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Quasi-invariance for the Navier-Stokes
equations

Abstract In this contribution we focus on a few results regarding the

study of the three-dimensional Navier-Stokes equations with use of the

vector potentials. These dependent variables are critical in the sense that

they are scale-invariant. By surveying recent results utilising criticality

of various norms, we emphasise the advantages of working with scale-

invariant variables.

The Navier-Stokes equations, which are invariant under static scal-

ing transforms, are not invariant under dynamic scaling transforms.

Using the vector potential, we introduce scale-invariance in a weaker

form, that is, invariance under dynamic scaling modulo a martingale

(Maruyama-Girsanov density) when the equations are cast into Wiener

path-integrals. We briefly discuss the implications of this quasi-invariance

on the basic issues of the Navier-Stokes equations.

1.1 Introduction

Many of the results in Navier-Stokes theory have been obtained by pay-

ing attention to scale-invariant properties of norms, stemming from e.g.

Kato & Fujita (1962). Recent researches in this line include: exclusion

of self-similar blowup in Nečas, Růžička & Šverák (1996) also Chae

(2007); Hou & Li (2007), the regularity criterion by the L3-norm of ve-

locity in Escauriaza, Seregin & Sverak (2003) and the global regularity

result for small initial data in BMO−1-norm in Koch & Tataru (2001).

These results are motivated, at least partly, by static (i.e. frozen time)

scale-invariant considerations of the Navier-Stokes equations under the

usual parabolic transformations.

There is more general, yet another kind of transformations, which is
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dynamical in nature. In view of these successful results with static scal-

ing transformations, it seems promising to pursue further development

with dynamic scaling transformations. Through such efforts, it has been

recognised recently that with the scale-invariant dependent variables we

would benefit from some advantages in the analysis. In particular, we

can characterise the concept of scale-invariance in its most generalised

sense. The purpose of this contribution is to survey a number of results

on the basic problems of the Navier-Stokes equations obtained in this

spirit. This survey is not intended to be an exhaustive list of literature,

but it is rather an idiosyncratic review.

The rest of this paper is constructed as follows. In section 2, we de-

scribe the usual reformulation of the Navier-Stokes equations as integral

equations using the velocity variable. In section 3, we recall how we may

solve the forced Burgers equations by linearisation and a path-integral.

In Section 4, we recall the Navier-Stokes equations written in the vector

potentials and some regularity conditions using critical and subcritical

norms. Section 5, we apply an analogue of the Cole-Hopf transform and

the Feynman-Kac formula just as we did for the Burgers equations. In

Section 6, by dynamic scaling transform we derive the Leray equations.

Using probabilistic tools we compare the Navier-Stokes and Leray equa-

tions in detail, thereby recognising their quasi-invariance. Section 7 is

devoted to a summary.

1.2 Navier-Stokes equations

We are interested in the Navier-Stokes equations in R
3:

∂u

∂t
+ u · ∇u = −∇p+ 1

2
△u, (1.1)

∇ · u = 0,

u(x, 0) = u0(x).

Starting from Leray (1934), lots of efforts have been made on the analy-

ses of the Navier-Stokes equations. General references include Constantin

& Foias (1988); Doering (2009); Doering & Gibbon (1995); Robinson

& Sadowski (2009).

It is useful to recall how we can convert the above equations to the

conventional integral equations. Using the heat kernel

gt =
1

(2πt)3/2
exp

(
−|x|2

2t

)
,
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we apply the Duhamel principle to the Navier-Stokes equations to obtain

u(t) = gt ∗ u0 −
∫ t

0

gt−s ∗ P∇ · (u⊗ u)(·, s)ds, (1.2)

= E[u0(W t)]−
∫ t

0

E[P∇ · (u⊗ u)(W s, t− s)]ds

where P = I−∇△−1∇· denotes solenoidal projection and ∗ convolution.
HereW t denotes three-dimensional standard Brownian motion starting

from x at t = 0W 0 = x and E[·] an average with respect to a probability

measure associated with W t. See Appendix A.

