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Hybrid Probabilistic Wind Power Forecasting Using

Temporally Local Gaussian Process
Juan Yan, Member, IEEE, Kang Li, Senior Member, IEEE, Er-Wei Bai, Fellow, IEEE,

Jing Deng, and Aoife M. Foley, Member, IEEE

Abstract—The demand for sustainable development has
resulted in a rapid growth in wind power worldwide. Although
various approaches have been proposed to improve the accu-
racy and to overcome the uncertainties associated with traditional
methods, the stochastic and variable nature of wind still remains
the most challenging issue in accurately forecasting wind power.
This paper presents a hybrid deterministic–probabilistic method
where a temporally local “moving window” technique is used in
Gaussian process (GP) to examine estimated forecasting errors.
This temporally local GP employs less measurement data with
faster and better predictions of wind power from two wind farms,
one in the USA and the other in Ireland. Statistical analysis on
the results shows that the method can substantially reduce the
forecasting error while it is more likely to generate Gaussian-
distributed residuals, particularly for short-term forecast horizons
due to its capability to handle the time-varying characteristics of
wind power.

Index Terms—Error analysis, forecasting, Gaussian process
(GP), wind power.

I. INTRODUCTION

R ENEWABLE energy, particularly wind power is nonsyn-

chronous due to the variable and stochastic nature of

wind. Accurate forecasting is problematic resulting in power

system integration issues. Wind and wind power forecasting

horizons can be categorized into four main time scales, i.e.,

very short-term, short-term, long-term, and seasonal, for differ-

ent applications with different forecasting techniques [1], [2].

Broadly, there are two approaches to wind and wind power

forecasting: numerical weather prediction (NWP) methods and

time-series analysis. In NWP, the starting point of a fuzzy

power flow tool [3] or kernel method analysis is wind speed,

then it proceeds to wind power, whereas in time-series analy-

sis, the starting point can be both wind speed and wind power.

Numerous techniques are being applied for wind and wind

power forecasting including density estimation [4], quantile
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regression [5], [6], neural networks [7], prediction intervals [8],

and extreme learning machine [9].

The uncertainty associated with the forecasting has great

influence on the power systems. Many studies have been carried

out on the impacts and solutions. In [10], optimal short-term

energy balancing to better deal with wind power uncertainty

is discussed, considering reserve, market structure, and power

system infrastructure changes. It has also been demonstrated

that the largest single impact of wind on system operation

is from the inclusion of variance and that variance, kurtosis,

and skewness together produced the error information with

the lowest system cost [11]. The impact of the variability of

wind power on generation planning is examined in [12] and

it is shown that outcomes are highly system specific (e.g.,

balancing, reserve, and dispatch).

One way to undertake probabilistic forecasting is to analyze

the prediction errors statistically. In [13], forecasting was made

using a persistence model, and the error information was col-

lected and analyzed with a probabilistic density function (pdf).

The key finding is that the pdf of error could be modeled using a

Beta function, to size energy storage and to produce a smoother

wind power output. Similarly, in [14], a persistence model is

applied to forecast the wind power for a single wind farm, and

the forecast error distribution is analyzed with a mixed proba-

bilistic model of Laplace distribution and Dirac delta function.

The results are applied to make proper penalty to the short-term

markets. In [15], it is shown that wind power forecasting resid-

uals for NWP methods do not follow Gaussian distribution after

the transformation from wind to wind power. The nonlinearity

in the power curve causes non-Gaussian wind power prediction

errors. So, although it is often assumed that wind power fore-

cast error has a near-Gaussian distribution, such assumption is

not appropriate with some of the models mentioned above such

as persistence, NWP, and also other regression models such

as artificial neural networks (ANN) and autoregressive moving

average (ARMA).

