
This is a repository copy of BlueIO: A Scalable Real-Time Hardware I/O Virtualization 
System for Many-core Embedded Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/142919/

Version: Accepted Version

Article:

Jiang, Zhe and Audsley, Neil Cameron orcid.org/0000-0003-3739-6590 (2019) BlueIO: A 
Scalable Real-Time Hardware I/O Virtualization System for Many-core Embedded 
Systems. ACM Transactions in Embedded Computing Systems. ISSN 1558-3465 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1

BlueIO: A Scalable Real-Time Hardware I/O Virtualization
System for Many-core Embedded Systems

ZHE JIANG, University of York, UK

NEIL AUDSLEY, University of York, UK

In safety-critical systems, time predictability is vital. This extends to I/O operations which require predictability,

timing-accuracy, parallel access, scalability, and isolation. Currently, existing approaches cannot achieve all

these requirements at the same time. In this paper, we propose a framework of hardware framework for

real-time I/O virtualization termed BlueIO to meet all these requirements simultaneously.

BlueIO integrates the functionalities of I/O virtualization, low layer I/O drivers and a clock cycle level

timing-accurate I/O controller (using the GPIOCP [36]). BlueIO provides this functionality in the hardware

layer, supporting abstract virtualized access to I/O from the software domain. The hardware implementation

includes I/O virtualization and I/O drivers, provides isolation and parallel (concurrent) access to I/O operations

and improves I/O performance. Furthermore, the approach includes the previously proposed GPIOCP to

guarantee that I/O operations will occur at a specific clock cycle (i.e. be timing-accurate and predictable).

In this paper, we present a hardware consumption analysis of BlueIO, in order to show that it linearly scales

with the number of CPUs and I/O devices, which is evidenced by our implementation in VLSI and FPGA. We

also describe the design and implementation of BlueIO, and demonstrate how a BlueIO-based system can

be exploited to meet real-time requirements with significant improvements in I/O performance and a low

running cost on different OSs.

CCS Concepts: · Computer systems organization → Embedded hardware; Real-time system archi-

tecture; · Hardware → Reconfigurable logic and FPGAs;

Additional Key Words and Phrases: Safety-critical System, Real-time System, Predictability, Timing-accuracy,

Scalability, Virtualization.
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1 INTRODUCTION

In safety-critical systems, meeting real-time requirements is key. For example, to assure a timely
reaction when critical situations occur (e.g. the braking operation of a car always has to be handled
within a hard deadline [50]), and to guarantee accurate control I/O devices (e.g. an automotive
engine requires I/O timing accuracy to inject fuel at the optimal time [44]). This leads to the
following requirements:

(1) Predictability [24] ś I/O operations can be always handled within a fixed time duration.
(2) Timing-accuracy [36] ś I/O operations occur on an exact clock cycle.
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(3) Parallelism ś many I/O operations can occur in parallel to accurately control a different
number of I/O devices simultaneously, e.g. the multiple engines on UAVs may require accurate
I/O simultaneously in order to achieve stability in flight [39].

(4) Isolation ś I/O operations require isolation to prevent interference from other parts of the
system that may disrupt timing [35].

Currently, existing approaches do not meet all these requirements, e.g. [9, 22, 23, 34]. In this paper,
we propose the BlueIO system to address these requirements simultaneously. BlueIO is a scalable
hardware-implemented real-time I/O virtualization system, which integrates I/O virtualization and
a ready-built timing-accurate I/O controller (GPIOCP [36]). We note that virtualization enables
isolation and parallel access for I/O operations [43]. Also, the GPIOCP guarantees the predictability
and timing-accuracy for I/O operations [36]. Additionally, the hardware consumption of BlueIO
scales linearly as the number of CPUs and I/Os increases, resulting from its modularized design.

1.1 I/O Virtualization

In safety-critical systems, the use of virtualization has been proposed to support isolation of
executing software in terms of both CPU and I/O [43] [29] [33] [51]. Specifically, in a virtualized
system, the Virtual Machines (VMs) are independent and logically isolated, which means the I/O
operations requested from different VMs can never interfere with each other [21, 49? ]. Meanwhile,
these I/O operations are also prevented from being affected by the other VMs [? ]. I/O virtualization
also enables increased resource utilization, reduced volume and cost of hardware [21, 49].

However, I/O virtualization involves complex I/O access paths (i.e. indirection and interposition
of privileged instructions) and complicated shared I/O resource management (i.e. scheduling and
prioritization) [37, 49], resulting in decreased I/O performance, increased software overhead, and
poor scalability etc [37, 49]. That is, predictability and timing accuracy are difficult to achieve with
I/O virtualization.
I/O virtualization relies on hardware support, and today’s chip manufacturers have included

different hardware features in order to mitigate the penalties suffered by traditional I/O virtual-
ization [21, 46, 49]. Intel’s Virtualization Technology for Directed I/O (VT-D) [34] provides direct
I/O access from guest VMs. The IOMMU [22] is used in commercial PCI-based systems to offload
memory protection and address translation, in order to provide a fast I/O access from guest VMs.
These commonly used hardware-based I/O virtualization approaches simplify the I/O access, but
do not support predictable timing-accurate I/O for real-time systems [21, 25, 36, 49].

1.2 Real-time Properties of I/O Operations

Latencies caused by device drivers and application process scheduling make predictable and timing-
accurate I/O operations difficult to achieve. One solution is a dedicated CPU for I/O, which has
limited scalability. Alternatively, application software handling I/O can be executed at the highest
priority by the interrupt handler of a high-resolution timer (e.g. the nanosecond timer provided by
an RTOS [17, 18]), although handling multiple parallel I/O operations (for different devices) with
sufficient timing accuracy is not easy using this approach. Also the transmission latencies from a
CPU to an I/O controller can be substantial and variable due to the communication bottlenecks and
contention. For example, in a bus-based many-core system, the arbitration of the bus and the I/O
controller may delay the I/O request. For a Network-on-Chip (NoC) architecture, the arbitration of
on-chip data flows across the communications mesh will also increase latencies.

With I/O virtualization, these issues are magnified even further, due to complex I/O access paths
(i.e. indirection and interposition) [21]. Specifically, if an application invokes an I/O request from a
guest Virtual Machine(VM), this I/O request will be transmitted through front-end drivers (in guest
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OS), back-end drivers (in Virtual Machine Monitor (VMM)), and host OS (See Figure 1). Hence, it is
difficult for an application from a guest VM to achieve predictable and timing-accurate I/O.
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Fig. 1. Flow of I/O Request in Traditional Virtualization System

1.3 Contributions

The contributions of the paper are:

• A scalable hardware-implemented real-time I/O virtualization system, termed BlueIO with
the following features:

(1) BlueIO enables I/O virtualization, so that I/O operations requested from different VMs are
isolated (requirement 4), and able to access different I/O devices simultaneously (require-
ment 3).

(2) BlueIO integrates the real-time timing-accurate I/O controller GPIOCP, to enable predictable
and timing-accurate I/O operations (requirement 1 & 2), whilst maintaining isolation and
parallel accesses.

(3) BlueIO integrates I/O drivers, and provides abstracted high-layer access interfaces to
software (Guest VMs), which simplify the I/O access paths and improve I/O performance.

• Experimental results to demonstrate how BlueIO-based virtualization predictable and timing-
accurate I/O (requirement 1 and 2), with decreased software overhead, improved I/O perfor-
mance.

• A hardware consumption analysis of BlueIO, in order to show that hardware costs linearly
scale as the number of CPUs and I/O devices increases.

