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ABSTRACT 13 

Biotic extinction during the Guadalupian–Lopingian (G–L) transition is actively 14 

debated, with its timing, validity, and causality all questioned. Here we show, based on 15 

detailed sedimentary, paleoecologic, and geochemical analyses of the Penglaitan section 16 

in South China, that this intra-Permian biotic crisis began with the demise of a metazoan 17 

reef system and extinction of corals and alatoconchid bivalves in the late Guadalupian. A 18 

second crisis, amongst nektonic organisms occurred around the G-L boundary. Mercury 19 

concentration/total organic Carbon (Hg/TOC) ratios show two anomalies. The first 20 
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Hg/TOC peak broadly coincided with the reef collapse and a positive shift in 199Hg 21 

values during a lowstand interval, which was followed by a microbial proliferation. A 22 

larger Hg/TOC peak is found just above the G–L boundary and speculatively represents a 23 

main eruption episode of Emeishan Large Igneous Province (ELIP). This volatile 24 

volcanism coincided with nektonic extinction, a negative 13Ccarb excursion, anoxia, and 25 

sea-level rise. The temporal coincidence of these phenomena supports a cause-and-effect 26 

relationship, and indicates that the eruption of ELIP likely triggered the G–L crisis. 27 

INTRODUCTION 28 

The fossil record of several major benthic groups from South China reveals a 29 

major extinction event around the G–L transition (Jin, 1993; Stanley and Yang, 1994). A 30 

contemporaneous biotic crisis has also been recognized in the high-latitude Spitsbergen 31 

sections (Bond et al., 2015). However, study of this crisis is hindered by the widespread 32 

absence of uppermost Guadalupian and lowermost Lopingian strata due to a major 33 

eustatic regression (Haq and Schutter, 2008). Thus, there remains considerable debate 34 

about the timing of the extinction: did it occur at the G–L boundary (GLB) or within the 35 

Late Guadalupian? Furthermore, the temporal link of the G-L crisis with Emeishan large 36 

igneous province (ELIP) suggests that these flood basalt eruptions triggered the crisis 37 

(Wignall et al., 2009; Bond et al., 2010). 38 

Here, we examined the G–L succession at the Global Stratotype Section and Point 39 

(GSSP) at Penglaitan (PLT) in South China (Fig. 1). This study reports a new metazoan 40 
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reef, which is investigated alongside a diverse new data set including new carbon isotope 41 

values, mercury (Hg) concentrations, and Hg isotopes, that reveal reef collapse and 42 

nektonic crisis coincided with extreme environment and volatile volcanism. 43 

GEOLOGICAL SETTING AND METHODS 44 

During the G–L transition, the South China craton was located near the equator in 45 

the eastern Paleo-Tethys Ocean (Fig. 1A). Today, the PLT is situated ~20 km southwest 46 

of Laibin, Guangxi Province. Here, the Guadalupian strata comprise the Maokou 47 

Formation, and the basal Lopingian consists of the Heshan Formation. The G–L strata are 48 

subdivided into seven beds (Fig. 1B). Bed 1 is made of siliceous mudstone with chert 49 

nodules, and Beds 2–6 have been termed the Laibin Limestone. Beds 2–4 form the major 50 

part of a skeletal reef (Fig. 1B), which is capped by bioclastic packstone (Bed 5). Bed 6 is 51 

dominantly a crinoidal grainstone while Bed 7 consists of thin-bedded, siliceous 52 

mudstone and chert. The GLB is placed at the base of Bed 6k (Fig. 3) and defined by the 53 

first occurrence of conodont Clarkina postbitteri postbitteri (Jin et al., 2006). 54 

Fresh rock chips were prepared for microanalysis using a scanning electron 55 

microscope to search for microbiota. Rock chips were ground to fine powder using a 56 

puck mill for geochemical analysis. 13Ccarb were determined using a Finnigan MAT 251 57 

mass spectrometer, and reported as per mil (‰) relative to Vienna Pee Dee belemnite 58 

standard. Volcanism is a major source of Hg to Earth’s surface environments, and the 59 

accumulation of Hg in sediment can be used as a proxy indicating ancient volcanism 60 
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(Sanei et al., 2012). Hg enrichment is depicted by normalizing to total organic carbon 61 