Gaussian process (GP) is a new regression method for wind

power prediction. In [16], a sparse online warped GP has been

applied to forecast wind power via wind speed taking into

account the wind uncertainties associated. The key finding is

that the new method adapts to the time-varying characteristic

of wind generation. In [17], the authors proposed a variant GP

model based on the “moving window” and TLBO (teaching–

learning-based optimization) techniques, and applied it to the

forecasting of the wind power generation of whole island of

Ireland. In this paper, a generic temporally local GP (TLGP)

model is developed, and the impacts of two key parameters in

1949-3029 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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the model, e.g., window width and state vector length, on the

forecast performance are analyzed. Then, TLGP is applied to

two real wind farm systems in Ireland and USA. Furthermore,

two additional forecasting metrics are employed to produce a

more comprehensive evaluation of the forecasting performance

of TLGP in comparison with four benchmark models, namely

the standard GP, persistence model, ARMA, and radial basis

function (RBF) model and the probabilistic distributions of

forecasting residuals for all the five methods are statistically

analyzed and compared to confirm the efficacy and superiority

of the proposed TLGP.

This paper is organized as follows. Section I introduces

significance and state-of-the-art of probabilistic wind power

forecasting. Section II describes the algorithm of standard

GP and persistence model. Then, the new method TLGP is

developed in Section III. Section IV illustrates the case study

including the training and forecasting results of wind power

in two wind farms. Then, Section V presents the error com-

parison of the proposed method with four benchmark models

under three criteria: RMSE, MSE, and MASE. Section VI ana-

lyzes the probabilistic distribution of forecasting residuals and

validates the profile by analyzing the skewness and kurtosis.

Section VII concludes the paper.

II. BENCHMARK MODELS

A. Standard GP

According to the definition of GP, the new output y0 =
f (x0) should follow one joint Gaussian distribution with

available data Y = (y1, y2, . . . yN )
T

P (yt|Y ,X,θ∗,x0) = N
(

BC
−1

Y
Y , A−BC

−1

Y
B

T
)

(1)

where θ∗ is the optimal hyperparameters, X is the correspond-

ing set of input data, and x0 is the corresponding input vector

for y0. CY , B, and A are estimated according to (2)–(4), where

Φ is the covariance function and the popular square exponential

covariance function is given in (5)

B = (Φ(xt,x1),Φ(xt,x1), . . . ,Φ(xt,xN )) (2)

CY (i, j) = Φ (xi,xj) (3)

A = Φ(xt,xt) (4)

Φ(xi,xj) = s · exp

(

−
1

2

D
∑

d=1

ωd(xi (d)− xj (d))
2

)

+ v · δij

(5)

where D refers to the dimension of model input and δij refers to

the Kronecker delta. The hyperparameters could be denoted as

θ = (s, v, ω1, . . . , ωD)
T

. Then, identification of most probable

hyperparameters θ
∗ can be performed by maximizing the log-

likelihood function for a GP model, as shown in the following

equation:

lnP (Y |X,θ∗) = −
1

2
Y

T
C

−1

Y
Y −

1

2
ln |CY | −

N

2
ln 2π.

(6)

In wind power forecasting, the time-series model ignores

the effect of exogenous inputs such as weather information

and therefore could be considered to be time varying. It then

becomes inappropriate to assume that all the historical data fol-

low one joint Gaussian in GP. Moreover, the covariance matrix

inversion in the GP implementation is computationally quite

demanding, a variant of the standard GP is therefore required.

B. Persistence Model

Persistence model, also called the naïve predictor, is the most

popular reference model, to compare the forecasting perfor-

mance of any advanced models. It assumes that the generation

at any time ahead P (t+ k) equals the production it has now

P (t). For short horizon prediction, this model works well

due to the continuity of low-pressure atmosphere system. The

model can be expressed as follows [2]:

P̂ (t+ k) = P (t) . (7)

III. TEMPORALLY LOCAL GAUSSIAN PROCESS

A. Model Description

A temporally local Gaussian process (TLGP) is developed

employing only nearby local datasets and a “moving window”

technique. TLGP differs from standard GP in two aspects.