1.4 Organization

This paper is organized as follows. Section 2 describes the system model. Section 3 proposes
the design of the BlueIO real-time I/O virtualization system. Section 4 discusses the specific
implementation details of the BlueIO, followed by its hardware consumption analysis in Section 5.
Section 6 presents the performance evaluation of a BlueIO-based system. Section 7 discusses related
work, with conclusions and future work offered in Section 8.

2 SAFETY-CRITICAL REAL-TIME I/O SYSTEM

In this paper, we assume that timing predictability, timing-accuracy, parallel accesses, isolation,
and scalability are simultaneously required by applications. We assume that applications are
implemented on a multi-core system, specifically an embedded NoC (although BlueIO is architecture
agnostic), with a single synchronized timng source to enable the cycle accuracy of multiple I/O
devices in parallel.
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In standard computer and embedded architectures, an I/O system can be evaluated via multiple
metrics, e.g. memory footprint, I/O throughput, etc [36, 37]. Additionally, the safety-critical real-
time I/O systems require predictability, timing-accuracy, parallel accesses, isolation and timing
scalability. Among these characteristics, predictability and parallel accesses have been addressed,
e.g. in [36] and [37] (see Section 6). This paper proposes, within the BlueIO system, support for
timing predictability and isolation for I/O (see Section 3).

In this section, we describe the timing-accuracy and scalability models respectively, in order to
assess the timing-accuracy and scalability of an I/O system in later sections.

2.1 Timing-Accuracy Model

The error in the timing-accuracy of I/O operations is defined as the absolute time difference between
the time at which an I/O operation is required (Tr ) and the actual time that the I/O operation (e.g.
read) occurs (Ta ):

E = |Tr −Ta | (1)

Thus a smaller E implies a higher timing-accuracy of the I/O operation. If E equals 0, the I/O
operation occured at the expected time ś i.e. totally timing-accurate. In practice, if E is less than
one cycle period, then the I/O operation occurred at the required clock cycle.

The timing-accuracy of existing single-core, multi-core (Bus-based) and many-core (NoC) archi-
tectures can be assessed by constructing a system on FPGA and measuring the effect of the latencies
between application and I/O device on the timing-accuracy of the I/O. Errors found in 1000 test
runs for four systems are given in Table 1 (further experiment design is described in the technical
report [5]). It is clear that even in a single-core system, E is not close to a single cycle, with the
timing error in multi-core and many-core systems considerably worse due to the communication
bottlenecks and contention of the system. With a VMM added, this issue is magnified even further.
Note that the experiment merely measures hardware latencies (across buses/NoC meshes) of I/O
instructions issued by the application CPU ś clearly software effects (control/data flow within

Table 1. The Errors in Timing-accuracy of I/O Operations In Two Typical Systems (unit: ns)

CPU Index
E

Minimum Median Mean Maximum

Single-Core Architecture
2090.0 2090.0 2012.5 2100.00

Bus-based Multi-Core Architecture (2 CPUs)
Core 0 2440.0 2480.0 2477.2 2500.0
Core 1 2446.0 2450.0 2470.0 2490.0

NoC-based Many-core Architecture (9 CPUs)
(0,0) 3140.0 3140.0 3145.8 3160.0
(0,1) 3000.0 3000.0 3005.8 3020.0
(0,2) 2790.0 2790.0 2795.8 2810.0
(1,0) 2720.0 2720.0 2725.8 2740.0
(1,1) 3070.0 3070.0 3075.8 3090.0
(1,2) 2860.0 2880.0 2899.4 2940.0
(2,0) 2580.0 2580.0 2585.8 2600.0
(2,1) 2650.0 2650.0 2655.8 2670.0
(2,2) 2860.0 2930.0 2902.2 2950.0

NoC-based Many-core Architecture (9 CPUs)
with VMM (Round-Robin Scheduling Policy)

(0,0) 4220.0 4220.0 4045.6 4260.0
(0,1) 4000.0 4000.0 4010.2 4080.0
(0,2) 3800.0 3800.0 3890.8 3920.0
(1,0) 3780.0 3780.0 3802.2 3840.0
(1,1) 4070.0 4070.0 4078.8 4100.0
(1,2) 3860.0 3880.0 3920.0 4000.0
(2,0) 3620.0 3620.0 3670.8 3760.0
(2,1) 3710.0 3710.0 3715.2 3770.0
(2,2) 3860.0 3930.0 3940.2 3980.0
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code), scheduling (amongst competing software tasks), the Real-Time OS system calls and the
implementation of I/O virtualization would add considerably to the overall latencies in Table 1.

2.2 Timing Scalability Model

The scalability of an I/O system in terms of its timing can be considered by evaluating the average

response time of an I/O device (R) in a many-core system with different numbers of CPUs, whilst

CPU and I/O are fully loaded. Ideally, the average I/O response time (RN ) in a n-core system should

be n times the average I/O response time as in a single-core system (R1). Such a system would be
timing scalable. The difference between the actual and ideal average I/O response time in a n-core
system is termed the performance loss of the I/O system, defined as ∆R:

∆R = RN − n ∗ R1 (2)

The average I/O performance loss suffers to each CPU is calculated as ∆r :

∆r =
RN − n ∗ R1

n
(3)

In a many-core system, if ∆r = 0, it means no loss of I/O performance occurred compared to a
single-core system. Conversely, a larger ∆r implies the reduction of I/O performance, and reduced
timing scalability of the evaluated I/O system.
The timing scalability of an I/O system can be evaluated in existing single-core, multi-core

(Bus-based) and many-core (NoC-based) architectures with different numbers of cores. The average
I/O response time of reading one byte data from an SPI NOR-flash and corresponding ∆r in different
architectures with software implemented VMM can be found in Table 2 (further experiment design
is described in [5]). It is clear that in traditional I/O virtualized many-core systems, with the
number of CPUs increased, ∆r is increased drastically, which implies a significant reduction of I/O
performance and limited scalability of the I/O system.

Table 2. Scalability Model in Different Virtualized Many-core Systems (unit: clock cycle)

Software VMM
(Scheduling Policy: RR)

Software VMM
(Scheduling Policy: FIFO)

CPU Index R ∆r R ∆r

NoC-based Many-core Architecture (1 CPU)
Single-core
Architecture

513 0 408 0

NoC-based Many-core Architecture (4 CPUs)
(0,0) 9015

1750

2916

284
(0,1) 8995 2875
(1,0) 9213 2638
(1,1) 8985 2645

NoC-based Many-core Architecture (9 CPUs)
(0,0) 36060

3535.8

9357

496.5

(0,1) 35860 8915
(0,2) 36049 8415
(1,0) 36237 8203
(1,1) 36410 9748
(1,2) 36576 7476
(2,0) 36741 7467
(2,1) 36930 7576
(2,2) 37102 6121
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3 SAFETY-CRITICAL REAL-TIME I/O SYSTEM DESIGN

BlueIO is an integration of I/O virtualization, low layer I/O drivers and clock cycle level timing-
accurate I/O control (the latter is built using GPIOCP [36]) ś all within the hardware layer, mean-
while providing abstracted high-layer access to software layers (Guest VMs).

I/O virtualization provides isolation and parallel access to I/O operations. The hardware imple-
mentation of I/O virtualization offloads most of the virtualization overhead into hardware, with
guest OSs executing in ring 0 with full privilege. Therefore, indirection and interposition of I/O
requests are not required. The hardware implemented low layer I/O drivers reduce I/O access paths
and improve the I/O performance significantly. The deployment of the GPIOCP guarantees that
I/O operations will occur at a specific clock cycle (i.e. are timing-accurate and predictable).

