulted one.  

Consequently, the fault location algorithm based on the 

proposed methodology can be described as follows:  

I. For the transmission line i-j, solve (4) for the sth sequence 

network to obtain ,
s
i fI and ,

s
j fI using the least-squares 

method. 

II. Use (6) to calculate s
iV and s

jV . 

III. For the positive- and negative-sequence networks, use (7) 

to obtain the fault distances 
,

p
i j

  and ,
n
i j  on the line i-j. 

IV. Save  ,,

1

2

p n
i ji j

   and the associated Ei,j as a feasible 

solution for cases where (10) is satisfied. 

V. Indicate the feasible solution with the minimum sum of 

squared residuals as the fault location result. 

 

C. Fault Type Identification 

By using the proposed method, not only the faulted line and 

fault location are successfully determined, but also the fault 

type can be identified. To explain this feature of the proposed 

method, assume the fault location has been accurately 

pinpointed as described beforehand. Now, the fault path 

current can be calculated using (10). As a result, the fault type 

can be readily identified by investigating the current flowing 

through the fault path. To do so, it is only needed to compare 

the fault currents in positive- and negative- sequence 

networks.  

To clarify, assume a short-circuit fault has occurred in the 

system. If the negative voltage phasors measured at PMU 

locations, i.e., 1
nV , 2

nV , �, n
mV , are very small, it can be 

inferred that the fault is a symmetrical fault. In such a case, 

only the positive-sequence network is required to be analyzed 

to find the fault distance 
,

p
i j

 . However, the both of positive 

and negative signals change during asymmetrical faults. In 

such cases, the calculated fault locations using the positive- 

and negative-sequence networks must be the same. It follows 

from the sequence networks interconnection that for 1-ph-g 

faults
p n

ff
I I . Conversely, for 2-ph-g faults 

pn
f f

I I . In the 

Calculate fault distances 

and  on line  
p n

i , ji , j
k 

Is Lk N

Indicate the solution with

 the smallest ( )
p n

i , ji , j
E E

 1
Save +

2

p n
i , ji , j

 

 
Fig. 6. Flowchart of the proposed wide-area fault location algorithm. 
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special case of 2-ph faults where Rg=0, 
p n

ff
I I  . Therefore, 

in spite of circumventing the zero-sequence network, it is still 

possible to pinpoint the fault location and its type using the 

proposed method. 

 

IV. SIMULATION RESULTS 

To demonstrate the effectiveness of the proposed wide-area 

fault location method, the WSCC 9-bus and New England 39-

bus test systems [27] are studied in this section. The 9-bus test 

system consists of 6 transmission lines, 3 transformers and 3 

generation units. Besides, this system is equipped with 2 

PMUs at buses 6 and 9. On the other hand, the 39-bus test 

system consists of 34 transmission lines, 12 transformers and 

10 generation units. Moreover, similar to [28], 8 PMUs are 

installed in this system. The single line diagrams of these two 

test systems are shown in Figs. 7 and 8, respectively. 

In this paper, DIgSILENT Power Factory software is 

deployed as the power system simulator [29]. All generated 

signals are then passed through a second-order Butterworth 

anti-aliasing filter with a cut-off frequency of 400 Hz. The 

filtered signals are sampled with a sampling rate of 2400 Hz, 

i.e., 48 samples per cycle. The discrete Fourier transform 

(DFT) is exploited to extract the fundamental-frequency 

component of the obtained signals. The measured voltage 

signals during the fault interval, starting from the fault 

inception until the circuit-breaker operation, can be fed to the 

proposed method to calculate the fault distance at every time 

instant. In this paper, the estimated fault distance is averaged 

from 30 ms to 60 ms after the fault inception time to obtain 

more reliable results. Besides, to demonstrate the fault 

location accuracy, the relative difference between the actual 

and estimated fault location is calculated as follows: 

Estimated FL - Actual FL
Estimation Error(%)  100.

