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ABSTRACT

The selection of step sizes in the progressive Gaussian ap-

proximate filter (PGAF) is important, and it is difficult to se-

lect optimal values in practical applications. Furthermore, in

the PGAF, significant integral approximation errors are gener-

ated by the repeated approximate calculations of the Gaussian

weighted integrals, which results in an inaccurate measure-

ment noise covariance matrix (MNCM). To solve these prob-

lems, in this paper, the step sizes and the MNCM are jointly

estimated based on the variational Bayesian (VB) approach.

By incorporating the adaptive estimates of step sizes and the

MNCM into the PGAF framework, a novel PGAF with vari-

able step size is proposed. Simulation results illustrate that

the proposed filter has higher estimation accuracy than exist-

ing state-of-the-art nonlinear Gaussian approximate filters.

Index Terms— Gaussian approximate filter, progressive

measurement update, variable step size, variational Bayesian

1. INTRODUCTION

Gaussian approximate filters (GAFs) are the most common

approach in various nonlinear applications since they can pro-

vide a better compromise between the computational cost and

the estimation accuracy [1]–[3]. In the framework of GAFs,

the posterior PDF is approximated as Gaussian, and a multi-

tude of GAFs have been developed based on various numeri-

cal integral techniques [3]–[9]. However, the performance of

these standard GAFs may be degraded in applications with

large prior uncertainty but high measurement accuracy [10].

One way to handle this problem is the employment of the

PGAF, which involves the gradual introduction of measure-

ment information instead of absorbing all the measurements

at one time [11], [12]. PGAFs are derived in [11] and [12],

but their performances may strongly rely on the number of

samples since the continuous PDFs are discretized based on
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the deterministic Dirac mixture approximation approach. A

recursive extended Kalman filter (EKF) is derived in [13], yet

it has limited estimation accuracy due to the use of first order

linearization. Under the Bayesian estimation framework, in

[14], an improved PGAF has been proposed and then devel-

oped into a general framework. The associated measurement

likelihood is evolved gradually and the intermediate progres-

sive joint PDFs of the state and measurement are approxi-

mated as Gaussian, which leads to a higher estimation ac-

curacy [14]. However, due to the lack of powerful theoreti-

cal foundations and being highly dependent upon engineering

experience when selecting the optimal step sizes, the practi-

cality of the improved PGAF will be normally degraded. A-

part from that, integral approximation errors will be generated

due to the repeated approximate calculations of the Gaussian

weighted integrals, which results in an inaccurate MNCM.

To address the aforementioned problems, a novel PGAF

with variable step size and adaptive MNCM is proposed in

this paper, where the state together with step sizes and inac-

curate MNCM are jointly inferred based on the VB approach.

The posterior PDFs of state, step sizes and MNCM are, re-

spectively, updated as Gaussian, truncated Gamma and in-

verse Wishart distributions. Simulation results of bearing on-

ly tracking illustrate that the proposed filter has higher estima-

tion accuracy than existing state-of-the-art nonlinear GAFs.

2. A NOVEL PGAF WITH VARIABLE STEP SIZE

Consider the following nonlinear stochastic state-space model

{

xk = fk−1(xk−1) +wk−1

zk = hk(xk) + vk
(1)

where k is the discrete time index, xk ∈ R
n is the state vector,

zk ∈ R
m is the measurement vector, wk ∈ R

n and vk ∈ R
m

are independent zero-mean Gaussian white noise vectors sat-

isfying E[wkw
T
l ] = Qkδkl and E[vkv

T
l ] = Rkδkl respec-

tively, where δkl is the Kronecker delta function. The initial

state x0 is a Gaussian random vector with mean x̂0|0 and co-

variance matrix P0|0, and it is independent from wk and vk.



In the PGAF, the measurement likelihood is evolved grad-

ually and the posterior PDF can be formulated as follows [14]

p(xk|z1:k) ∝ p(xk|z1:k−1)
N
∏

γ=1

[P (zk|x
γ
k)]

λγ (2)

where z1:k = {zj}
k
j=1,

∑N
γ=1 λγ = 1, λγ ∈ (0, 1] denotes

the progressive step size. x
γ
k denotes the state at the γth re-

cursion, and N denotes the number of product terms in the

progressive formulation.

Under the framework of progressive measurement up-

date, the intermediate one-step predicted PDF p(xγ
k |z

γ−1
1:k )

and likelihood PDF p(zk|x
γ
k) can be written as Gaussian, i.e.

p(xγ
k |z

γ−1
1:k ) = N(xγ

k ; x̂
γ−1
k|k ,Pγ−1

k|k ) (3)

p(zk|x
γ
k) = N(zk;hk(x

γ
k),R

γ
k/λγ) (4)

where N(·;µ,Σ) denotes a Gaussian PDF with mean µ and

covariance matrix Σ. x̂
γ

k|k denotes the estimate of x
γ
k , and

z
γ
1:k denotes the gradually absorbed measurements sequence.