3.1 General Architecture

Figure 2 depicts the proposed general embedded virtualization architecture. The RTOS kernel in
each VM can be executed in kernel mode (ring 0) to achieve full functionality. Also, the architecture
provides a environment suitable for the execution of real-time applications with deadlines. Finally,
the I/O system, running in hardware, is responsible for I/O virtualization, physical isolation between
VMs, and providing high layer access interfaces for user applications (in Guest VMs).

App
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User Mode
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High Layer I/O Driver
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Fig. 2. Embedded Virtualization Architecture

3.2 Virtual Machine (VM) and Guest OS

In our proposed approach, each CPU has an individual guest VM. The virtualization in the system
has the following features:

• Bare-metal virtualization [49] ś a guest OS can be executed on a CPU directly, without host
OS. Therefore, a guest OS is able to execute in kernel mode to achieve full functionality;

• Para-virtualization [41] ś an I/O management module in each guest OS has to be replaced by
high level I/O drivers, which enables smaller OS software footprint and simplified I/O access
paths.

For the proposed design, three OS kernels have been modified to support I/O virtualization [20]:
FreeRTOS [8], uCosII [3] and Xilkernel [4]. In Figure 3, we use FreeRTOS as an example to demon-
strate this modification. Compared with the original FreeROTS kernel (Figure 3(a)), user applications
running on a modified kernel (Figure 3(b)) are able to access I/O via high layer I/O drivers, which
are independent from FreeRTOS kernel. User applications designed for the original OS kernel can
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Fig. 3. Traditional and Modified FreeRTOS Kernels

be ported to the modified kernel directly (without any modification), since we have not modified
the OS interfaces (OS APIs).
The architecture builds upon three existing technologies, the Virtualized Complicated Device

Controller (VCDC) [37], GPIOCP [36] and BlueTree [30ś32] which are introduced in Section 4.1.
The full implementation of the BlueIO architecture is described in Section 4.

4 BLUEIO IMPLEMENTATION

BlueIO is included in the BlueTiles 2D mesh type open source NoC [47]. The use of a NoC is not
required by BlueIO, because it is a general-purpose I/O system, which is agnostic to the type of bus
and the software running on CPUs. To support a complete BlueIO system, the platform requires:

• Communication channels between BlueIO and CPUs;
• A global synchronization timer;
• A memory access interface ś in the proposed design, BlueTree [31] is adopted as the memory
access interface (see Section 4.5).

The use of BlueIO within BlueTiles is shown in Figure 4. BlueIO is physically connected to the
home port (via the physical link) of a router, the global timer T , and the memory access interface
(BlueTree).

4.1 Structure of BlueIO

BlueIO contains four main modules (see Figure 5):

• BlueGrass Ð is a communication interface between application CPUs, VCDC [36], I/O con-
trollers and external memories (DDR);

• Virtualized Complicated Device Controller (VCDC) [36] Ð integrates functionalities of I/O
virtualization and low layer I/O drivers. Note that the VCDC is the component mainly
handling the scheduling policy of I/O requests in BlueIO (for more details, see Section 4.3
and [37]).

• GPIO Command Processor (GPIOCP) [36] Ð is a programmable real-time I/O controller, that
permits applications to instigate complex sequences of I/O operations at an exact single clock
cycle;

• BlueTree [30ś32] Ð provides an interface to access memory and DMA.

These four modules are now introduced in the following sections.
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4.2 BlueGrass

BlueGrass is the communication interface between application CPUs and BlueIO, and includes four
communication interfaces:

• Interface from/to application CPUs;
• Interface from/to I/O controllers;
• Interface from/to VCDC;
• Interface from/to the external memory.

BlueGrass is physically connected to the NoC mesh (BlueTiles) and the memory access interface
(BlueTree). Additionally, I/O controllers can be directly connected to the Bluegrass to maintain
original functionality, or indirectly connected to the VCDC to acquire I/O virtualization.

The structure of BlueGrass (see Figure 6) contains two parts: downward path and upward path.
The downward path is responsible for sending either I/O control commands or transferring data to
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I/O devices. The upward path is responsible for sending I/O responses back to application CPUs,
and data from I/O to CPUs or external memories.
Implementationally, the downward path consists of three half-duplex multiplexers and a FIFO.

The 2-into-1 multiplexer connected to BlueTile[47] and BlueTree[30] is designed to receive, and
then queue the I/O requests and data fetched from memory to the downward FIFO. The downward
FIFO allocates these queued I/O requests and data to a specified I/O according to the format of
packets (see [20]). The upward path consists of two arbiters, one half-duplex multiplexer and one
FIFO. The arbiters determine the served sequence of I/O response and memory requests sent from
each I/O. In order to prevent one single I/O dominating the upward path, and to be able to satisfy
the requirement that the I/O system can be time-predictable, we have provided multiple real-time
scheduling policies to both arbiters, including Round-Robin, fixed priority, and FIFO. In addition,
users are also allowed to add a custom scheduling policy to the arbiters via our provided interface
(see [20]). The upward FIFO and the connected 1-into-2 multiplexer are responsible for sending I/O
responses and memory requests out of the BlueIO system.

4.3 Virtualized Complicated Device Controller (VCDC)

In [37], the Virtualized Complicated Device Controller (VCDC) was proposed, to implement I/O
virtualization and I/O drivers into hardware. The VCDC can be physically connected to a many-core
system, which is composed by two main parts (see Figure 7):

• I/O VMM ś maintains the virtualization of I/O devices.
• Low Layer I/O Drivers ś encapsulates specific I/O drivers for a specific I/O controller (eg.
read the data from a specific address of the SPI NOR-flash).

The I/O VMM has two main responsibilities:

(1) Interpreting I/O requests (sent from a guest OS) to the actually I/O instructions (used to
control a physical I/O);

(2) Scheduling and allocating the interpreted I/O instructions to physical I/O.

Considering that the functionalities and features of I/O devices are different, it is challenging to
build a general purpose module to achieve virtualization for all kinds of I/O devices. Therefore,
we create some specific-purpose I/O VMM for those commonly used I/O devices, including UART,
VGA, DMA, Ethernet, etc. Additionally, users can also easily add their custom I/O VMM into VCDC
via our provided interfaces (see technical report [20]).
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Further details of VCDC design and implementation can be found in [20, 37].
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Fig. 7. Structure of VCDC

4.4 GPIO Command Processor (GPIOCP)

In [36], the GPIO Command Processor (GPIOCP) was proposed. It is a resource efficient pro-
grammable I/O controller that permits applications to instigate complex sequences of I/O operations
(off-line) at an exact time, so providing timing-accuracy of a single clock cycle. This is achieved by
loading application specific programs into the GPIOCP which then generates a sequence of control
signals over a set of General Purpose I/O (GPIO) pins, eg. read/write. Applications then are able to
invoke a specific program at run-time by sending the GPIO command, e.g. run command X at time t

(in the future).
GPIOCP achieves cycle level timing-accuracy as the latencies of I/O virtualization and commu-

nication bus are eliminated. For example, a periodic read of a sensor value by an application can
be achieved by loading the GPIOCP with an appropriate program, then at run-time the GPIOCP
issues a command such as run command X at time t and repeat with period Z ś the values are read
at exact times, with the latency of moving the data back to the application considered within that
application’s worst-case execution time.