Faulted Line Length
    (18) 

 

A. WSCC 9-Bus Test System 

In this part, the applicability of the proposed method is 

examined on the 9-bus test system. The method is also 

evaluated for high impedance faults with transient contents. 

1) General evaluation of proposed fault location method 

In the 9-bus test system, all fault types have been simulated 

at five points on every transmission line, i.e., 10%, 30%, 50%, 

70% and 90% of the line length. Various amounts of fault 

resistance from 0 to 100 ȍ are examined to study its effect on 

the fault location accuracy. Considering all these locations, 

examined fault types and different amounts of fault resistance, 

a total of 600 case studies are simulated. Table I summarizes 

the obtained results for 1-ph-g, 2-ph, 2-ph-g and 3-ph-g faults, 

and all of them in total. In general, the estimation accuracy 

declines when the fault resistance increases. Besides, the 

average estimation error does not exceed 0.2% in any case, 

regardless of the fault type, location and resistance. 

To illustrate that the proposed method can effectively 

pinpoint the fault location and its type without using the zero-

sequence quantities, a series of simulation results are tabulated 

in Table II. These results correspond to the simulation of four 

different fault types with 100 ȍ resistance, at distance 40 % of 

line 7-8. All quantities in this table except its last two rows, 

are calculated only by using the positive- and negative-

sequence voltage phasors at PMU buses 6 and 9. Meanwhile, 

the last two rows of the table is calculated given the pre-fault 

TABLE I 

FAULT LOCATION RESULTS ON 9-BUS TEST SYSTEM 
 

Fault Resistance (ȍ) 0 10  25 50 100  

Fault Type Average Estimation Error % 

1-ph-g 0.1404 0.1653 0.1709 0.1769 0.1818

2-ph 0.0935 0.1076 0.1092 0.1017 0.1085

2-ph-g 0.1156 0.1317 0.1432 0.1471 0.1561

3-ph-g 0.044 0.0591 0.0551 0.0566 0.0761

All in Total 0.0984 0.1159 0.1196 0.1204 0.1306

 

Fig. 8. Single-line diagram of the 39-bus test system. 

 

 
Fig. 7. Single-line diagram of the 9-bus test system. 
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voltage at the fault point is 0.991 0.0321 . The seventh row of 

the table demonstrates based on which constraint the fault type 

has been identified. It can be inferred from the table that 

although the method does not take into account the zero-

sequence quantities, it is still capable of fault type 

identification. 

2) Nonlinear high impedance faults  

 To model the time-varying arc resistance, its dynamic volt-

ampere characteristics are taken into account based on the 

empirical differential equation described in [26]. Then, this arc 

model in series with a 100 ȍ resistance is used to evaluate the 

proposed method performance for nonlinear high impedance 

faults. In doing so, various distances on the line 7-8 of the 9-

bus test system are examined for 1-ph-g faults. The obtained 

results are summarized in Table III. It can be observed that the 

involvement of a nonlinear high impedance fault reduces the 

fault location accuracy. However, the obtained results would 

be still acceptable from a practical point of view. 

B. New England 39-Bus Test System 

In this part, the applicability of the proposed method is 

examined on the New England 39-bus test system. Fault 

location on this system is first carried out using the set of 

PMUs shown in Fig. 8. Then, the influence of limited WAMS 

coverage and other factors is investigated. 

1) General evaluation of proposed fault location method 

Table IV summarizes the results of more than 3000 

simulated fault cases on this test system. As before, five points 

on every transmission line are examined. As tabulated in 

Table IV, fault location is successfully carried out for the 

simulated cases, with high precision. The average estimation 

error does not exceed 0.25% in any case, regardless of the 

fault type, location and resistance. Based on the results, it can 

be also concluded that the estimation accuracy declines 

slightly as the fault resistance increases. However, the 

maximum estimation error hardly exceeds 0.5% even for large 

resistance values. Practically speaking, this amount of error is 

quite negligible.  