P
γ

k|k denotes the estimated error covariance matrix at the γth

recursion.

The state x
γ
k together with the step size λγ and the inac-

curate MNCM R
γ
k are, respectively, assumed to satisfy Gaus-

sian, uniform and inverse Wishart priors, i.e.

p(xγ
k , λγ ,R

γ
k |z

γ−1
1:k ) ≈N(xγ

k ; x̂
γ−1
k|k ,pγ−1

k|k )U(λγ ; 0, ηγ)

× IW(Rγ
k ;u

γ

k|k−1,U
γ

k|k−1) (5)

where U(·;m,n) represents the uniform PDF over the inter-

val [m,n], and IW(·;u,U) is the inverse Wishart PDF with

degree of freedom (dof) parameter u and inverse scale matrix

U. Meanwhile ηγ satisfies ηγ = 1−
∑γ−1

j=1 λj .

To estimate the state x
γ
k together with step size λγ

and the inaccurate MNCM R
γ
k , the joint posterior PDF

p(xγ
k , λγ ,R

γ
k |z1:k) needs to be first computed. However,

there is not an analytical solution for it, thus the VB approach

is utilized to hunt for a free form factored approximate poste-

rior PDF, i.e.

p(xγ
k , λγ ,R

γ
k |z1:k) ≈ q(xγ

k)q(λγ)q(R
γ
k) (6)

where q(·) represents the approximate posterior PDF, and

q(xγ
k), q(λγ), q(R

γ
k) are solved by minimizing the Kullback−

Leibler divergence (KLD) between the factored approximate

posterior PDF q(xγ
k)q(λγ)q(R

γ
k) and the real joint posterior

PDF p(xγ
k , λγ ,R

γ
k |z1:k) [16], [17]. The optimal solution

satisfies the following equation

log q(θ) = E(Ξ−θ)[log p(Ξ, z1:k)] + cθ (7)

where Ξ is defined as Ξ , {xγ
k , λγ ,R

γ
k}; and E[·] denotes

the expectation operation; log(·) represents the logarithmic

operation; θ is an arbitrary element of Ξ, and Ξ − θ means

Fig. 1: The process of the variable step sizes progressive mea-

surement update

the set of all elements in Ξ except for θ, and cθ is the con-

stant with respect to θ. Since the variational parameters of

q(xγ
k), q(λγ), q(R

γ
k) are coupled, fixed-point iterations are

employed to solve (7) [17].

2.1. Measurement update

The process of the variable step sizes progressive measure-

ment update is depicted as Fig. 1. The measurement is in-

volved gradually by the step size λγ , which will be estimated

in the following, before reaching the ultimate threshold ε.

Based on the Bayesian theorem, the joint PDF p(Ξ, z1:k)
can be written as follows

p(Ξ, z1:k) = c(γ)N(zk;hk(x
γ
k),R

γ
k/λγ)N(xγ

k ; x̂
γ−1
k|k ,pγ−1

k|k )

×U(λγ ; 0, ηγ)IW(Rγ
k ;u

γ

k|k−1,U
γ

k|k−1) (8)

where c(γ) is the normalization constant. Exploiting (8) and

performing a logarithmic operation on it, we obtain

log p(Ξ, z1:k) = 0.5m log λγ − 0.5(xγ
k − x̂

γ−1
k|k )T (Pγ−1

k|k )−1

× (xγ
k − x̂

γ−1
k|k )− 0.5(uγ

k|k−1 +m+ 2) log |Rγ
k | − 0.5λγ

× (zk − hk(x
γ
k))

T (Rγ
k)

−1(zk − hk(x
γ
k))

− 0.5tr(Uγ

k|k−1(R
γ
k)

−1) + cΞ (9)

where cΞ is the constant with respect to Ξ.

Let θ = λγ , and utilizing (9) in (7), we obtain

log qi+1(λγ) = 0.5m log λγ−0.5λγtr(D
γ(i)
k Ei[(Rγ

k)
−1])+cλ

(10)

where qi+1(·) is the approximate PDF of q(·) at the i + 1th

iteration, and D
γ(i)
k can be formulated as

D
γ(i)
k = Ei[(zk − hk(x

γ
k))(zk − hk(x

γ
k))

T ] (11)

Thus qi+1(λγ) can be updated as

qi+1(λγ) = G(λγ ;α
i+1, βi+1) (12)

where G(·;α, β) represents the Gamma PDF with shape pa-

rameter α and rate parameter β. Note that the Gamma PDF

in this paper is truncated and has definitions only over the in-

terval (0, 1], and αi+1 and βi+1 can be given by

αi+1 = 0.5m+ 1 (13)