1) TLGP defines a local window and uses only temporally

local data inside the window to make predictions. 2) TLGP

employs “moving window” technique to predict every train-

ing data, and further trains the model with the least-square

technique. As the effective data window for forecasting each

training data moves forward in time domain, the training data

are estimated one by one and the sum of square error (SSE)

could be obtained. Then, hyperparameters are optimized with

least SSE techniques instead of maximum likelihood methods

in GP. Therefore, TLGP is global in learning procedure while

local in prediction process.

The local consecutive data in the effective window are

denoted as Yt = (yt−1, yt−2, . . . , yt−M )
T

instead of Y sug-

gesting that the effective window is adapting to time. Then, the

standard GP is transformed into TLGP shown from (8) to (13)

ŷt = BtC
−1
t Yt = BtC

−1
t

⎛

⎜

⎜

⎜

⎝

yt−1

yt−2

...

yt−M

⎞

⎟

⎟

⎟

⎠

(8)

σ2 = At −BtCt
−1

Bt
T (9)

Bt = (Φ(xt,xt−1),Φ(xt,xt−2), . . . ,Φ(xt,xt−M )) (10)

Ct =

⎡

⎢

⎣

Φ(xt−1,xt−1), . . . , Φ(xt−1,xt−M )
...

. . .
...

Φ(xt−M ,xt−1), . . . , Φ(xt−M ,xt−M )

⎤

⎥

⎦
(11)

At = Φ(xt,xt) (12)

xt−i = (yt−i−1, yt−i−2, . . . yt−i−L)
T
. (13)

In comparison with standard GP, both the cross-covariance

vector Bt and self-covariance matrix Ct here are denoted

with an extra t suggesting that for every new prediction point,
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Fig. 1. Flowchart of TLGP and nonlinear optimization process.

the related effective data window is updated. After the SSE

of trainin data has been obtained, the least-square error tech-

niques such as genetic algorithm could be employed to get

the optimal hyperparameters as shown in (14). Fig. 1 gives a

flowchart for the proposed TLGP method embedded with the

nonlinear optimization process. The optimization process auto-

matically terminates if the maximum iteration number has been

approached or the tolerance is below a preset threshold

θ
* = arg *min

θ

N
∑

t=M+1

(ŷt − yt)
2
. (14)

Overall, given a sequence of measurments {yk}
N

1
, the width

of local window M , and the order of time lag L, the TLGP can

be summarized as follows to predict the output yt at time t.
Step 1) Determine the useful data in the local widow of each

training point yk. Let {ykj}
M

j=1
denote the local data

in the kth window.

Step 2) Predict {yk}
N

1
using its local data {ykj}

M

j=1
with

(8).

Step 3) Minimize the SSE in (14) and get the optimal

hyperparameters θ∗.

Step 4) Determine the useful data in the local window of

yt, and forecast with the optimal hyperparameters

using (8).

B. Computation Analysis

From the descriptionabove, the computational complexity

of the TLGP and GP could be derived. The implementation

of standard GP involves inversion of the global covariance

matrix, which costs O
(

N3
)

flops in both the posterior distri-

bution and the likelihood function. However, in the proposed

method, the computational effort can be greatly reduced. In

the cost function (14), the inversion of an M size matrix

is carried out N −M times, so the computation demand is

TABLE I

STANDARD GP AND TLGP COMPUTATIONAL COMPLEXITY

O
(

(N −M) ∗M3
)

. Considering (M ≪ N), the computation

is still greatly reduced. On the other hand, in the inference

function (8) and the uncertainty estimation function (9), the

computation cost become O
(

M3
)

which is obviously much

smaller than that of the standard GP. The comparison is also

given in Table I.

C. Iterative Multistep Forecasting

A multistep forecasting could generate multihorizon fore-

casting results for real-time balancing, control, and market

planning. For iterative forecasting in a time-series system,

after the new prediction is obtained, it is used to construct

the new input and make the next step predictions [18]. k-step

ahead forecasting of a discrete nonlinear system can be per-

formed by repeating one-step ahead predictions. The state

vector xt+k corresponding to ŷt+k is constructed by the pre-

vious estimates (ŷt+k−1, . . . , ŷt+k−L), and the real measure-

ment (yt+k−L−1, . . . , yt−L). In this way, multistep forecasting

scrolls forward.