2) Estimation accuracy along a transmission line  

To examine how the estimation accuracy is affected by the 

fault distance on the transmission line, a number of 1-ph-g 

faults are simulated at various locations on the line 13-14 of 

the 39-bus test system. This line is selected since none of its 

terminals is PMU-equipped or even observed with an installed 

PMU at an adjacent bus. The obtained results are used to 

calculate the percentage estimation error based on (18). To be 

useful, the estimation accuracy versus the fault distance on the 

line 13-14 is depicted in Fig. 9. As shown, the estimation error 

does not exceed 0.25% along the line. Further simulations 

conducted by the authors show that the method accuracy is not 

noticeably affected by change in the fault inception time or the 

pre-fault machine phase angles. 

3) Fault location with limited WAMS coverage  

The network observability is not a necessary condition for 

wide-area fault location [13], [14]. Theoretically speaking, 

even two synchronized voltage measurements suffice for (4) 

to be solvable and hence, to locate the fault using the proposed 

method. However, in practice, the more the number of PMUs 

is, the better the fault location result would become. To 

investigate the fault location accuracy with limited WAMS 

coverage, a PMU set is considered at buses 11, 20, 23, 25 and 

29 of the 39-bus test system. Table V shows the summary of 

fault location for more than 3000 simulated cases using this 

new set of PMUs. As can be seen, the method successfully 

TABLE II 

FAULT TYPE IDENTIFICATION FOR FAULTS AT DISTANCE 40% OF LINE 7-8 
 

Fault Type 1-ph-g 2-ph 2-ph-g 3-ph-g 

, (%)
p
i j  0.3978 0.4014 0.4003 0.4004 

, (%)n
i j  0.3995 0.4016 0.4027 --- 

(pu)
p p
f fI I   

1.0533 

-j0.6068 

2.0811 

-j1.8136 

2.1739 

-j1.1416 

3.3705 

-j1.6195

(pu)n n
f fI I   

1.0534 

-j0.6084 

-2.0809 

+j1.8141 

-1.1982 

+j0.4804 
0.000 

(pu)
p

fV  
-0.1041 

-j0.1115 

-0.2807 

-j0.203 

-0.2012 

-j0.2334 

-0.2936 

-j0.3661

(pu)n
fV  

-0.1043 

-j0.1115 

0.2807 

+j0.2029 

0.0927 

+j0.1328 
0.000 

Satisfied 

Constraint 
p n

ffI I  
p n

ffI I   
p n

ffI I  0n n
f fV I 

Identified Fault 

Type 
1-ph-g 2-ph 2-ph-g 3-ph-g 

(pu)
p

NP     0.982  1.787     1.946  2.890  

(pu)n
NP  -0.042  -0.216    -0.047   0.000 

 

TABLE IV 

FAULT LOCATION RESULTS ON 39-BUS TEST SYSTEM 
 

Fault Resistance (ȍ) 0 10  25 50 100  

Fault Type Average Estimation Error % 

1-ph-g 0.1493 0.1667 0.1754 0.1915 0.2243

2-ph 0.1156 0.1218 0.1173 0.1194 0.1248

2-ph-g 0.1457 0.1499 0.1572 0.1501 0.1631

3-ph-g 0.0782 0.0764 0.0791 0.0807 0.0862

All in Total 0.1222 0.1287 0.1322 0.1354 0.1496
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Fig. 9. Estimation error for faults at different distances on the line 13-14.  

TABLE III 

FAULT LOCATION FOR NONLINEAR HIGH IMPEDANCE FAULTS ON LINE 7-8 
 

Actual Fault Distance % 10 30 50 70 90 

Estimated Fault Distance % 9.813 30.088 50.457 71.013 90.642
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locates short-circuit faults with an average error of less than 

0.3%, even for high-impedance faults. It can be concluded that 

the estimation accuracy has slightly decreased due to the 

limited WAMS coverage. 