The GPIOCP can be physically connected to a many-core system or VCDC, which is composed
of four main components (see Figure 8):

• Hardware manager ś Communicates with application CPUs, allocating incoming messages
to either the command memory controller (to store new commands) or the command queue
(to initiate an existing command).

• Command memory controller ś Stores a new GPIO command into the storage units; and
accesses an existing GPIO command for execution by a GPIO CPU (within the command
queue).

• Command queue ś Allocates GPIO commands to GPIO CPUs for execution (cooperate
with command memory controller). Each GPIO CPU is a simple finite state machine, with
guaranteed execution time so achieving timing-accuracy.
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• Synchronization processor ś Synchronises the values of I/O pins, which may be written by
different GPIO CPUs and I/O devices.

Further details can be seen in [36] and [5].

4.5 BlueTree

BlueTree is a tree-like memory interconnect built for many-core systems, which enables time-
predictable memory read/write from a scaled number of CPUs and I/Os [31] [30]. The BlueTree
memory interconnect is designed to support the memory requirements of modern systems, leaving
the NoC communications mesh for core-to-core communication only. BlueTree distributes memory
arbitration across a set of 2-into-1 full-duplex multiplexers, each with a small arbiter (see Figure 9),
rather than using a large monolithic arbiter next to memory. This allows the BlueTree to be scalable
and enable a larger number of requesters at a higher clock frequency than would be available with
a single monolithic arbiter.

In order to prevent a single core dominating the tree, and to be able to satisfy the requirement that
the memory subsystem is time-predictable, each multiplexer contains a blocking counter, which
encodes the number of times that a high-priority packet (i.e., a packet from the left) has blocked a
low-priority packet (i.e., a packet from the right). When this counter becomes equal to a fixed value
m, the counter is reset and a single low-priority packet is given service. This ensures that there
is an upper bound for the WCET of a memory transaction. Note that the memory accesses in a
BlueIO-based system may affect the real-time properties of the whole system. This paper focusses
on the timing of I/O ś specific timing analysis of BlueTree is given in [30, 31, 50].

5 HARDWARE CONSUMPTION ANALYSIS

In this section, the hardware consumption of BlueIO is analyzed regarding its scalability. Firstly,
an analysis is given to describe the hardware consumption of BlueIO; secondly, actual hardware
consumption of BlueIO in VLSI (logic gates) and FPGA (LUTs, registers, and BRAMs) is given.
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In this hardware consumption analysis, we assume:

• Only BlueIO is included ś hence BlueTree is not included (as the functionality of BlueTree is
memory access, which is not necessary for I/O);

• An independent I/O request buffer (buffer pool in VCDC) and an independent I/O request
execution unit (GPIOCPU in GPIOCP) are allocated to each CPU ś therefore, the number of
buffer pools and GPIOCPUs in BlueIO equals to the number of CPUs in the whole system.

The following terms are introduced:

• Number of CPUs in the system:m;
• Number of I/Os in the system: n;
ś I/Os are indexed as from IO_1 to IO_n: UART Ð IO_1, SPI flash Ð IO_2, VGA Ð IO_3, and
Ethernet Ð IO_4.

• Hardware consumption: C , where Cm,n
x gives the hardware consumption of module x depen-

dent on the number of CPUs (m) and I/Os (n) respectively.

In the analysis, we define the hardware consumption of a 1-CPU BlueIO system with GPIOCP

(Cm=1,n=0
BIO

) as the basic BlueIO system. We also define the difference between them-CPU and n-IO

BlueIO (Cm,n

BIO
) and the basic BlueIO system as ∆Cm,n

BIO
. Therefore, the hardware consumption of a

m-CPU and n-IO BlueIO system can be calculated as:

C
m,n

BIO
= C

m=1,n=0
BIO

+ ∆C
m,n

BIO
(4)

Similarly, the variation of hardware consumption of the m-CPU and n-IO VCDC and GPIOCP
compared with the basic systems are ∆Cm,n

VCDC
and ∆C

m,n

GPIOCP
respectively:

C
m,n

GPIOCP
= C

m=1,n=0
GPIOCP

+ ∆C
m,n

GPIOCP
(5)

C
m,n

VCDC
= C

m=1,n=0
VCDC

+ ∆C
m,n

VCDC
(6)

BlueIO is comprised by BlueGrass, VCDC, and GPIOCP (See Figure 5). Since the hardware
consumption of BlueGrass is constant, the variation of hardware consumption in BlueIO (∆Cm,n

BIO
)

equals to the sum of the variation of hardware consumption occurred in VCDC (∆Cm,n

VCDC
) and

GPIOCP (∆Cm,n

GPIOCP
):

∆C
m,n

BIO
= ∆C

m,n

VCDC
+ ∆C

m,n

GPIOCP
(7)
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The hardware consumption of the VCDC (see Figure 7) is dominated by I/O VMMs and buffer pools
(around 99%). Hence we consider VCDC hardware consumption as the summation of I/O VMMs
(CV IO_i ) and buffer pools (CBP ) and ignore the effects from the other variables. In the proposed
design, the hardware consumption of an I/O VMM (CV IO_i ) and a buffer pool (CBP ) are constant.
Additionally, the number of I/O VMMs equals the number of I/Os, meanwhile, the number of
buffer pools equals the number of CPUs. Therefore, the increased hardware consumption of VCDC
(∆Cm,n

VCDC
) is calculated as:

∆C
m,n

VCDC
≈

n∑

i=1

(CV IO_i +m ∗CBP ) (8)

For the GPIOCP (see Figure 8), the only variation in its hardware consumption is the number of
GPIOCPUs (CGCPU ), which equals the number of CPUs in the system. Therefore, the variation of
hardware consumption of GPIOCP (∆CGPIOCP ) is calculated as:

∆Cm

GPIOCP
= (m − 1) ∗CGCPU (9)

Combining equations 4, 7, 8, and 9 gives the hardware consumption of BlueIO to be:

C
m,n

BIO
= C

m=1,n=0
BIO

+

n∑

i=1

(CV IO_i +m ∗CBP ) + (m − 1) ∗CGCPU (10)

Expanding gives:

C
m,n

BIO
= C

m=1,n=0
BIO

+

n∑

i=1

CV IO_i + (m − 1) ∗CGCPU +m ∗ n ∗CBP (11)

Equation 11 shows that the hardware consumption of implementing BlueIO:

• scales linearly in the number of I/Os (n), while the number of CPUs (m) is constant;
• scales linearly in the number of CPUs (m), while the number of I/Os (n) is constant.

5.1 Implementing BlueIO in VLSI

This section shows that the implementation of BlueIO in VLSI has scalable hardware consumption
at the gate level. Firstly, we use the Cadence RTL encounter compiler (v11.20) [6] to synthesise and

provide gate level hardware consumption of each basic component in BlueIO, i.e.Cm=1,n=0
BIO

,CGCPU ,
CBP , and CV IO_n (see Table 3). Secondly, we synthesis BlueIO with different numbers of CPUs and
I/Os and give their gate level hardware consumption in Table 4. Note that OSU _SOC_v2.5 [7] is
the open source MOSIS SCMOS TSMC 0.25um library used in the synthesis. The consumption of
logic gates may be varied by a specific synthesis compiler and adopted synthesis library.