The effectiveness of the proposed TLGP method is guranteed

from three aspects.

1) For a sequence of N training samples, every sample is

used in developing the model, and the sum of squared

error of the N training samples is minimized to find the

optimal hyperparameters in the model. Thus, the global

property of the model training and the optimaility of

the TLGP gurantee the accuracy of the obtained model,

which is also verified in Section V.

2) For every new forecast, only its previous M local data

(M ≪ N) that are highly correlated to the new point

are employed. Such local mechanism in model prediction

makes the model adaptive to the time-varying character-

istic of the wind power system, which is further verified

by the error distribution analysis in Section VI.

3) The proposed model provides a very efficient way for

wind power forecasting in reducing the overall com-

putation complexity, as being analyzed in the previous

section.

IV. CASE STUDIES

In this section, the presented methods are applied to two wind

farms labeled “A” and “B” located in USA and Ireland, respec-

tively. Those wind farms differ from each other greatly on the

installed capacity, one of which with approximately 300 MW

and the other with 60 MW. Therefore, the effectiveness of the

proposed analysis method on those examples could highlight

the significance of the proposed method. For “A,” data were

sampled every second on August 2006 and then hourly average
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value is calculated. Wind farm “B” is located in Galway. The

Single wholesale Electricity Market (SEM) collected wind gen-

eration on October 2008 every 15 min and those data were

averaged hourly for further application. The first two weeks’

data were used for model training with TLGP to predict the

output of the last two weeks. Hence, the last two weeks’ mea-

surements serve as testing data. Multihorizons forecasting from

1 to 12 h ahead were implemented with iterative multistep fore-

casting. As the choice of 1 to 12 h ahead forecasting is more

beneficial for load dispatch and unit commitment, we do not

consider the forecasting of shorter periods like 10 or 15 min.

Generally speaking, persistence model is always more favor-

able for forecasting of very short periods than any other models

due to its nature.

All these hourly averaged data were normalized over the indi-

vidual full capacity, and then the squared exponential covari-

ance function was employed with the mean function set as

zero. Genetic algorithm was utilized to identify those hyper-

parameters in covariance function and the global optima could

be approximately approached with multisimulations and proper

settings of initial points. The selection of the parameter set-

tings of TLGP, such as the number of observations in inputs

(state vector L) and the number of observations in effective

window (window width M ), was determined by trail-and-error

experiments.

In order to evaluate the optimal settings, three performance

metrics, namely normalized root-mean-square error (RMSE),

normalized mean absolute error (MAE), and normalized mean

absolute scaled error (MASE), were selected as shown in (15),

(16), and (17), respectively. MAE is a linear score measur-

ing the average absolute forecasting error, whereas RMSE is

a quadratic score, better reflecting the error spikes. For MASE,

the forecasting error is divided by the average change at two

consecutive outputs; thus, it measures the error ratio over the

average trend. For multistep forecasting, the trained model

functions through all horizons, so the average normalized met-

rics with respect to the whole horizons were obtained and

employed as the evaluating criteria. In addition to the multistep

average errors, one-step forecasting errors were also calculated

to reflect the effect of parameters settings

RMSE =
1

Pn

√

∑N

i=1

(

ŷi − yi
N

)2

(15)

MAE =
1

Pn

N
∑

i=1

|ŷi − yi|

N
(16)

MASE =
1

Pn*N

N
∑

i=1

(

|yi − ŷi|
1

N−1

∑N

i=2
|yi − yi−1|

)

(17)

where Pn is the nominal capacity of the particular wind farm.

A. Site “A” in USA

For wind farm “A,” 36 simulations have been carried out for

one single wind farm with L ∈ [1, 6] and M ∈ [2, 7]. Here, M
starts from 2 to guarantee more information are employed than

that of the persistence model.

For each time lag L in [1, 6], the corresponding optimal

widow size M was selected with respect to the multistep

Fig. 2. Dependence of forecasting errors on time lag and local window size.