4) Effect of synchronization error on estimation accuracy 

 Synchrophasor measurements must be synchronized with a 

maximum time error of ±31 ȝs for a 50 Hz system, to meet the 

accuracy requirements of the IEEE standard [30]. In order to 

test the proposed scheme with synchronization errors that 

might occur due to different technical problems, an 

exaggerated time error of ±56 ȝs, corresponding to a phase 

error of ±1°, is considered for measurements. This amount of 

error is assumed to have a normal distribution with mean zero. 

Fig. 10 depicts the obtained results for a total of 1000 1-ph-g 

fault cases at 70% of the line 1-39. As depicted, the estimated 

fault distances demonstrate a normal distribution with mean 

and standard deviation of 70.26% and 0.083 %, respectively. 

 

V. CONCLUSIONS 

A novel method was proposed in this paper for wide-area 

fault location on transmission networks. It was shown that the 

substitution theorem can be deployed in a way that the 

network impedance matrix constructed based on the pre-fault 

network topology is still valid for calculation purposes under 

the fault condition. Hence, despite the nonlinearity involved in 

the associated equations to wide-area fault location, the fault 

distance would be accurately determined using the linear least-

squares method. On the other hand, taking into account the 

shunt capacitance of transmission lines does not affect the 

linearity of the proposed method.  

Overall, the major achievements of the proposed method 

can be summarized as follows: 

 A limited number of pre- and post-fault voltage phasors 

just for few cycles are sufficient to accurately determine 

the fault location. 

 The proposed method rigorously specifies the faulted 

line while not requiring it as an input.  

 High computational burden and algorithm failure in 

finding the optimal solution are totally eliminated using 

the linear least-squares method. 

 Although the zero-sequence network is not exploited 

due to the related uncertainties, the fault type would be 

identified, as well.  

 Current data is not utilized due to accuracy concerns. 

 Obtained result is quite accurate even for large amounts 

of fault resistance. 

APPENDIX 

In Fig. 3(b), a basic fault model has been considered for the 

general case of two-phase faults involving ground as described 

in [26]. It is intended to obtain an equivalent model for this 

type of fault in sequence domain, by suitable interconnection 

of the sequence networks. The associated fault conditions in 

phase domain can be expressed as:  

( )
.

( )

b b b c
f f f g f f

c c b c
f f f g f f

V R I R I I

V R I R I I

   


  
   (A-1) 

Summation and subtraction of these two equations provide: 

 
( )

.
2 ( )

b c b c
f f f f f

b c b c
f f f g f f

V V R I I

V V R R I I

   


   
 (A-2) 

Since the current of the non-faulted phase is zero, we have: 

0.
pa n z

f f ff
I I I I      (A-3) 

Besides, using the approach introduced in [24], it is possible 

to express equations of (A-2) in the sequence domain as: 

  ,p pn n
f f ff f

V V R I I     (A-4) 

   2 3 2 .
pz n z

f f f g ff
V V V R R I     (A-5) 

After some algebraic manipulations on (A-5), and utilizing 

(A-3) and (A-4), the following equations can be derived: 

3

3

p p z z z
f f f f g ff f

n n z z z
f f f f f f g f

V R I V R I R I

V R I V R I R I

    


   
 (A-6) 

The equations (A-3), (A-4) and (A-6) altogether represent 

the fault conditions, in sequence domain. To always satisfy 

(A-3), the three sequence networks should be terminated in a 

common node. Besides, Rf should be included in series with 

either of positive- and negative-sequence networks to satisfy 

(A-4). Finally, if Rf as well as 3Rg are added in series with the 

zero-sequence network, equations in (A-6) are guaranteed to 

hold true. Accordingly, the equivalent model for two-phase 

faults involving ground would be as shown in Fig. 4(b). 
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