The following condition due to Serrin (1963)
∫ T

0

‖u‖
2p

p−3

Lp dt <∞, (3 < p ≤ ∞) (1.3)

guarantees uniqueness and smoothness of the solution on [0, T ). In par-

ticular, we have in the limit p→ ∞
∫ T

0

‖u‖2L∞dt <∞, (1.4)

which is probably the best-known criterion for regularity. Different argu-

ments - based on different ways to estimate the right-hand side of (1.2)

- are required to obtain the two regularity criteria in (1.3) and (1.4) (see

the contribution by Ozanski & Pooley in this volume). The condition

(1.4) can be compared with (1.17) in the equation (1.15) below, which

is obtained as a boundedness condition for the exponential process to

be a martingale. This illustratesan advantage of working with critical

dependent variables.

1.3 Burgers equation

To illustrate the basic ideas, we consider the Burgers equations in R
3

subject to an external forcing of the form −∇V (x, t)

∂v

∂t
+ v · ∇v = −∇V +

1

2
△v, (1.5)

v(x, 0) = v0(x).

(More generally, the following argument holds in any R
n, n ≥ 1.) Here

we restrict ourselves to the special class of potential flows v = ∇φ. The
variable v satisfies the following well-known scale-invariance:
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if v(x, t) is a solution, then so is λv(λx, λ2t) for any λ > 0.

Integrating the equation (1.5) and taking the constant of integration to

be zero, we find the following Hamilton-Jacobi equation

∂φ

∂t
+

1

2
|∇φ|2 + V =

1

2
△φ, (1.6)

φ(x, 0) = φ0(x).

In terms of the variable φ, scale-invariance now reads

if φ(x, t) is a solution, then so is φ(λx, λ2t) for any λ > 0.

An observation made by Cole (1949, 1951) is that φ lacks a prefactor

after the transformation. This is because φ has the same physical dimen-

sion as kinematic viscosity ν(= 1/2). Applying a transform φ = k log θ,

with a constant k of the same dimension as ν, we rewrite (1.6) as

∂θ

∂t
=

1

2
△θ −

(
k + 1

2

|∇θ|2
θ2

+
V

k

)
θ,

θ(x, 0) = θ0(x).

Choosing k = −1 and following Cole (1951); Hopf (1950), we can

linearise the Burgers equation to a heat equation with a potential term,

i.e. the Schrödinger equation at imaginary times

∂θ

∂t
=

1

2
△θ + V θ. (1.7)

If the potential term is bounded in the sense that

∫ t

0

sup
x

|V (x, s)|ds <∞,

the equation (1.7) is soluble by the Feynman-Kac formula as

θ(x, t) = E

[
θ0(W t) exp

(∫ t

0

V (W s, s)ds

)]
. (1.8)

This representation can be obtained by applying a time-dependent Trot-

ter formula, see e.g. Taylor (1996). See Appendix B for alternative forms

of functional integrals. Note that solutions θk for k 6= −1 can be obtained

as θk = θ−1/k.

We refer (1.8) to the Cole-Hopf–Feynman-Kac formula for the Burg-

ers equations. We will take a brute-force approach to obtain a similar

expression for the Navier-Stokes equations.
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1.4 Use of critical dependent variables

BMO−1 L3 Ḣ1/2 Lp (p > 3) Ḣ1

small data→
global regularity

Yes
KT(’01) Yes Yes

KF(’62) NA NA

time of
local existence NA NA NA ‖u0‖−

2p

p−3 ν3/‖u0‖4H1

blowup criterion Unknown Yes Yes Yes Yes
Table 1: Here u0 denotes the initial velocity and

‖u‖BMO−1 ≈ ‖ψ‖BMO. Note that NA’s appear in a staggered manner;

for the three critical norms (on the left) and the two subcritical norms

(on the right). KT(’01) refers to Koch & Tataru (2001) and KF(’62)

to Kato & Fujita (1962).

We introduce the vector potentials ψ defined in such a way that u =

∇×ψ and ∇·ψ = 0. The Navier-Stokes equations have been written as

a nonlocal version of the Hamilton-Jacobi equations in Ohkitani (2015)

∂ψ

∂t
− 1

2
△ψ = T [∇ψ], (1.9)

where

T [∇ψ] ≡ 3

4π
−
∫

R3

r × (∇×ψ(y)) r · (∇×ψ(y))
|r|5 dy, (1.10)

with r = x − y and −
∫

denotes a principal-value integral. We assume

that |ψ(x, t)| → 0 as |x| → ∞ for all t ≥ 0. It can be checked that

∇ · T [∇ψ] = 0 is satisfied.

In Table 1 we compare a number of known results on the Navier-

Stokes regularity. One kind of theorems claims global regularity for small

initial data, while the other kind local existence for general initial data.