Table 3. Hardware Consumption of Basic Modules (Gate Level)

Component C
m=1,n=0
BIO

CGCPU CBP CV IO_1 CV IO_2 CV IO_3 CV IO_4

AND 201 64 47 328 621 512 981
AOI 1,085 369 36 1,502 2,381 2,201 4,523

DFFPOS 1,020 382 54 1,196 2,021 1,981 3,708
HA 12 6 1 13 18 15 60
INV 1,346 666 59 1,621 2,531 2,512 5,128
MUX2 7 5 0 10 14 16 80
NAND 745 477 70 1,253 1,573 1,789 3,001
NOR 572 248 25 7,61 1,221 1,201 2,401
OAI 633 420 35 1,066 1,652 1,602 3,101
OR 115 35 2 62 141 142 250

XNOR 9 10 0 26 40 36 32
XOR 10 6 3 21 20 20 52

Total 5,755 2,688 332 7,859 12,233 12,027 23,317
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Table 3 shows that I/O VMM (CV IO_n) consumes more gates when compared with GPIOCPU
(CGCPU ) and buffer pool (CBP ). Therefore, even though the hardware consumption of BlueIO scales
linearly in the number of CPUs (m) and I/Os (n) (see Equation 10), the number of I/Os (n) and
the specific implementation of corresponding I/O VMMs (CV IO_n) dominate overall hardware
consumption.

Table 4. Hardware Consumption of BlueIO (Gate Level)

C
m=1,n=0
BIO

+ IO_1 + IO_2 + IO_3 + IO_4

Numb. CPUs 1 1 2 4 1 2 4 1 2 4 1 2 4
AND 201 292 381 482 529 550 680 1,006 1,205 1,379 1,921 2,025 2,150
AIO 1,085 1,579 1,996 2,852 2,573 2,988 3,925 4,769 5,268 6,233 9,222 9,852 10,850

DEEPOS 1,020 1,288 1,695 2,512 2,188 2,776 3,752 3,988 4,520 5,425 7,588 7,992 8,895
HA 12 47 52 68 27 34 48 39 46 59 98 106 120
INV 1,346 1,801 2,623 4,156 2,909 3,650 5,125 5,371 6,210 7,685 10,307 11,125 12,650
MUX2 7 16 21 32 16 20 33 31 38 48 113 125 141
NAND 745 972 1,525 2,487 1,876 2,501 3,602 3,449 4,000 5,153 6,330 6,952 8,053
NOR 572 729 1,051 1,753 1,233 1,666 2,325 2,350 3,052 3,752 4,661 5,125 6,002
OAI 633 775 1,325 2,423 1,694 2,050 3,112 3,241 3,825 4,057 6,337 6,925 8,125
OR 115 83 125 193 182 252 388 312 388 412 579 628 755

XNOR 9 7 19 43 29 41 65 64 79 102 96 113 141
XOR 10 16 28 49 27 39 57 46 55 71 91 102 115

Total 5,755 7,605 10,841 17,050 13,283 16,567 23,112 24,666 28,686 34,376 47,343 51,070 57,997

Table 4 shows that the hardware consumption of BlueIO increases linearly with the number
of CPUs (m) and I/Os (n) respectively. Specifically, if the number of I/Os (n) is fixed, hardware
consumption may increase slightly as the number of CPUs (m) scales. Similarly, ifm is fixed, the
hardware consumption increases linearly as the number of I/Os increase. Additionally, the types of
I/O included can also affect the hardware consumption Ð the logic gates required for a simple I/O

(eg. Cm=1,n=0
BIO

with IO1) is far less than a complicated I/O (e.g. Cm=1,n=0
BIO

with IO4).

5.2 Hardware Consumption in RTL Level (FPGA)

Vivado (v2016.2) was used to synthesis and implement BlueIO on Xilinx VC709 FPGA board [14]
with increasing numbers of I/Os and CPUs. The hardware consumption of BlueIO was recorded
at the RTL level in terms of LUTs, registers, BRAMs, power consumption and maximum working
frequency.

Table 5. Hardware Consumption of 2-CPU BlueIO with Different I/Os on FPGA (RTL Level)

Added I/O
Hardware Consumption Power

(mW)
Maximum
Frequency
(Mhz)

LUTs
% of
VC709

Register
% of
VC709

BRAMs
% of
VC709

DSP
% of
VC709

+ UART 2192 0.12% 1471 0.17% 0 0% 0 0% 13 221.8
+ VGA 4566 0.51% 2315 0.27% 0 0% 0 0% 19 221.8

+ SPI Flash 6120 1.41% 4225 0.49% 0 0% 0 0% 29 221.8
+ Ethernet 9723 2.24% 9035 1.04% 0 0% 0 0% 75 192

Table 6. Hardware Consumption of BlueIO (+GPIOCP) with Different Numbers of CPUs on FPGA (RTL Level)

Number of
CPUs

Hardware Consumption Power
(mW)

Maximum
Frequency
(Mhz)

LUTs
% of
VC709

Register
% of
VC709

BRAMs
% of
VC709

DSP
% of
VC709

1 632 0.146% 962 0.111% 16 1.09% 0 0% 19 318
2 886 0.205% 1156 0.113% 16 1.09% 0 0% 20 303
4 1314 0.303% 1468 0.169% 16 1.09% 0 0% 22 291
8 1942 0.448% 2094 0.242% 16 1.09% 0 0% 25 284
16 3236 0.747% 3346 0.386% 16 1.09% 0 0% 31 249
32 5065 1.169% 5311 0.613% 16 1.09% 0 0% 37 236
64 8698 2.008% 8449 0.975% 16 1.09% 0 0% 50 204
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The resource efficiency of BlueIO is shown by the Table 5 and 6, eg. a full featured 2-CPU BlueIO
only consumes 2.24% LUTs and 1.04% Registers of the VC709 FPGA board. As shown, DSP slice
is not required by the implementation of BlueIO on FPGA. Additionally, the slices of LUTs and
registers are linearly increased by the number of I/Os and CPUs, respectively. Furthermore, the
increased hardware consumption also leads to a linear increment in power consumption and a
decrement in maximum working frequency.

6 EVALUATION

BlueIO was implemented using Bluespec[1] and synthesized for the Xilinx VC709 development
board[14] (further implementation details are given in a technical report [20]). The following
evaluation focusses on I/O devices and I/O systems, we do not consider the effects caused by NoC
and routing protocols. In the evaluation, the BlueIO system was connected to a 4 x 5 2D mesh type
open source real-time NoC[47] containing 16 Microblaze CPUs[11] running the modified guest
OS (FreeRTOS v9.0.0) in the guest VM (see Section 3.2). The architecture is shown in Figure 4.
To enable comparison, a similar hardware architecture without BlueIO was built ś note that this
architecture requires I/O operations requested by Mircoblaze CPUs to pass through the mesh to
the I/O rather than being controlled by BlueIO. Both architectures run at 100 MHz.

6.1 Memory Footprint

In this section, the memory footprint of BlueIO is evaluated. It considers different versions of
FreeRTOS running on Microbalze CPUs and uses the size tool of the Xilinx Microblaze GNU Tool
chain. In the measurement, the native version of FreeRTOS (nFreeRTOS) is full-featured [8], which
is the foundation of the other versions 1 2 3. Table 7 presents the collected measurements.