βi+1 = 0.5tr(D
γ(i)
k Ei[(Rγ

k)
−1]) (14)

Let θ = R
γ
k , and utilizing (9) in (7), we obtain

log qi+1(Rγ
k) = −0.5(u

γ

k|k−1 +m+ 2) log |Rγ
k |

− 0.5tr[(Ei+1[λγ ]D
γ(i)
k +U

γ

k|k−1)(R
γ
k)

−1] + cR (15)

Thus qi+1(Rγ
k) can be updated as

qi+1(Rγ
k) = IW(Rγ

k ;u
γ(i+1)
k ,U

γ(i+1)
k ) (16)

where the dof parameter u
γ(i+1)
k and inverse scale matrix

U
γ(i+1)
k are given by

u
γ(i+1)
k = uγ

k|k−1 + 1 (17)

U
γ(i+1)
k = Ei+1[λγ ]D

γ(i)
k +U

γ

k|k−1 (18)

Let θ = x
γ
k , and utilizing (9) in (7), we obtain

log qi+1(xγ
k) = −0.5(x

γ
k − x̂

γ−1
k|k )T (Pγ−1

k|k )−1(xγ
k − x̂

γ−1
k|k )

− 0.5(zk − hk(x
γ
k))

T (R̃γ
k)

−1(zk − hk(x
γ
k)) + cx (19)

where

R̃
γ
k = Ei+1[Rγ

k ]/E
i+1[λγ ] (20)

According to a property of the inverse Wishart distribution,

Ei+1[Rγ
k ] can be computed as [18]

Ei+1[Rγ
k ] = U

γ(i+1)
k /(u

γ(i+1)
k −m− 1) (21)

Since the PDF qi+1(λγ) obeys a truncated Gamma PDF,
Ei+1[λγ ] is calculated by the definition of the integral. Using
(19) - (21), qi+1(xγ

k) can be formulated as

q
i+1(xγ

k) =
N(zk;hk(x

γ

k), R̃
γ

k)N(xγ

k ; x̂
γ−1

k|k ,P
γ−1

k|k )
∫
N(zk;hk(x

γ

k), R̃
γ

k)N(xγ

k ; x̂
γ−1

k|k ,P
γ−1

k|k )dxγ

k

(22)

which has the identical form as the posterior PDF of the state

in a standard GA filter, consequently, the PDF qi+1(xγ
k) can

be approximated as Gaussian and updated by the modified

likelihood PDF N(zk;hk(x
γ
k), R̃

γ
k), i.e.

qi+1(xγ
k) = N(xγ

k ; x̂
γ(i+1)
k|k ,P

γ(i+1)
k|k ) (23)

where x̂
γ(i+1)
k|k and P

γ(i+1)
k|k denote the state estimation and es-

timated error covariance matrix at the γth recursion and i+1th

fixed-point iteration respectively.

When the rest of the progressive increment is less than the

pre-set threshold ε, the progressive loop will be terminated

and the remaining measurement information will be included

at one time. In this paper, the threshold ε is chosen as 10−2.

After N th recursions, we obtain x̂k|k = x̂N
k|k, Pk|k = PN

k|k.

Remark 1: The fixed-point iterations methods employed in

the VB approach can be fairly computational costly, thus we

suggest that the iterations loops are repeated only when the

update is significant, i.e. while

Norm(Ξ(i+1),Ξ(i)) > δ (24)

the iterations operation is executed, where Norm(·, ·) denotes

the 2-norm distance between the items. In this paper, the

threshold δ is selected empirically as 10−6.

2.2. Time update

In the time update, the distribution prior parameters of inac-

curate MNCM need to be selected. In this paper, we assumed

the prior dof parameter uγ

k|k−1 and prior scale matrix U
γ

k|k−1
are as follows

{

uγ

k|k−1 = τ +m+ 1

U
γ

k|k−1 = τR0
(25)

where τ is the tuning parameter suggested to be selected with-

in [2, 6], and R0 is the initial inaccurate MNCM. The pro-

posed PGAF with variable step size and adaptive MNCM is

shown in Algorithm 1, where M denotes the final fixed-point

iteration times.

3. SIMULATION

In this simulation, the superior performance of the pro-

posed PGAF as compared with existing methods is illus-

trated by bearing only tracking. The third-degree spher-

ical radial cubature rule is chosen to implement the pro-

posed PGAF, which leads to a CKF with progressive mea-

surement update. The process and measurement equation-

s are the same as [14]. Where the process noise wk ∼
N(wk; 0, 0.001

2I2×2), and the measurement noise vk ∼
N(vk; 0, 2.5 × 10−4). The initial true state vector x0 and

the initial estimated error covariance matrix P0|0 are, re-

spectively, set as x0 = [−0.05, 0.001, 0.7,−0.055]T and

P0|0 = 10 ∗ diag([0.120.00520.120.012]), the initial state

estimate x̂0|0 is chosen randomly from N(x̂0|0;x0,P0|0).
Besides, the tuning parameter of the proposed PGAF is

τ = 3. The simulation time is T = 100s and the num-

ber of Monte Carlo runs is M = 1000. The logarithmic mean

square errors (LMSEs) of positions and velocities are chosen

as performance metrics, which are formulated similar as in

[14].