We list results obtained with critical BMO−1, L3 and Ḣ1/2-norms and

those with subcritical Lp (p > 3) and Ḣ1-norms. If any one of NA’s

were available, that would imply global regularity immediately. See also

Ohkitani (2016) for an asymptotic analysis related to Ḣ1/2-norm.

Experience shows that those two kinds of theorems go together; in

view of the embedding

‖ψ‖BMO . ‖u‖L3 ,

we may ask whether

‖ψ‖BMO → ∞ as t→ t∗
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for a possible blowup at t∗. Apparently, this remains an open question

(hence a question mark in Table 1) and we will briefly remark on it, in

connection with the Cole-Hopf transform at the end of Section 5.

At the moment, it is known from Ohkitani (2017a) that the following

condition
∫ t∗

0

‖T [∇ψ]‖L∞ dt = ∞ (1.11)

holds for blowup at t = t∗.

A possibility of an even weaker norm ‖u‖B−1

∞,∞

serving as a blowup

criterion has been explored in Cheskidov & Shvydkoy (2010). Because

‖u‖B−1

∞,∞

. ‖u‖BMO−1 ≃ ‖ψ‖BMO,

the motivation is more ambitious than ours. A dichotomy-type result

has been obtained in this line of research; upon a possible singularity,

either i) ‖u‖B−1

∞,∞

becomes unbounded, or ii) it is bounded but there is

a jump (i.e. a gap of O(ν)) in the norm near the critical time. It is not

known whether ‖u‖B−1

∞,∞

becomes unbounded or not.

In a corresponding analysis in two-dimensions, the Navier-Stokes equa-

tion in the stream function was derived in Ohkitani (2008) and its

applications are described in Ohkitani (2017a,c).

1.5 Cole-Hopf transform and Feynman-Kac formula

We consider an analogue of the Cole-Hopf transform for the Navier-

Stokes equations, introduced component-wise in Ohkitani (2017c), by

ψj = k log θj , (j = 1, 2, 3), (1.12)

with a constant k( 6= 0) and derive equations for θ. See also Vanon &

Ohkitani (2018).

The derivation of the equations for θ is straightforward, but best

stated here for completeness

∂ψj

∂t
−Tj [∇ψj ]−

1

2
△ψj =

k

θj

∂θj
∂t

−k2Tj
[∇θ1
θ1

,
∇θ2
θ2

,
∇θ3
θ3

]
−1

2
k

(
△θj
θj

− |∇θj |2
θ2j

)

= k

{
1

θj

(
∂θj
∂t

− 1

2
△θj

)
−
(
k Tj

[∇θ1
θ1

,
∇θ2
θ2

,
∇θ3
θ3

]
− 1

2

|∇θj |2
θ2j

)}
,
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where no summation over j is implied. Setting the right-hand side to

zero, we obtain a system of heat equations with a potential term

∂θj
∂t

=
1

2
△θj + fj [θ](x, t)θj , (1.13)

where

fj [θ](x, t) ≡ kTj

[∇θ1
θ1

,
∇θ2
θ2

,
∇θ3
θ3

]
− 1

2

|∇θj |2
θ2j

, (j = 1, 2, 3.) (1.14)

Hereafter no summation is implicit with respect to j in fj .

Regarding the nonlinear term as forcing in the spirit of Duhamel prin-

ciple, we convert (1.13) into path-integral equations by the Feynman-Kac

formula

θj(x, t) = E

[
θj(W t, 0) exp

(∫ t

0

fj [θ](W s, s)ds

)]
. (1.15)

For proof, see Ohkitani (2017c). The path-integral representation (1.15)

is just another way of writing down the Navier-Stokes equations. While

the formula contains complicated contents, we note that it is fully ex-

plicit, with f [θ] defined by (1.14) and T ]∇ψ] by (1.10).

For convenience, we use the following notation hereafter

Fj [θ](W t) ≡ θj(W t, 0) exp

(∫ t

0

fj [θ](W s, s)ds

)
. (1.16)

The exponential term f , which corresponds to the potential V in the

forced Burgers equations, controls the regularity of the Navier-Stokes

equations. We emphasise that a regularity condition readily follows from

(1.15). Namely, we have
∫ t

0

‖f [θ]‖L∞ds <∞, for some k( 6= 0) =⇒ smooth up to time t,

(1.17)

or, equivalently

blowup at time t =⇒
∫ t

0

‖f [θ]‖L∞ds = ∞, for all k( 6= 0). (1.18)

These conditions are similar to Serrin’s, but slightly different because

of the first term in f . It was noted in Ohkitani (2017a) that if blowup

takes place, it is impossible to cancel out the two unbounded integrals∫ t∗
0

‖u‖2L∞dt = ∞ and
∫ t∗
0

‖T [∇ψ]‖L∞ dt = ∞ so as to make f remain

bounded, no matter how carefully k is chosen.