Table 7. BlueIO Memory Footprint (Bytes)

Software
Memory Footprint

.text .data .bss Total
BlueIO 0 0 0 0

nFreeRTOS 121,309 1,728 35,704 158,741
nFreeRTOS + I/O 179,652 1,852 36,250 217,754
vFreeRTOS + I/O 189,556 1,882 36,450 227,888

BV_vFreeRTOS + I/O 131,969 1,732 35,723 169,424

As it can be seen, the memory overhead introduced by the hypervisor (BlueIO) is zero, resulting
from its pure hardware implementation. The native full-featured FreeRTOS (nFreeRTOS) requires
158741 bytes ś with I/O module added, the memory footprint increases 37.18%, owing to the
addition of I/O manager and I/O drivers. When it comes to the vFreeRTOS + I/O, the introduction
of software implemented virtualization increases the memory footprint to 227, 888 bytes. However,
BV_vFreeRTOS + I/O only consumes 169, 424 bytes of memory, which is increased by 6.73% com-
pared to the native FreeRTOS, as well as 77.81% and 74.35% of the nFreeRTOS + I/O and vFreeRTOS
+ I/O, respectively. The main reason behind such a lowmemory footprint is that the implementation
of para-virtualization (described in Section 3.2), has removed the software overhead significantly.

6.2 Timing Accuracy

This section compares the timing accuracy of the I/O operations in BlueIO and non-BlueIO systems.
In both architectures, 9 CPUs were active, whose coordinates are from (0, 0) to (0, 2), (1, 0) to (1,

1FreeRTOS + I/O involves UART, VGA, and corresponding drivers.
2vFreeRTOS is a simply implemented software virtualized FreeRTOS for many-core systems, see [37].
3BV_vFreeRTOS is the virtualized FreeRTOS in BlueIO system.
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2) and (2, 0) to (2, 2). When CPUs were required to access and read the GPIO at a specific time,
then in the non-BlueIO architecture the CPU instigated the I/O operation, whilst in the BlueIO
architecture, this was performed by BlueIO (ie. GPIOCP) to achieve timing accuracy. This was
shown by connecting a timer to the GPIO (updating its value every cycle), with every CPU needing
to read the value simultaneously.

Results of 1000 experiments are given in Table 8, showing that the latencies and variance for the
non-BlueIO architecture are significant (errors calculated according to equation 1); in contrast, the
BlueIO architecture is timing accurate at the cycle level.

Table 8. I/O Operation Timing Variance

CPU Index
Non-BlueIO BlueIO

E (unit: ns) E (unit: clock cycle) E (unit: ns) E (unit: clock cycle)
Min Med Mean Max Min Med Mean Max Min Med Mean Max Min Med Mean Max

(0,0) 3140.0 3140.0 3145.8 3160.0 314 314 315 316 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(0,1) 3000.0 3000.0 3005.8 3020.0 300 300 301 302 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(0,2) 2790.0 2790.0 2795.8 2810.0 279 279 280 281 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(1,0) 2720.0 2720.0 2725.8 2740.0 272 272 273 274 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(1,1) 3070.0 3070.0 3075.8 3090.0 307 307 308 309 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(1,2) 2860.0 2880.0 2899.4 2940.0 286 288 289 294 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(2,0) 2580.0 2580.0 2585.8 2600.0 258 258 259 260 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(2,1) 2650.0 2650.0 2655.8 2670.0 265 265 266 267 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(2,2) 2860.0 2930.0 2902.0 2950.0 286 293 290 295 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6.3 I/O Performance

The I/O performance evaluation considers I/O response time and I/O throughput separately in the
following sections.

6.3.1 I/O Response Time. This experiment was designed to evaluate the I/O response time
whilst CPUs and measured I/O were fully loaded within BlueIO and non-BlueIO systems. In both
architectures, all active CPUs executed an independent application. The application continuously
read data from an SPI NOR-flash (model: S25FL128S). The experiment was divided into four groups,
depending on the number of bytes read: ie. 1, 4, 64 and 256 bytes. All experiments were run 1,000
times. We name the experiments according to the scheduling policy and the number bytes of
data read in one I/O request. For example, non-BlueIO-RR-4B refers to a non-BlueIO system with
Round-Robin global scheduling policy; and 4 bytes of data read from the NOR-flash in one I/O
request.

For the non-BlueIO architecture, FreeRTOS was modified to be suitable for many-core systems4.
In both architectures, while the user applications on different CPUs were requesting the I/O at the
same time point, the scheduling policy could be set as local FIFO (non-BlueIO-FF and BlueIO-FF) and
global Round-Robin (non-BlueIO-RR and BlueIO-RR) respectively. Experimental results showing
the worst case and variation of each group of experiments are summarised in Table 9 (complete
experimental results are given in [20, 37]).

Table 9 shows that the worst-case response time of I/O requests in the non-BlueIO architecture
is significantly high for the reading of 1, 4, 64 or 256 byte(s) from the NOR-flash, especially whilst
global Round-Robin scheduling was used ś noting that a lower I/O response time indicates a higher
I/O performance. In experiments with the number of read bytes increased, BlueIO system maintains
its superior performance. Additionally, when it comes to variation, BlueIO systems have a better
performance than non-BlueIO systems. For example, in the non-BlueIO-FF-1B, the variation is
greater than 1, 500 clock cycles; and in non-BlueIO-RR-1B, the variation reaches to 60, 000 clock
cycles. Conversely, in both BlueIO-FF-1B and BlueIO-RR-1B, the highest variance is less than 60

4FreeRTOS is designed for a single-core system; in our experiments, we modified it to be suitable for many-core systems [37]
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Table 9. I/O Response Time in BlueIO and non-BlueIO Systems (unit: clock cycle)

(Summarized Version)

Written Bytes
Non-BlueIO

(FIFO)
Non-BlueIO

(Round-Robin)
BlueIO
(FIFO)

BlueIO
(Round-Robin)

Worst Case Variation Worst Case Variation Worst Case Variation Worst Case Variation
1 9,357 1,541 65,885 59,736 532 57 403 46
4 58,844 7,061 327,813 286,733 1,785 368 1,569 276
8 936,166 98,026 4,555,159 3,823,104 25,053 3,667 23,032 3,542
16 3,702,565 284,142 17,345,151 15,475,355 92,153 15,225 89,708 13,711

clock cycles. Therefore, the evaluation results reveal that a system with BlueIO provides more
predictable I/O operations with lower response time.

6.3.2 I/O Throughput. The I/O throughput was evaluated using two architectures ś one with
BlueIO and one without BlueIO. In the experiments, we used the same NOR-flash described in the
previous section. Additionally, the scheduling policy in both architectures was set as local FIFO
and global Round-Robin respectively.
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Fig. 10. I/O Throughput

In both architectures, an independent application was executed on each of 4 Microblaze CPUs
(coordinates are from (0,1) to (0,3)) that continuously wrote to the NOR-flash Ð one byte written
per I/O request. The number of bytes written from each CPU per second was recorded as I/O
throughput (unit: KB/s). The result of higher I/O throughput implies a better performance. All the
evaluations were implemented 1,000 times. The evaluation results are shown in Figure 10. In the
figure, the four bar chart groups present the average I/O throughput in the BlueIO system and the
non-BlueIO system for each CPU; and the error bar on each bar chart presents the variance of
the I/O throughput during these 1,000 experiments. As shown, on all CPUs considered, no matter
which scheduling policy is used, the BlueIO system always provides higher I/O throughput (nearly
7 times) and less variance.