In this simulation, the standard CKF [3] and the exist-

ing EKF with recursive update (RUEKF) [13], the existing

Sigma-Point Kalman filter with recursive update (RUSPK-

F) [15], the existing PGAF [14] with the progressive steps

N = 30 as well as the proposed novel PGAF are tested. It is

clear to see from Fig. 2-3 that the proposed novel PGAF has

higher estimation accuracy than existing methods no matter

the positions or velocities. Table 1 gives the averaged LM-

SEs of the proposed method and existing methods over the



Algorithm 1: the proposed PGAF with variable step size
Inputs: x̂k−1|k−1, Pk−1|k−1, zk, fk−1(·), hk(·), R0, τ , N ,
NV B
Time update
1. Compute x̂k|k−1 and Pk|k−1 by the time update of
the standard GAF [3]
2. Compute uγ

k|k−1 and U
γ

k|k−1 by (25)

Measurement update
3. Initialize the progressive loop: x̂0

k|k ← x̂k|k−1,

P0
k|k ← Pk|k−1, R̂0

k ← R0

For γ = 1 : N

4. Initialize the fix-point iterations loop: x̂
γ−1(0)
k|k ← x̂

γ−1
k|k ,

P
γ−1(0)
k|k ← P

γ−1
k|k , E0[Rγ

k ]← R̂
γ−1
k

While Norm(Ξ(i),Ξ(i−1)) > δ AND i≤ NV B

5. Compute D
γ(i)
k by (11) with x̂

γ−1(i−1)
k|k and P

γ−1(i−1)
k|k

6. Compute αi+1 and βi+1 by (13) and (14)
7. Compute Ei+1[λγ ] by the definition of the integral

8. Compute u
γ(i+1)
k and U

γ(i+1)
k by (17) and (18)

9. Compute Ei+1[Rγ
k ] and R̃

γ
k by (21) and (20)

10.compute ẑ
γ

k|k,P
zz,γ(i+1)
k|k and P

xz,γ

k|k by Gaussian

weight integration rule

11.K
γ(i+1)
k = P

xz,γ

k|k (P
zz,γ(i+1)
k|k )−1

12.x̂
γ(i+1)
k|k = x̂

γ−1
k|k +K

γ(i+1)
k (zk − ẑ

γ

k|k)

13.P
γ(i+1)
k|k = P

γ−1(i+1)
k|k −K

γ(i+1)
k P

zz,γ(i+1)
k|k (K

γ(i+1)
k )T

End While

14. x̂
γ

k|k ← x̂
γ(M+1)
k|k , P

γ

k|k ← P
γ(M+1)
k|k , R̂

γ
k ← EM+1[Rγ

k ]
15. Compute the remaining step size
16. If the remaining step size < ε, break the progressive
loop
End For
17. Absorbing the remaining measurement information at
one time and update x̂

γ

k|k and P
γ

k|k

18. x̂k|k ← x̂
γ

k|k, Pk|k ← P
γ

k|k
Outputs: x̂k|k, Pk|k
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last 20s, which shows the significantly improvement on esti-

mation accuracy of the proposed method, and the improved

rates are calculated with respect to the exiting PGAF. Fig. 4

demonstrates the variation of the optimal step sizes along with

the progressive steps at three different instants in the proposed
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Fig. 4: The variation of the optimal step sizes at different

instants in the proposed PGAF

Table 1: Averaged LMSEs of the proposed method and exist-

ing methods over the last 20s

Estimators Positions Velocities Improved rates
Standard CKF 2.921 -0.887 -4159%
Existing RUEKF 1.245 -2.510 -57.26%
Existing RUSPKF 1.212 -2.533 -48.73%
Existing PGAF 1.033 -2.751 0
The proposed filter 0.462 -3.256 65.89%

PGAF. Meanwhile the simulation also revealed that the pro-

posed novel PGAF has significantly fewer progressive steps

in spite of higher estimation accuracy than existing methods.

4. CONCLUSION

In this paper, a novel PGAF with variable step size and adap-

tive MNCM was proposed based on the VB approach to select

the optimal step sizes and restrain the integral approximation

errors. The performance of the proposed filter was tested in

the simulation of bearing only tracking. Simulation results

showed that the proposed PGAF had higher estimation accu-

racy and fewer progressive steps than existing methods due to

the modified MNCM and optimal selections of step sizes.
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