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Addressing Endogeneity in International Marketing Applications 
of Partial Least Squares Structural Equation Modeling 

 

ABSTRACT 

Partial least squares structural equation modeling (PLS-SEM) has become a key method in 

international marketing research. Users of PLS-SEM have, however, largely overlooked the issue 

of endogeneity, which has become an integral component of regression analysis applications. 

This lack of attention is surprising, given that the PLS-SEM method is grounded in regression 

analysis for which numerous approaches for handling endogeneity have been proposed. To 

identify and treat endogeneity, and create awareness of how to deal with this issue, this study 

introduces a systematic procedure that translates control variables, instrumental variables, and 

Gaussian copulas into a PLS-SEM framework. We illustrate the procedure’s efficacy by means 

of empirical data, and offer recommendations to guide international marketing researchers on 

how to effectively address endogeneity concerns in their PLS-SEM analyses. 

 

KEYWORDS  
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INTRODUCTION 

The ambition to make causal claims is fundamental to international marketing research. 

Consider, for example, a sampling of recent research questions addressed in articles published in 

Journal of International Marketing: Is coopetition between foreign and local partners good or 

bad for international joint venture performance (Shu et al. 2017)? How do strategic fit between 

host-home country similarity and exploration exploitation strategies impact firm performance 

(Peng Cui et al. 2014)? Do macroenvironmental factors such as cultural dimensions and 

globalization forces moderate the relationship between product diversification and market value 

of large international firms (Qiu et al. 2015; Tianjiao 2014)?  

Analyzing such research questions requires a research design that randomly assigns corporations 

or customers to different experimental conditions, and then tests for differences among the 

groups (Antonakis et al. 2010). However, like in many other fields of scientific inquiry (e.g., 

Clougherty et al. 2016; Sande and Ghosh 2018), researchers in international marketing seldom 

undertake randomized controlled experiments. This is not surprising, given that such 

experiments are prohibitively expensive, or simply impossible to conduct, due to managers and 

firms’ unwillingness to be randomly assigned to the treatment and control groups (Bascle 2008). 

As a consequence, researchers typically rely on survey-based primary data or secondary data 

(e.g., Nakata and Huang 2005) in which independent variables cannot be exogenously 

manipulated (e.g., Clougherty et al. 2016).  

At the same time, opportunities for endogeneity to be present are widespread throughout 

international marketing empirical research designs and data contexts. As Deng (2016, p. 1) notes, 

“endogeneity is pervasive and sometimes inevitable in international business and marketing 
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studies.“ Numerous researchers have, therefore, called for a routine consideration of endogeneity 

in these and related fields (e.g., Hult et al. 2008; Sande and Ghosh 2018). 

Endogeneity arises, for example, when a firm’s international marketing strategies (e.g., channel 

selection, entry modes, and advertising spending) are nonrandom and influenced by firm and 

industry-level factors. These factors may include a firm’s corporate culture and organizational 

capabilities or market forces such as industry growth and competition intensity (Jin et al. 2016). 

But these factors are typically difficult to measure and include in statistical models (e.g., Hult et 

al. 2008). Similarly, a multitude of factors, which are difficult to consider in full, potentially 

influence a firm’s international marketing performance (i.e., the outcome of a firm’s decision-

making regarding internationalization activities; Souchon et al. 2016). In these situations, if an 

omitted construct or variable affects both the dependent variable and one or more independent 

variable(s) in the regression model, the condition will induce a correlation between the 

independent variable(s) and the error term (Wooldridge 2013). Hence, variation in the omitted 

construct or variable will manifest in the error term, thereby violating a key causal modeling 

assumption of regression analysis—the error term is assumed to have an expected value of zero 

(Wooldridge 2013). As a consequence, the coefficient estimates from standard regression 

analyses are biased and inconsistent, thereby becoming causally uninterpretable and potentially 

triggering type I and type II errors (Papies et al. 2016). 

Dealing with endogeneity has been extensively discussed in the marketing literature, especially 

with respect to different forms of regression and panel models (e.g., Ebbes et al. 2011; Park and 

Gupta 2012; Rossi 2014), as well as conjoint analysis (e.g., Liu et al. 2007). But little research 

addresses endogeneity in structural equation modeling (SEM). While several studies have 

discussed endogeneity in the context of factor-based SEM (e.g., Bollen et al. 2014; Kirby and 
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Bollen 2009), there is a paucity of research on this topic in partial least squares structural 

equation modeling (PLS-SEM; Wold 1982) whose usage has recently gained momentum in 

international marketing (Richter et al. 2016) and business research in general (e.g., Ali et al. 