6.4 Timing Scalability

This section provides an evaluation of the timing scalability of the BlueIO system when connected
to a complex device, ie. Ethernet. The evaluation was implemented by measuring the I/O response
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time of Ethernet packets sent from different CPUs in single-core, 4-core, 8-core, and 16-core systems
respectively. The implementation of the Ethernet virtualization in BlueIO system is given in [37].
The experiment was divided into two parts, dependent on the global scheduling policy of the

BlueIO: Round-Robin (named BlueIO-RR) and fixed priority (named BlueIO-FP). For BlueIO-RR
and BlueIO-FP, the experiments were further divided into four parts, according to the number of
active CPUs. In these four parts of the experiments, we activated 1, 4, 8 and 16 Microblaze CPUs
respectively. The experiments are named according to the global scheduling policy of the experiment
plus the number of active CPUs. For example, in a 4-core BlueIO system with Round-Robin global
scheduling policy, the experiment is labeled as BlueIO-RR-4.

Table 10. Average Response Time of Loop Back 1KB Ethernet Packets in BlueIO System (Global

Scheduling Policy: Fixed Priority; Unit: us)

CPU Coordinate
Number of CPUs

(0,0) (1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) (0,2) (1,2) (2,2) (3,2) (0,3) (1,3) (2,3) (3,3)
∆r

1 11.5 X X X X X X X X X X X X X X X 0
4 12.0 25.5 36.9 48.3 X X X X X X X X X X X X 1.29
8 12.1 25.5 36.9 48.3 59.7 71.2 82.6 94.0 X X X X X X X X 0.96
16 12.0 25.5 36.9 48.3 59.7 71.1 82.6 95.0 105.4 116.9 128.3 139.7 151.1 162.5 174.0 185.4 0.8

The software application running on each active CPU was the same, and continuously sent 1
KB Ethernet packets via BlueIO to a dedicated component. The 1 KB Ethernet packets sent from
different CPUs were exactly the same. A dedicated component was used to monitor the response
time of these Ethernet packets by recording the reach time and analysing the virtual source IP
address of the packets. All the experiments were run 1000 times.

In BlueIO-FP, CPU (0, 0) was always set to the highest priority, followed by CPU (1, 0), (2, 0), (3,0)
and (1, 0) etc. The experiment results are shown in Table 10. As shown, for all many-core systems,
the I/O response time from the CPU with the highest priority is always fixed around 12µs ; and the
I/O requests from the CPUs with the lower priorities were always blocked by I/O requests with
higher priorities, which guarantees the execution of the I/O requests with higher priorities. For
example, in BlueIO-FP-8, the average response time of the I/O requests from CPU (0,0) (the highest
priority) is kept to 12µs , which means it can never be blocked by others. When it comes to the
I/O requests from CPU (3, 1) (the lowest priority), the I/O response time is always around 94µs ,
which is 8 times of the highest priority I/O requests. In an 8-core system, the theoretical optimal
response time of the lowest priority I/O request should be 8 times the highest priority I/O request,
which means that the BlueIO system does not introduce an extra delay for the lowest priority I/O
request śas shown by the experimental results. In addition, with the number of CPUs increased,
there is no obvious increment in ∆r , which implies the loss of I/O performance is not significant as
the number of CPUs is increased, showing good scalability of the BlueIO system (with the fixed
priority scheduling policy).
For BlueIO-RR, the experiment results are shown in Table 11. As shown, with an increment

in the number of CPUs, the I/O response time of each CPU is proportional to the number of
CPUs. For example, the average response time of an I/O request in BlueIO-RR-4, BlueIO-RR-8, and
BlueIO-RR-16 is close to their theoretical optimal values, which are around 4, 8 and 16 times of the
one in a single-core system (BlueIO-RR-1). In addition, with the number of CPUs increased, there is
no obvious increment in ∆r , which also shows the good scalability of the BlueIO system (with the
Round-Robin scheduling policy). Note that, ∆r gives the average I/O performance loss suffered by
each CPU, with ∆R showing the total I/O performance loss (See Formulas 2 and 3). Therefore, even
as ∆r decreases with increasing number of CPUs (n), the total I/O performance loss ( ∆R = ∆r ∗ n)
increases significantly.
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Table 11. Average Response Time of Loop Back 1KB Ethernet Packets in BlueIO System (Global

Scheduling Policy: Round Robin; Unit: us)

CPU Coordinate
Number of CPUs

(0,0) (1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) (0,2) (1,2) (2,2) (3,2) (0,3) (1,3) (2,3) (3,3)
∆r

1 11.0 X X X X X X X X X X X X X X X 0
4 46.7 47.2 47.6 48.1 X X X X X X X X X X X X 0.84
8 90.5 90.8 91.2 91.5 91.9 92.2 92.6 92.9 X X X X X X X X 0.44
16 180.1 180.7 179.9 180.6 180.0 180.7 180.0 180.7 180.0 180.7 180.0 180.7 180.0 180.7 180.0 180.7 0.25

6.5 On-chip Communication Overhead and Scalability

In NoC-based many-core systems, all the I/O requests are transmitted as on-chip packets, with
larger packets bringing a higher on-chip communication overhead. In this section, we compare
the on-chip communication overhead while invoking commonly used I/O requests in BlueIO and
non-BlueIO systems by recording the number of packets on the NoC. In the NoC [47], the width of
all the on-chip packets is 32 bits. The evaluation results are demonstrated in Table 12. Results show
that whilst the invoked I/O request is simple, the on-chip communication overhead is similar in all
the systems, eg. displaying one pixel via the VGA in a single-core system. When the I/O operations
become complicated or the number of CPUs is increased, the on-chip communication overhead
in non-BlueIO architecture is significant; in contrast, the BlueIO architecture has a lower on-chip
communication overhead, for example, reading 10 bytes data from the SPI flash in 10-core systems.

Table 12. On-chip Communication Overhead

I/O Device I/O Operation
Number of on-chip Packets

(Each Packet: 32-bit)
Non-BlueIO

FIFO
Non-BlueIO
Round-Robin

BlueIO

VGA

Display 1 Pixel
1 CPU 6 6 3
4 CPUs 24 33 12
10 CPUs 60 87 30

Display 10 Pixels5
1 CPU 60 60 30
4 CPUs 240 357 120
10 CPUs 600 897 300

SPI Flash

Read 1 Byte
1 CPU 12 12 4
4 CPUs 48 57 16
10 CPUs 120 237 40

Read 10 Bytes
1 CPU 120 120 40
4 CPUs 480 597 160
10 CPUs 1200 1497 400

7 RELATEDWORK

This section presents the background, related research, and projects on real-time I/O virtualization,
followed by corresponding analysis and discussion.

7.1 NoC-based Many-core Systems

Typical NoC based architectures (i.e. Figure 11) that have been implemented in silicon contain
integrated devices connected to the edge of the mesh, e.g. Tilera’s TILE64[13] and Kalray’s MPPA-
256[26], as well as I/Os (connected to the mesh).
The TILE64 requires CPUs within the mesh to instigate I/O operations, with a shared I/O

controller passing the operation to the actual I/O device Ð hence significant latencies will occur
between I/O command instigation and actual I/O occurring, which detracts from timing-accuracy
and predictability of I/O operations. The MPPA-256 provides 4 I/O subsystems, with I/O operations
instigated by the CPU passed to the Resource Manager (RM) cores within one of these I/O systems
depending which device is required. The MPPA-256 RM cores are essentially Linux based CPUs
controlling many devices (even though RTEMS [2] can also be used), hence timing accurate and
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Fig. 11. A Typical Structure of NoC-based Many-Core System

(C - Core; R - Router / Arbiter)

predictable control of many external devices connected to the GPIO pins is not possible Ð also the
approach is not resource efficient as a CPU is required for I/O control. Additionally, among these
systems, there is no extra I/O virtualization support existed.