(a) Order of time lag. (b) Width of local window.

average error. The result is shown in Fig. 2(a). As both MAE

and MASE are linear scores of absolute forecasting error, they

follow the same trend. Thus, only the RMSE and MAE results

are shown. It can be seen that the optimal solutions for M are

around 3 or 4 h for any L and the multistep average RMSE and

MAE reach the minimum value at the same point. It shows that

RMSE and MAE have similar trend no matter for multistep or

one step. However, for one fixed metric such as RMSE, the one-

step performance shows different trend with that of multistep

average. In (a), the minimum multistep error lies in (2, 3).

Fig. 2(b) shows the forecasting errors with fixed L = 2. Still,

RMSE and MAE show similar trend, and the first-step fore-

casting and multistep average optimizes at different settings.

The best one-step forecasting occurs at M = 2, while optimal

multistep average optimal lies in M = 3.
Fig. 3 shows the wind generation measurements and forecast-

ing at optimal one-step forecasting (3, 2). It can be seen that

the measured data show high variability and ramping events

occur at some point which increase the forecasting difficulty.

Although the MAE is only 5% of the installed capacity Pn, the

maximum absolute error could reach 40%. Such moments hap-

pens at ramping events which are quite common in wind power

forecasting.

B. Site “B” in Ireland

Similarly, the trial-and-error method has been applied to

wind farm “B” to select the optimal model parameters. Seventy-

two groups of parameters are set up in simulation and the

forecasting metrics are obtained. The first four rows in Table II

compared the results of some settings to select the optimal mod-

els with respect to one-step error, and the last four rows are
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Fig. 3. One-hour forecasting result of wind farm “A” in USA.

TABLE II

OPTIMAL MODEL PARAMETERS FOR TLGP IN WIND FARM “B”

about multistep average errors. As is shown, the optimal fore-

casting with minimum one-step error including RMSE, MAE,

and MASE occurs at L = 7 and M = 2, and the optimal mul-

tistep forecasting with respect to the average of those metrics

lies under (6, 4). The one-step forecasting tends to employ

fewer observations in local window while require more ele-

ments in inputs in comparison with the multistep one. Multistep

error considers the performance over the whole horizon, which

potentially utilizes longer local window width to meet the mid-

dle horizon requirements. Moreover, the three metrics tend to

show similar trend.

Under the optimal one-step settings, the forecasting results

in wind farm “B” are shown in Fig. 4. The mean wind gen-

eration is around 40% of the installed capacity. Although the

maximum forecasting error could reach 32% of the capacity,

the mean abosolute forecasting error is only about 6.5% of the

capacity. It can be seen that the most obvious amplitute error

of forecasting happens at the spike points of wind generation.

Besides amplitute error, phase error makes the other important

component of the main error forms, which describes the time

lag between forecasting and real generation especially at

the ramping events. Such kind of error makes it impossible

to compare forecasting performance quantitively between

different wind farms, but in one particular wind farm, the

comparison between different methods could be carried out,

which is illustrated in the next section.

Fig. 4. One-hour forecasting result of wind farm “B” in Ireland.

V. RESULTS ANALYSIS AND DISCUSSION

With the forecasting results from the previous session, the

metrics of TLGP in wind farm “A” in comparison with those of

standard GP, ARMA, RBF, and persistence model are analyzed

in Fig. 5. With the parameters set as (3, 4), TLGP outper-

forms other benchmark models in most of the horizons in

terms of MAE, RMSE, and MASE. As the multistep forecast-

ing parameters are selected according to the minimum average

error, there are no guaranteed improvements over all horizons.

Consequently, it is not surprising that the first step prediction

shows minor advantage over other model under such settings,

and the maximum improvement over GP occurs at the middle

horizon. Similarly, for the longer horizon forecasting, the num-

ber of observations in local window needs to be larger to get

better forecasting results and improvements.

Table III shows the forecasting improvements of TLGP over

other benchmark models with respect to different metrics.