(TOC) due to its high affinity to organic matter. TOC and Hg contents were measured on 62 

Elementar vario Macro cube, and LECO AMA254 mercury analyzer, respectively. 63 

Hg isotopes are used to trace the origin and the pathways of the Hg (e.g. Blum 64 

and Bergquist., 2007), and their variations are reported in 202Hg notation referenced to 65 

the NIST-3133 Hg standard: 66 

202Hg (‰) = [(202Hg/198Hgsample)/(202Hg/198Hgstandard) −1] × 1000 (1) 67 

Mass-independent fractionation (MIF) of Hg isotope is reported in -notation 68 

(xxxHg), describing the difference between the measured xxxHg and the theoretically 69 

predicted xxxHg value: 70 

xxxHg xxxHg − 202Hg ×  (2) 71 

ȕ is equal to 0.2520 for 199Hg, 0.5024 for 200Hg, and 0.7520 for 201Hg (Blum and 72 

Bergquist, 2007). 73 

The analytical precision is better than ± 0.1‰ for 13C, ± 0.2‰ for 18O, ± 10% 74 

for Hg concentration, ± 5% for TOC and ± 0.04‰ for 199Hg. Detailed laboratory 75 

methods and full data are given in the GSA Data Repository. 76 

RESULTS 77 

Reef Ecosystem Collapse, and Biodiversity Variations near the GLB 78 

Beneath the Laibin Limestone, the Maokou Formation consists of cherty 79 

wackestone beds with radiolarians, indicative of a distal ramp to basin setting. A sharp 80 

contact is then followed by massive limestones that form a ~25 m wide and ~5 m thick 81 
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reef (Beds 2–4) (Fig. 1B), with the reef core composed of bryozoan-Tubiphytes 82 

framestone (Fig. 2A), coral framestone (Fig. 2C), bryozoan bindstone, and alatoconchid 83 

wacke-packstone. The first facies forms the major part of the reef, with in situ bryozoan 84 

colonies acting as bafflers and binders. The reef core yields a diverse assemblage of 85 

algae, echinoderms, brachiopods, and crinoids encrusted with the bryozoan Fistulipora 86 

(Fig. 2B). Alatoconchid shells (Fig. DR1) are another conspicuous component of the reef. 87 

The reef is overlain by a cross-stratified grainstone (shoal bank facies; Bed 5) that is in 88 

turn capped by a hardground surface. The overlying crinoidal grainstone with Skolithos 89 

traces (Fig. DR2), records the persistence of shallow-water following demise of the reef. 90 

Bed 7 includes chert and siliceous mudstone, as well as pelagic faunas (ammonoid, 91 

sponges, radiolarians), that point to deep-water conditions. 92 

We identified 13 species including small foraminifers (Pachyphloia ovate, 93 

Diplosphaerina sp., and Ammodiscus planus), bryozoans (Septopora indet., Fenstella 94 

indet., and Fistulipora indet.), corals (Ufimia elongata and Amplexocarinia sp.), giant 95 

bivalve (Shikamaia sp.), ammonoid (Pleuronautilus sp.), incertae sedis species 96 

(Tubiphytes obscures, Girvanella sp., and Archaeolithoporella sp.). A total of 48 97 

species/indet. species have been obtained from PLT, including: calcareous algae, 98 

bivalves, brachiopods, bryozoans, corals, crinoids, echinoids, foraminifera, gastropods, 99 

ostracods, sponges and trilobites (Fig. 3). Most (46) species occur in the Laibin 100 

Limestone, and only two persisted into the overlying Heshan Formation (Fig. 3). Around 101 
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half the biodiversity occurs in the reef facies and the remaining taxa, mostly foraminifera 102 

occur in Bed 6 while few taxa are recorded by Bed 7 (Fig. 3). 103 

Diverse Microbiota 104 

Microbiota are abundant in the shoal bank facies of the upper Laibin Limestone, 105 

including microborings and calcisphere aggregates. Four types of microbe-originated 106 

microfossils are identified. Coccoid-like calcispheres (Figs. 2E–F) are comprised of 107 

coarse-grained sparitic calcite nuclei coated with thin micritic envelopes, and they are 108 

interpreted as endolithic coccoid bacteria (Salama et al., 2015). Bacterial clump-like 109 

spheroids (Figs. 2H–I) consisting of dark colored, rounded micritic nuclei surrounded by 110 

sparry calcite rims, are consistent with nucleation of bacterial clumps. The problematic 111 

microorganism Ovummurus duoportius (Fig. 2G) is made of an ovoid wall, with an 112 

internal chamber divided into two equal spaces by a septum-like structure. Microboring 113 