7.2 Software I/O Virtualization

Software virtualization can be classified into full virtualization and para-virtualization (see Figure
12, the grey parts are involved in virtualization implementation).
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Fig. 12. Classification of Software I/O Virtualization

In full virtualization, in order to maintain the guest OS being unmodified, I/O virtualization
is implemented by the VMM in kernel mode. This drives, multiplexes I/O devices, and emulates
multiple virtual device interfaces e.g. VMware ESX Server[16], KVM[10] and VirtualBox[15]. I/O
requests from guest OS always trap the VMM. Afterwards, the VMM decodes the trapped I/O
requests and maps them into physical devices, in order to drive complete I/O operations. This
approach requires VMM entirely controlling physical devices, which involves in complicated I/O
access path and significant software overhead (see Section 1). Additionally, once a new I/O device
added, the VMM (I/O drivers) requires to be also modified and updated. Quest-V designed by Boston
University [42] is an optimized full-virtualized multi-kernel, which efficiently reduce the access
path of I/O operations. Specifically, Quest-V shares certain driver data structures across sandboxes
(VMs), to allow I/O requests and responses to be handled locally. This solution allows any sandbox
(VM) to be configured for the corresponding device interrupts, rather than have a dedicated sandbox
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to be responsible for all communication with that device. This greatly reduces the communication
and control paths necessary for I/O requests from applications in Quest-V. However, the software
implementation of Quest-V determines unavoidable significant software overhead. In addition,
Quest-V does not have any assist for real-time I/O control (predictable and timing-accurate).

In para-virtualization, guest OS is normally modified to gain more efficiency and performance. In
I/O part, an I/O driver is split into front-end and back-end drivers. Specifically, the back-end driver is
installed in VMM (kernel mode) for physical device access, and provide access interface for guest OS.
The front-end driver installed in guest OS is responsible for handling I/O requests and passing them
to a corresponding back-end driver e.g. Xen[19] and OKL4[33]. With para-virtualization, VMM
does not require to fully drive physical devices, which reduces the software overhead efficiently.
Xen is a widely used open source VMM, therefore a number of related works are proposed for its
enhancement. For example, Kaushik Kumar Ram et al[48] introduced the technology of reducing
the overhead in guest OS, including engaging Large Receive Offload (LRO), employing software
pre-fetching and reducing buffer size to half-page (reducing the TLB miss rate). Diego Ongaro
[45] improves the VMM scheduler to gain a better overall system performance and equity. Most of
these works efficiently decrease software overhead and increase system performance, however,
these works cannot improve I/O performance (compared to a bare-metal system), and increase
predictability and timing-accuracy of I/O operations.

7.3 Hardware I/O Virtualization Assistance

In order to alleviate the penalties suffered by software I/O virtualization e.g. complicated I/O access
paths and significant software overhead, hardware assistances are proposed for I/O virtualization.
VMM-bypass direct I/O makes VM access hardware devices directly without VMM or driver domain
interposing, which enhances performance and exposes all hardware functionality to VM directly.
For example, Intel VT-d [34], AMD IOMMU[22] and SR-IOV[12]. Because VT-d and IOMMU are
similar technologies, we only introduce TV-d as an example.
Virtualization Technology for Directed I/O (VT-d) is the hardware support for isolating and

restricting device accesses to the owner of the partition managing the device, which is developed
by Intel [34]. VT-d includes three key capabilities: 1). Allows an administrator to assign I/O devices
to guest VMs in any desired configuration; 2). Supports address translations for device DMA data
transfers; and 3). Provides VM routing and isolation of device interrupts. In general, VT-d provides
a hardware VMM that allows user applications running in the guest VMs to access and operate
I/O devices directly, which decreases path of I/O access, as well as off-loads most overhead of
virtualization from software to hardware (see Figure 13). However, apart from original I/O drivers,
extra drivers for VT-d are also required in the software layer, which results in an increment of
software overhead and a loss of the I/O performance [? ]. Additionally, VT-d cannot guarantee the
real-time properties of I/O operations.
Single Root I/O Virtualization (SR-IOV) is a specification, which proposes a set of hardware

enhancements for the PCIe device. SR-IOV aims to removemajor VMM intervention for performance
data movement to I/O devices, such as the packet classification and address translation. An SR-
IOV-based device is able to create multiple łlight-weightž instances of PCI function entities (also
known as VFs). Each VF can be assigned to a guest for direct access, but still shares major device
resources, achieving both resource sharing and high performance. Currently, many I/O devices
have already supported the SR-IOV specification, such as [27], [28] and [38]. Similar to Intel VT-d,
to support an SR-IOV-based I/O, more drivers are required in the software, which detracts from I/O
performance and lacks in real-time properties.
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7.4 Programmable Timely I/O Controller: PRU and TPU

TI Programmable Real-Time Unit (PRU) [23] and Freescale Time Processor Unit (TPU) [9] are
programmable controllers that could be connected to a multi-core or many-core system for I/O
control. The PRU contains two 32-bit RISC cores and ready built I/O controllers that are capable
of real-time I/O, but the exact timing of I/O operations (e.g. at specific times in the future) is not
possible, and the use of CPUs is not resource efficient. The TPU is essentially a RISC CPU with
a timer subsystem and I/O controllers. Timing accuracy of I/O operations is not possible as I/O
is instigated by a remote CPU; and the use of a CPU is not resource efficient. Both TPU and PRU,
being sequential CPUs, cannot easily provide timing accuracy across a number of devices connected
to GPIO.

8 CONCLUSION

In safety-critical real-time systems, I/O operations often require predictability, timing-accuracy, par-
allel access, isolation, and scalability simultaneously. This paper has proposed a scalable hardware-
implemented real-time I/O system for multi-core and many-core systems Ð BlueIO, which satisfies
the requirements at same time. BlueIO includes previous work (VCDC, GPIOCP,and BlueTree),
extended by integration of I/O virtualization, low layer I/O drivers and the clock cycle level timing-
accurate I/O controller (GPIOCP) in the hardware layer, meanwhile providing abstracted high-layer
access interfaces to software layers (Guest VMs).

Evaluation reveals that BlueIO can virtualize a physical I/O tomultiple virtual I/Oswith significant
performance improvements, including faster I/O response time, higher I/O throughput, less on-
chip communication overhead, good scalability, and isolation. In addition, BlueIO can also handle
multiple I/O operations with clock cycle accuracy, being in many cases totally timing-accurate and
predictable. In the hardware consumption analysis, the paper has demonstrated that the hardware
consumption of BlueIO scales linearly in the number of CPUs and I/Os respectively, evidenced by
the implementation in VLSI and FPGA.

8.1 Future Work

There are several possible areas of future research based on this work presented in the paper. These
include:

• Timing Analysis ś In real-time systems, two commonly used methodologies are normally
adopted to evaluate predictabilityÐ static analysis to identify theworst-case andmeasurement-
based analysis [24]. In this paper, we only adopted measurement-based analysis to evaluate
the predictability of I/O operations in Section 6. However, to find the worst-case path of a
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program is difficult in the general case. Further work is needed to find accurate WCET of ap-
plications using I/O operations in our system, and to include this within system schedulability
analysis.

• Supporting I/O access preemption ś Currently, our proposed BlueIO system cannot support
I/O preemption. This is mainly resulted from the difficulties in achieving context switch
among I/O operations in hardware level [40]. In order to overcome this drawback, it may be
necessary to include further parts of the OS within hardware. This remains for future work.
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