2018; Nitzl 2016; Ringle et al. 2018). Some researchers even claim that PLS-SEM does not 

allow for addressing endogeneity at all (e.g., Antonakis et al. 2010; McIntosh et al. 2014; 

Rönkkö and Evermann 2013). This assertion is astonishing and inaccurate given that PLS-SEM 

is grounded in regression analysis (Lohmöller 1989, Chapter 2), for which numerous approaches 

for handling endogeneity exist (e.g., Ebbes et al. 2005; Park and Gupta 2012; Staiger and Stock 

1997). Indeed, Benitez et al. (2016) recently made an advance in this direction by combining the 

standard PLS-SEM algorithm with the two-stage least squares (2SLS) method, but did not 

consider variables that control for endogeneity’s sources.  

Overall, research has not yet developed a comprehensive framework that (1) considers the 

multitude of approaches applicable in PLS-SEM and (2) offers guidelines for assessing 

endogeneity in this context. It is therefore not surprising that PLS-SEM applications do not use 

approaches for assessing endogeneity. Specifically, our review of articles published in the ten-

year period between 2008 and 2017 in the Journal of International Marketing, International 

Marketing Review and the Journal of International Business Studies—the three highest ranked 

international marketing journals in Hult et al.’s (2009) journal ranking—shows that none of the 

43 reviewed PLS-SEM studies tested for endogeneity (Table A1 in the Appendix). 

Addressing this gap in research, this study explains and illustrates how to deal with endogeneity 

in PLS-SEM-based international marketing studies. Based on a discussion of endogeneity’s roots 

and consequences, we focus on omitted variables as the principal, and most commonly 

examined, source of endogeneity (Bascle 2008; Clougherty et al. 2016).1 We then describe the 
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different methods of (statistically) responding to endogeneity in regression models and translate 

these to a PLS-SEM context. Based on the above-mentioned discussion, we offer a systematic 

procedure for identifying and treating endogeneity in PLS-SEM and illustrate its use in an 

empirical example of corporate reputation, a concept frequently examined in international 

marketing and business research. 

TREATING ENDOGENEITY IN REGRESSION MODELS  

While endogeneity can have various roots, such as measurement errors, simultaneous causality, 

common method variance, and (un)observed heterogeneity (Bascle 2008; McIntosh et al. 2014; 

Papies et al. 2016; Sande and Ghosh 2018), endogeneity problems most often arise from omitted 

variables that correlate with one or more independent variable(s) and the dependent variable(s) in 

the regression model (e.g., Bijmolt et al. 2005; Rossi 2014). Omitting such variables induces a 

correlation between the corresponding independent variables and the dependent variables’ error 

term (Wooldridge 2010). That is, the independent variables then not only explain the dependent 

variable, but also the error in the model.  

Consider the following regression model where ݕ represents the dependent variable, x1 and x2 are 

independent variables, ߚ the intercept, ߚଵ  and ߚଶ the regression coefficients of x1 and x2, and ߝ 
the error term: 

ݕ  = ߚ + ଵݔଵߚ + ଶݔଶߚ +  (1) ,ߝ

Let us assume that the independent variable x2 is uncorrelated with ߝ (i.e., x2 is exogenous), 

whereas x1 is endogenous since it is correlated with the error term ߝ (i.e., ݔ)ݒܥଵ, (ߝ ് 0). 

Hence, endogeneity occurs in this regression model example. Note that this terminology, which 

is used in the endogeneity literature (Wooldridge 2010), should not be confused with the terms 
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used for the explanation of PLS path models with exogenous (i.e., independent) and endogenous 

(i.e., dependent) constructs (Chin 1998). In the following, and in line with the literature, we refer 

to endogenous and exogenous to identify variables that endogeneity does (not) impact; we use 

dependent and independent to identify constructs that explain other constructs in the PLS path 

model, or are explained by them.  

A straightforward way of handling, or at least reducing, endogeneity is to specify a set of control 

variables (Bernerth and Aguinis 2016) accounting for a part of the dependent variable’s variance 

(Ebbes et al. 2017). While carefully chosen control variables often alleviate endogeneity problems 

substantially (Papies et al. 2016), the success of this endeavor depends on the researcher’s ability to 

(1) identify relevant control variables, and (2) collect corresponding data. Furthermore, 

specifying a great number of control variables does not necessarily account for all of endogeneity 

in the model (Bascle 2008; Reeb et al. 2012) and contradicts the basic philosophy of Occam’s 

razor (i.e., the principle of parsimony) upon which the scientific discipline rests. 

Despite their careful selection of control variables, researchers also need to apply a statistical 

approach to address endogeneity, if there could be a potential endogeneity problem. Two broad 

statistical approaches have been developed to examine the presence of endogeneity: instrumental 

variable and instrumental variable-free approaches (Papies et al. 2016).  