Those results look quite optimistic with average improvement

over persistence more than 18% and over GP more than 5%.

The average improvement over GP with respect to MAE and

MASE is almost twice that of RMSE, and from Fig. 5, after

12 h, the improvement in terms of RMSE will disappear. Such

phenomenon suggests that TLGP is quite capable of captur-

ing the relatively stable local generation window but shows

less advantage in minimizing the ramping event forecasting

error in comparison with GP. However, the result is still accept-

able with improved forecasting results. More importantly, the

forecasting with GP takes 120 s, while TLGP just costs 40 s,

which is a proof of saving computation resources. Furthermore,

TLGP outperforms RBF and ARMA showing its advantages

even outside the GP family.

In wind farm “B,” similar results show up in Fig. 6. TLGP

outperforms GP and persistence in most of the horizons under

the parameters settings of (6, 4). The maximum improvement

occurs in the middle horizon, and TLGP will be less satisfying

after 12 h in term of RMSE. Table IV shows the quantitative

improvement of TLGP over the benchmarks. The improve-

ments over GP, ARMA, and RBF in “B” are greater than that



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

Fig. 5. Forecasting error comparison of wind farm “A” in USA. (a) MAE.

(b) RMSE. (c) MASE.

TABLE III

IMPROVEMENT OF TLGP OVER THE BENCHMARK

MODELS IN WIND FARM “A”

in “A,” while the skill score over persistence is less than that

in “A.” This suggests that for such wind farm with smaller

capacity, the performance drops of other advanced models are

more obvious than that of TLGP. In other words, TLGP shows

more advantage over those advanced benchmarks for power

forecasting of smaller wind farms.

VI. PROBABILISTIC ANALYSIS OF ERROR DISTRIBUTION

A. Statistical Analysis of Error Distribution

Although, in those examples, the proposed TLGP has shown

its advantages, those results are not enough to guarantee that

TLGP will outperform other models regardless of different

wind farms at various time of the year. For farms with more

Fig. 6. Forecasting error comparison of wind farm “B.” (a) MAE. (b) RMSE.

(c) MASE.

TABLE IV

IMPROVEMENT OF TLGP OVER THE BENCHMARK

MODELS IN WIND FARM “B”

condensed severe ramping events in a particular time of the

year, the result would be less satisfactory. For example, taking

one wind farm in Ireland, the hourly wind generation varies fast

as shown in Fig. 7. In such case, the TLGP would not beat other

models over all horizons. In order to examine the suitability of

the proposed method, the distribution probability of forecasting

residuals is analyzed.

The ideal model for forecasting a time-series wind power

output is expected to generate regular residuals that follow

Gaussian distribution, while any nonlinearity or non-Gaussian

distribution in the process is either captured by the model or

eliminated through modeling. Further, the smaller the vari-

ance, the better quality the forecasting results. In this part,

1500 outputs from Fig. 7 are predicted with five methods,
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Fig. 7. Wind generation in a wind farm of Ireland.

respectively, and the generated residuals for each horizon fore-

casting are divided into 30 even intervals according to their

range. The number of residuals in each interval could be statis-

tically counted and a bar chart could be sketched. In this way,

the probability of the residuals falling on each interval could

be calculated and the profile of the overall chart will reflect

the distribution of forecasting errors. Fig. 8 shows the analysis

result of 3-h ahead forecasting. The forecasting with persis-

tence and ARMA model in (a) and (d) are most unlike Gaussian

distribution. The error stay in the range of (−0.2, 0.2), but

the distribution is severely asymmetric and the profiles do not

follow the shape of Gaussian distribution. Such shortages are

improved in the forecasting by GP and RBF resorting to the

more symmetric bars in (b) and (c). However, at some parts of

the profiles, the probability changes linearly rather than expo-

nentially, which shows the flaws of such forecasting. In (e),

TLGP generates some large errors in forecasting some ramping

events. Although those errors approach −0.5 in the horizon-

tal axis, TLGP makes the most asymmetric forecasting in the

most probable confidence region from (−0.2, 0.2). Moreover,

the peak probability of (e) is approaching 15%, which is an

exponential rise from the intervals beside it.