Before closing this section, a brief remark on the blowup criterion is
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in order. We distinguish two possible scenarios regarding (1.12):

1) θj → 0 and therefore ‖ψ‖L∞ → ∞. (Note that we still have ‖ψ‖BMO <

∞, if only one, or countably many zeros appear in the flow field.)

2) θj > 0, but becomes non-differentiable whilst ‖ψ‖L∞ <∞.

In connection with the above open problem, if ‖ψ‖BMO → ∞ upon

singularity, uncountably many zeros in θj must appear at the time of

breakdown.

1.6 Dynamic scaling transform

We will apply the Cole-Hopf–Feynman-Kac formula to the dynamically-

scaled version of the Navier-Stokes equations.

Invariance under dynamic scaling implies

ψ(x, t) = Ψ(ξ, τ) (1.19)

and it satisfies the Leray equations of the form

∂Ψ

∂τ
− 1

2
△ξΨ+aξ ·∇ξΨ =

3

4π
−
∫

R3

ρ× (∇×Ψ(ξ′))ρ · (∇×Ψ(ξ′))

|ρ|5 dξ′,

(1.20)

where ρ = ξ−ξ′ and ψ(·, 0) = Ψ(·, 0). The difference between (1.9) and

(1.20) is just one drift term, which is minimal due to the critical nature

of ψ. Setting Ψj = k logΘj , (j = 1, 2, 3), we obtain as above

∂Θj

∂τ
=

1

2
△ξΘj − aξ · ∇ξΘj + fj [Θ](ξ, τ)Θj . (1.21)

These can also be converted into a path-integral form

Θj(x, t) = E

[
Θj(Xt, 0) exp

(∫ t

0

fj [Θ](Xs, s)ds

)]
, (1.22)

where Xt denotes the Ornstein-Uhlenbeck process, generated by the

modified dissipative operator 1

2
△ξ − aξ · ∇ξ, i.e. the Laplace operator

with a drift term.

1.6.1 Change of probability measures

We are in a position to make a detailed comparison between the Navier-

Stokes equations and their dynamically-scaled counterparts (the Leray

equations), using path-integral representations. Such a comparison with-

out the Feynman-Kac formula has been carried out in Ohkitani (2017b),

while a comparison with the Feynman-Kac formula in Ohkitani (2017d).
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Necessary tools are taken from stochastic analysis, whose general ref-

erences include Bell (2006); Malliavin & Thalmaier (2006); Nunno,

Oksendal & Proske (2009); Sanz-Solé (2005); Shigekawa (2004); Steele

(2001); Üstünel & Zakai (2010); Üstünel (2015). See Bru & Yor (2002)

for historical remarks including the measure changing theorems.

scale invariance

θ(x, t) Θ(ξ, τ)

N-S
∥∥∥ Leray

∥∥∥

E [F [θ](W t)] E [F [Θ](W τ + ah(τ))]

M-G
∥∥∥ C-M

∥∥∥

E

[
F [θ](W t + ah(t))Ĝa(t)

]
E [F [Θ](W τ )Ga(τ)]

Figure 1: Scale-invariance, the dynamical equations and the transformation
of probability measures; N-S stands for the Navier-Stokes equations, M-G for
Maruyama-Girsanov theorem and C-M for Cameron-Martin theorem.

1.6.2 Leray equations

We consider the Leray equations first, because it has a global smooth

solution by assumption (i.e. by construction). Defining Θ by Ψj =

k logΘj , (j = 1, 2, 3) the scale-invariance becomes

θ(x, t) = Θ(ξ, τ).

Let us take the drift term as b(x) = −x and h(t) =
∫ t

0
b(W s)ds. For a

simpler comparison, we write (x, t) for (ξ, τ). (See Figure 1 for a list

of relationships with independent variables distinguished.)