Eurygonum nodosum occurs in brachiopod shells (Fig. 2D) and crinoid stems (Fig. 2J), 114 

and is thought to be produced by the endolithic cyanobacterium Mastigocoleus testarum 115 

(Gektidis et al., 2007). 116 

Sea-level Changes 117 

Sea-level changes associated with a 2nd-order global regression occurs around the 118 

G–L transition (Haq and Schutter, 2008) and is well recorded at PLT where a sequence 119 

boundary occurs at the basal Laibin Limestone (Wignall et al., 2009). This level is 120 

marked by the replacement of deep-water cherty limestones by the reef facies. Water 121 
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depths continued to shallow and the trend culminates at the top of Bed 5 with the 122 

development of a hardground. This was followed by a rapid upward deepening with 123 

grainstone shoal facies of Bed 6 overlain by deep-water, finer grained facies of Bed 7 124 

(Fig. 3). 125 

Hg and TOC Concentrations 126 

The strata below the Laibin Limestone comprise chert-rich limestones, and 127 

contain low TOC, usually <0.1 wt.%, and Hg concentrations (mostly < 10 ppb) (Fig. 128 

DR3). These low Hg values suggest only background levels of volcanic activity. Low 129 

TOC values are not suitable for evaluating Hg/TOC (Grasby et al., 2016) below the 130 

Laibin Limestone. In contrast, sediments of the Laibin Limestone and Heshan formations 131 

have TOC concentrations varying from 0.12 to 2.76 wt.% that are decoupled from 132 

variations of Hg concentrations that range up to 26.6 ppb. Hg/TOC ratios fluctuate from 133 

2.1 to 64.1 ppb/wt.% during the Jinogondolella xuanhanensis Zone to lowermost C. 134 

postbitteri postbitteri Zone, with a minor peak occurring in Bed 6b (Fig. 3). The ratio 135 

then declines again before abruptly rising to peaks in the C. postbitteri postbitteri to C. 136 

dukouensis Zones and finally returns to pre-extinction levels in the upper C. dukouensis 137 

Zone. 138 

Carbon and Mercury Isotopes 139 

Our 13Ccarb profile (Fig. 3) broadly tracks previous data (Wang et al., 2004; Jost 140 

et al., 2014). The 13Ccarb increases from +3‰ to +5‰ during J. xuanhanensis–C. 141 
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hongshuiensis Zones, with a minor negative excursion (~0.5‰) in the upper J. granti 142 

Zone, before a major shift to lighter values occurred in the Lopingian C. postbitteri 143 

postbitteri–C. dukouensis Zones. MIF (199Hg) have negative values (−0.1‰ to −0.02‰) 144 

in the PLT reef and suddenly rise to positive values in Bed 5 after the termination of the 145 

reef, 199Hg finally drop to negative values at the top of Bed 7 (Fig. 3). MDF (202Hg) 146 

ranges from −1.34‰ to 0.15‰. Because MDF (202Hg) can result from many physical, 147 

chemical and biological reactions, we do not interpret MDF (202Hg) signatures here. 148 

DISCUSSION 149 

Reef Ecosystem Collapse, Benthos Turnover, and Proliferation of Microbiota 150 

The PLT reef is composed of several microfacies suggesting the construction 151 

occurred over a spectrum of bathymetric and environmental conditions. This helps 152 

explain the high faunal diversity, because communities from many depths are recorded. 153 

Following reef collapse, hardground and peritidal facies (Beds 5–6) were developed. Of 154 

the reef biota, bryozoans are especially abundant but disappeared by the end-155 

Guadalupian. The alatoconchids represent the youngest occurrence of this aberrant giant 156 

bivalve family, and their loss, along with the rugose corals, coincides with reef collapse. 157 