Those comparisons and the analysis show that the profile

of TLGP forecasting residuals follows Gaussian distribution

better. Such result proves the effectiveness of the proposed con-

cept of “moving window”: the new output will follow one joint

Gaussian distribution with the local window rather than the total

available generation data. In the next section, such statement

will be verified quantitatively.

B. Quantitative Verification of Error Distribution

Skewness and kurtosis are two main metrics to evaluate

the shape of variable distribution. While skewness measures

whether the distribution is symmetric, kurtosis evaluates how

tall and sharp the central peak is. For the distributions with zero

mean, the metrics can be expressed as follows:

s = E
(

ε3
)

/σ3 (18)

k = E
(

ε4
)

/σ4 (19)

where σ refers to the standard deviation and ε denotes forecast-

ing error.

For the errors at different forecasting horizons, both metrics

are calculated and the results are shown in Table V. If skew-

ness is positive, the data are positively skewed meaning that the
Fig. 8. Forecasting error distribution with five separate methods.

(a) Persistence. (b) GP. (c) RBF. (d) ARMA. (e) TLGP.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

TABLE V

SKEWNESS OF ERROR DISTRIBUTION PREDICTED

WITH DIFFERENT METHODS

Fig. 9. Skewness of residuals at varied horizons predicted with five methods.

TABLE VI

KURTOSIS OF ERROR DISTRIBUTION PREDICTED

WITH DIFFERENT METHODS

right tail of the distribution is longer than the left. Otherwise, it

is called negatively skewed. If skewness is between −0.5 and

+0.5, the distribution is approximately symmetric. It can be

found that for those three methods, the error distributions are

about symmetric at all horizons. In Fig. 9, the skewness trends

of five methods with respect to horizons are sketched. In the

first three steps, TLGP loses to the other four due to bigger

skewness (reflected by long left tail in Fig. 8), but it returns

and stabilizes around the desired zero skewness in the follow-

ing horizons showing its better ability in producing symmetric

errors.

The kurtosis of the obtained residual distribution is shown in

Table VI. A normal distribution has a kurtosis of exact 3. So, the

errors at different horizons all follow a near-Gaussian distribu-

tion. In Fig. 10, it shows the comparison of kurtosis produced

by five different methods at different horizons. The finding is

that kurtosis of TLGP residuals is the nearest to that of standard

Gaussian distribution denoted with dashed line.

Therefore, the probabilistic analysis of forecasting error is

obtained. Such results can be applied further to the energy stor-

age system design and economic marketing. The skewness and

kurtosis comparison shows that the error produced by TLGP is

most likely Gaussian. Such analysis reflects that the proposed

TLGP fits best to the wind power modeling.

Fig. 10. Kurtosis of residuals at varied horizons predicted with five methods.

VII. CONCLUSION

In this paper, a hybrid deterministic–probabilistic wind

power forecasting method TLGP has been developed to adapt

to the time-varying characteristic of wind power, to overcome

the computation difficulty of the standard GP, and to gener-

ate statistic error distribution results. The effectiveness of the

proposed method has been verified by its application to two

wind farms in USA and Ireland, respectively. The multistep

forecasting results from 1 to 12 h have been analyzed and com-

pared with four benchmark models in terms of three metrics

(RMSE, MAE, and MASE). Moreover, the forecasting residu-

als with these methods are analyzed to check the deviation from

standard Gaussian distribution.

It has been demonstrated that the proposed hybrid

deterministic–probabilistic method reduces the computational

complexity during the learning and inference process compared

to the standard GP. Moreover, the proposed approach shows

great effectiveness at overcoming time-varying characteristic at

the two wind farms by producing a smaller forecasting error

than those of other models. Although it displays less advantage

in forecasting ramp events, the statistical error analysis shows

that TLGP produces residuals that are most likely Gaussian.

This finding reveals an important advantage of TLGP from a

probabilistic standpoint.
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