The transformed variable Θ satisfies the following equations

Θ = E
[
F [Θ](W t + ah(t))

]
, all t ≥ 0 (1.23)

= E
[
F [Θ](W t)Ga(t)

]
, 0 ≤ t <

√
2

a
(1.24)

where Ga(t) denotes the Maruyama-Girsanov density

Ga(t) = exp

(
a

∫ t

0

b(W s) · dW s −
a2

2

∫ t

0

|b(W s)|2ds
)
.
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Here use has been made of the Cameron-Martin theorem

E [F (W t + h)] = E

[
F (W t) exp

(∫ t

0

ḣ(s) · dW s −
1

2

∫ t

0

|ḣ(s)|2ds
)]

,

(1.25)

where F denotes an arbitrary functional. The time scale
√
2/a has been

determined by the Novikov condition for Ga(t) to be a martingale. It is

important that this time scale is larger than 1/2a, because the following

comparison cannot be made otherwise.

In (1.23), “all t ≥ 0” means that it has a smooth solution in t ≥ 0.

We next consider the case with finite a and characterise the difference

in an additive manner. Subtracting E
[
F [Θ](W t)

]
, we have

Θ− E
[
F [Θ](W t)

]
= E

[
F [Θ](W t + ah(t))− F [Θ](W t)

]
(1.26)

= E
[
F [Θ](W t)(Ga(t)− 1)

]
, (1.27)

≡ E
[
〈DF [Θ](W t + µh(t)), ah〉

]
, (1.28)

which is valid for t <
√
2/a. Applying the usual mean-value theorem to

Ga(t) for fixed t, we find

Ga − 1

a
=
∂Ga

∂a

∣∣∣∣
a=µ

, for some µ ∈ (0, a),

where

∂Ga

∂a

∣∣∣∣
a=µ

=

(∫ t

0

b(W s) · dW s − µ

∫ t

0

|b(W s)|2ds
)
Gµ.

The equation (1.28) can be regarded as a result of an application of

“the mean-value theorem”1 to (1.26), whose precise meaning is given

by (1.27). The equation (1.28) shows that the Leray equations have an

extra additive term in the form of the Malliavin H-derivative, on top of

those of the Navier-Stokes equations.

For finite a, we have

Θ− E
[
F [Θ](W t)

]
= E

[
〈DF [Θ](W t + µh(t)), ah〉

]
(1.29)

= aE

[
F [Θ](W t)

∂Ga

∂a

∣∣∣∣
a=µ

]
. (1.30)

We stress that the left-hand side alone defines the Navier-Stokes equa-

tions.

1 This is reminiscent of an application of the elementary mean-value theorem
f(x+ a) = f(x) + af ′(x+ µ), 0 < ∃µ < a.



1.6 Dynamic scaling transform 13

In passing, we note that as a→ 0

lim
a→0

(
Θ− E

[
F [Θ](W t)

])
= 0,

but that

lim
a→0

1

a

(
Θ− E

[
F [Θ](W t)

])
= E

[
〈DF [Θ](W t),h〉

]
. (1.31)

This limit, however is not very useful as we are assuming that no finite-

time blowup takes place for the Navier-Stokes equations (t∗ = 1/2a →
∞).

1.6.3 Navier-Stokes equations

We now turn our attention to the Navier-Stokes equation of the form

(1.15) and carry out an analysis in a parallel fashion. By assumption, it

has a short-lived solution θ for t < 1/2a(= t∗), which satisfies

θ = E
[
F [θ](W t)

]
, 0 ≤ t <

1

2a
(1.32)

= E

[
F [θ](W t + ah(t))Ĝa(t)

]
. (1.33)

Here Ĝa(t) denotes the Maruyama-Girsanov density

Ĝa(t) = exp

(
−a
∫ t

0

b(W s) · dW s −
a2

2

∫ t

0

|b(W s)|2ds
)
,

in the Maruyama-Girsanov theorem

E [F (W t)] = E

[
F (W t + h) exp

(
−
∫ t

0

ḣ(s) · dW s −
1

2

∫ t

0

|ḣ(s)|2ds
)]

.

(1.34)

As above, we have

θ − E
[
F [θ](W t + ah(t))

]
= E

[
F [θ](W t)− F [θ](W t + ah(t))

]

= E

[
F [θ](W t + ah(t))(Ĝa − 1)

]

= −E
[
〈DF [θ](W t + µ′h(t)), ah〉

]
,

where

Ĝa − 1

a
=
∂Ĝa

∂a

∣∣∣∣∣
a=µ′

, for some µ′ ∈ (0, a)
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and

∂Ĝa

∂a

∣∣∣∣∣
a=µ′

= −
(∫ t

0

b(W s) · dW s + µ′

∫ t

0

|b(W s)|2ds
)
Ĝµ′ .