Most foraminiferal species disappeared prior to Bed 7, and the forms in Bed 6 are already 158 

dominated by post-extinction types. The turnover of pelagic fauna is clearly close to the 159 

GLB. The ammonoid turnover from goniatite- to ceratite-dominated faunas right at the 160 
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earliest Lopingian (Ehiro and Shen, 2008). Conodonts also underwent a major turnover 161 

from Jinogondolella group to Clarkina group 20 cm below the GLB (Jin et al., 2006). 162 

In addition, an coeval sponge reef has also been reported from the adjacent 163 

Tieqiao section in Laibin (Chen et al., 2009). Termination of reef development in both 164 

PLT and Tieqiao sections suggests the collapse of metazoan reefs prior to the GLB. The 165 

diversity of microbe-originated fossils in the Beds 5−6 is also noteworthy, indicating that 166 

the vacated ecospace lost by metazoan reef was immediately refilled by microbiota. 167 

Range data from the Laibin Limestone (Fig. 3) undoubtedly show a facies control on 168 

taxonomic occurrences near the GLB. In contrast, there is a turnover of pelagic elements 169 

(ammonoids and conodonts) around the GLB. Thus, biodiversity shows a stepwise 170 

depletion in the Laibin Limestone, suggesting a disconnection between benthic and 171 

pelagic crises. 172 

Environment Perturbations 173 

Two Hg spikes are recorded near the GLB in PLT (Fig. 3). The weak correlation 174 

between Hg and TOC concentrations (correlation test, P = 0.0138, estimate = −0.4066; R2 175 

= 0.12; Fig. DR4) suggests that the stratigraphic pattern of Hg concentration is not due to 176 

variation in TOC content. With respect to Hg sources, volcanic Hg has insignificant MIF 177 

(199Hg 0 ‰) (Thibodeau and Bergquist, 2017). Once emitted to the environment, MIF 178 

(199Hg) mostly occurs and results in positive 199Hg values (Blum et al., 2014). In 179 

general, marine sediments that received Hg0
(g) through terrestrial runoff tend to have 180 
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greater negative 199Hg than atmospheric Hg0
(g), and terrestrial resources acquire 181 

negative 199Hg values when plants and soils sequestrate Hg0
(g) (Thibodeau and 182 

Bergquist, 2017). 183 

In PLT, two Hg spikes occur with sustained positive 199Hg values (Fig. 3), 184 

indicating that sediments received Hg primarily through atmospheric Hg deposition. 185 

Thus, the observed Hg peaks are likely due to increased atmospheric mercury loading 186 

from a volcanic source. The termination age of ELIP (259.1 ± 0.5 Ma) is likely to be 187 

close to the age of GLB (Zhong et al., 2014), suggesting ELIP may be the Hg source. A 188 

notable positive Hg/TOC anomaly observed around the GLB in the Festningen section, 189 

Spitsbergen, (Grasby et al., 2016), has similar amplitude to the main Hg/TOC anomaly at 190 

PLT, suggesting that biotic changes at PLT are in response to a global phenomenon. 191 

The positive 199Hg shift is consistent with increased direct atmospheric 192 

deposition of volcanically derived Hg2+ to the ocean (Thibodeau and Bergquist, 2017). 193 

This shift also coincides with the reef demise, implying that onset of ELIP eruption, 194 

marked by increased Hg2+, may have caused reef development to cease through 195 

significant CO2 release triggering greenhouse warming, as seen in conodont oxygen 196 

isotopes record (Chen et al., 2011). Climate warming and elevated atmospheric nutrient 197 

flux may have then stimulated the post-extinction microbial proliferation. The large 198 

Hg/TOC peak in the C. postbitteri postbitteri to C. dukouensis Zones suggests intense 199 

eruptions in the earliest Lopingian, coincident with a negative 13C shift. 200 
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Emeishan magmas are estimated to have released nearly 5 Mt of SO2 km-3 (Zhang 201 

et al., 2013), and the volume of the Emeishan basalts is at least 0.3 × 106 km3 (Shellnutt, 202 

2014). Thus, the total SO2 release would be >1.5 × 106 Mt, which corresponds to a total 203 

Hg input of >31.5 Mt to the atmosphere (assuming a Hg/SO2 ratio of 0.21 × 10−4; Nriagu, 204 

1989). Major fluxes of volcanic Hg have been postulated as a possible extinction 205 

mechanism via poisoning of marine waters (Sanei et al., 2012). Marine anoxia is also 206 

seen in several locations around the world (Bond et al., 2015; Zhang et al., 2015; Wei et 207 

al., 2016) and is another potential cause of stress at this time. While the ELIP produced a 208 

global Hg record that, at PLT and Spitsbergen, is timed with a biotic crisis, further work 209 

in other regions is required to demonstrate global biotic impacts at this time. 210 

CONCLUSIONS 211 

The PLT provides a detailed record of major environmental and biotic changes in 212 

the GLB interval, here summarized into four stages: 213 

1) A metazoan reef containing a high diversity of framework builders (bryozoans, 214 

Tubiphytes and corals) was developed prior to the GLB during a lowstand interval. 215 

2) Two Hg/TOC anomalies occur either side of the GLB. The first, in the J. granti Zone, 216 

coincides with the collapse of the reef and the loss of several coral species and the 217 

alatoconchid bivalves. Positive 199Hg values indicate this crisis is triggered by the 218 

eruption of ELIP volcanism with the effusion of volatiles causing the Hg/TOC peak. 219 
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3) The end-Guadalupian saw the proliferation of microbiotas that may have benefitted 220 

from climate warming and enhanced atmospheric nutrient input at this time. 221 

4) Hg/TOC peaked in the earliest Lopingian, suggesting the acme of ELIP volcanism at 222 

this time. This coincided with rapid sea-level rise and deep-water anoxia, and a 223 

turnover amongst the pelagic biota which clearly post-dates the benthic crisis. 224 
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 319 

FIGURE CAPTIONS 320 

 321 

Figure 1. (A) Paleogeographic map (R. Blakey: http://www2.nau.edu/rcb7/260moll.jpg) 322 

showing location of the PLT section (China). (B) G௅L succession (Beds 1௅7) of 323 

Penglaitan showing geometry of the reef and GLB position. The geologist, in red, is ~160 324 

cm in height. 325 

 326 

Figure 2. Selected PLT reef biota and microbiota. (A) Bryozoan-Tubiphytes framestone; 327 

(B) Encrusting networks of Fistulipora; (C) Coral Amplexocarinia sp.; (D) Eurygonum 328 

nodosum along the margins of a brachiopod shell. (E–F) Coccoid-like calcispheroid 329 

under microscope and SEM, (G) Ovummurus duoportius, (H–I) Bacterial clump-like 330 

spheroids under microscope and SEM, (J) Eurygonum nodosum on crinoid stem. 331 

 332 

Figure 3. The PLT section showing: Covariations of microbiota, carbon isotopes (green 333 

open circle data from Wang et al. (2004), red triangle data from Jost et al. (2014), black, 334 
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solid circles: this study), Hg, TOC, Hg isotope, redox conditions (from Wei et al., 2016), 335 

sea-level changes, and stratigraphic distributions of fossils (Jin et al., 2006; Ehiro and 336 

Shen, 2008; Wignall et al. 2009; Shen and Shi, 2009; this study). Conodont zonation after 337 

Jin et al. (2006), Epo. = Epoch, Fm. = Formation, CZ = Conodont Zone, Lith. = 338 

Lithology, Rel. abu. = Relative abundance, C. h. = Clarkina hongshuiensis, C. po. = 339 

Clarkina postbitteri postbitteri, C. duk. = Clarkina dukouensis. u.s. = upper slope, l.s. = 340 

lower slope, ba. = basin. Relative abundances of Coccoid-like spheres (a), Bacterial 341 

clump-like spheres (b) and Ovummurus duoportius (c) are: few (<20 individuals /cm2), 342 

common (20–50 individuals /cm2), abundant (>50 individuals /cm2), or areal percentages 343 

on 200 views ( × 50) for Mastigocoleus testarum (d): few (<5%), common (5%–10%), 344 

and abundant (>10%). 345 
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