For finite a, we find

θ − E
[
F [θ](W t + ah(t))

]
= −E

[
(DF [θ](W t + µ′h(t)), ah)

]
(1.35)

= aE


F [θ](W t)

∂Ĝa

∂a

∣∣∣∣∣
a=µ′


 . (1.36)

Again, note that the left-hand side alone defines the Leray equations.

The Navier-Stokes equations can be regarded as a perturbed version of

the Leray equations.

1.7 Summary

In this paper we have surveyed some results on the basic issues of the

Navier-Stokes equations, which have been obtained by paying attention

to the scale-invariant nature of the equations.

We then show how we can generalise the concept of invariance un-

der dynamic scaling transforms. The key step is to write down the ba-

sic equations in the dependent variables, which themselves are already

scale-invariant. In three-dimensions, they are simply the vector poten-

tials. Using dynamic scaling (as a push-forward), we obtain the Leray

equations, where the dissipative operator changes from the Laplacian

to the Ornstein-Uhlenbeck operator. If we move onto path-integral rep-

resentations, the probability measures can be made explicit. By using

the Cameron-Martin-Maruyama-Girsanov transforms (as a pull-back),

we retrieve the Navier-Stokes equations modulo a Maruyama-Girsanov

density G.

Hence it seems natural to define quasi-invariance by equivalence mod-

ulo G in path integral representations. Under dynamic scaling, Navier-

Stokes equations change their forms only slightly when written in the

vector potentials. We have also seen that the difference can be inter-

preted in terms of the H-derivative.

It is of interest to study the implications of quasi-invariance on the

basic issues. Now that the two equations have been shown to be very

close, while the behaviour of their solutions are totally different, such

a close similarity can impose constrains on the possibility of blowup.
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Particularly, it is of interest to study which specific properties of T [∇ψ],
if any, can make the solution to the pulled-back Navier-Stokes equations

outlive the original one so that we would possibly get a contradiction.

Finally, we note that the whole arguments hold in R
n for any n ≥ 2.
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Appendix A

Wiener process

In the triplet (Ω, F,P ), Ω is a set of R
d-valued continuous functions

defined for t ∈ [0,∞), F the σ-algebra on Ω and P the probability

measure on it.

The solution to the heat equation

∂u

∂t
=

1

2
△u

can be written

u(x, t) = E[f(x+W t)|W 0 = 0],

or, equivalently

u(x, t) = E[f(W t)|W 0 = x].

In the text, an abridged notation u(x, t) = E[f(W t)] has been used

throughout.

A link to the Gaussian probability measure p(x,y, t) can be made

explicit, Ikeda & Watanabe (1988), by noting

E[f(x+W t)] =

∫
f(y)E[δy(x+W t)]dy,

that is,

p(x,y, t) = E[δy(x+W t)] =
1

(2πt)d/2
exp

(
−|x− y|2

2t

)
.

Here δy(x) denotes Dirac mass supported at y.



Appendix B

Feynman-Kac formula for time-dependent
potential

For given fj(x, t), j = 1, 2, 3 a number of different representations

are available for the (unique) solution to (1.13). To distinguish them

properly, we assume here that Brownian motion starts from the origin

W 0 = 0, as opposed to the assumptionW 0 = x in the main text. (Here

no summation is implied on j.)

The expression (1.15)

θj(x, t) = E

[
θj(x+W t, 0) exp

(∫ t

0

fj(x+W s, s)ds

)]
(B.1)

can be obtained by applying the time-dependent Trotter formula, see

Section 11.2 of Taylor (1996).

Another form

θj(x, t) = E

[
θj(x+W t, 0) exp

(∫ t

0

fj(x+W s, t− s)ds

)]
(B.2)

can be found in Freidlin (1985).

Yet another form

θj(x, t) = E

[
θj(x+W t, 0) exp

(∫ t

0

fj(x+W t −W s, s)ds

)]
(B.3)

can be found in Friedrichs et al. (1957). The expression (B.3) can be

extended to the case where the potential term fj itself is stochastic Chow

(2014).

We can make use of the alternative forms of functional integrals by

changing the all arguments in fj(·, ·) accordingly.
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