Instrumental Variable Approaches 

In econometrics and other areas of applied research, the instrumental variable (IV) approach is 

the technique of choice when dealing with endogeneity (e.g., Bound et al. 1995; Staiger and 

Stock 1997; Villas-Boas and Winer 1999). This approach uses information in additionally 

specified independent variables (called IVs) to decompose the endogenous independent 
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variables’ variance into two parts (Bascle 2008): The exogenous part, which does not correlate 

with the error term, and the endogenous part, which still correlates with the error term. The 

estimation of the regression model then only uses the exogenous part, which endogeneity does 

not affect, to provide unbiased and consistent regression estimates. The IV approach is usually 

implemented by means of the 2SLS algorithm. This algorithm’s first stage involves regressing an 

independent variable on an IV, followed by computing the predicted values from this equation 

and using them as input for re-estimating the original model in the second stage. 

To illustrate the approach, consider the regression model example given in Equation 1. Let us 

assume that the independent variable x1 is endogenous, whereas x2 is exogenous. The first stage 

of the IV approach involves regressing the endogenous variable x1 on the exogenous variable x2 

and the IV z: 

ଵݔ  = ߛ + ݖଵߛ + ଶݔଶߛ  +  (2)  .ߞ

Here, ߛ represents the intercept, ߛଵ the regression coefficient of z, ߛଶ the regression coefficient 

of ݔଶ, and ߞ the error term. Estimating Equation 2 yields predicted values of x1 (i.e., ݔොଵ), which 

express the exogenous part of the independent variable ݔଵ. In the second stage, we replace ݔଵ in 

the original regression model (Equation 1) with ݔොଵ to estimate the following: 

ݕ  = Ԣߚ + ොଵݔԢଵߚ + ଶݔԢଶߚ +  Ԣ. (3)ߝ

Endogeneity occurs when there is a significant difference between ߚଵ (Equation 1) and ߚԢଵ 
(Equation 3), with the latter representing the influence of the independent variable’s exogenous 

part on y. To test for this difference, researchers use the Durbin-Wu-Hausman test (Hausman 

1978). If  the test indicates a significant difference between the ߚ estimates, researchers should 

revert to the endogeneity-corrected estimates (Equation 3). If the Durbin-Wu-Hausman test does 
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not indicate a significant degree of endogeneity, researchers should use the non-corrected 

estimates from the original regression model (Equation 1).  

To work effectively, the IVs must meet two criteria: the instrument relevance criterion and the 

exclusion restriction. First, according to the instrument relevance criterion, the correlation of 

each IV with the endogenous variable should be strong, which means that the IV’s effect ߛଵ on 

the dependent variable ݔଵ in Equation 2 must be pronounced and significant (Papies et al. 2016). 

If it is not, the corrected ߚ coefficient estimates (Equation 3) may be considerably biased (Rossi 

2014). But as Bound et al. (1993) note, “the cure can be worse than the disease.” To further 

substantiate an IV’s relevance and adequacy, researchers need to test whether its inclusion in the 

first stage regression (Equation 2) improves the model’s R2 value significantly by referring to the 

F-statistic. As a rule of thumb, an F-statistic value of 10 and higher is generally viewed as 

indicative that the IV is adequate (e.g., Staiger and Stock 1997). Alternatively, Stock et al. 

(2002) provide a table of critical F-statistic values for IV models based on the number of 

instruments used. Note that in situations with only one endogenous variable and one IV, 

researchers must apply a multivariate F-test (e.g., Angrist and Pischke 2009) to test for the IVs’ 

adequacy. In contrast, situations with multiple endogenous variables require considering at least 

the same number of IVs to ensure that the approach draws on an identified, or over-identified, 

model (Murray 2006b).  

Second, according to the exclusion restriction for evaluating IVs when examining endogeneity, 

each IV should not be correlated with the error term in the original regression model (Murray 

2006b). This requirement cannot be assessed statistically unless the researcher specifies more 

IVs than endogenous variables. In this case, the Sargan test and the Hansen’s J test allow testing 

for significant correlations between the IVs and the error term (Bascle 2008; Wooldridge 2010). 
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Rejecting the null hypothesis of no correlation, however, does not help to verify which of the IVs 

are endogenous (Papies et al. 2016). While this test provides some empirical substantiation when 

the first stage model is over-identified, researchers should primarily rely on theoretical 

arguments when assessing the IVs’ adequacy (e.g., Murray 2006a).  

Research has proposed the control function approach, a modification of the 2SLS method, which 

also leverages IVs to control for endogeneity. Specifically, the control function approach draws 

on the first stage regression (Equation 2) to obtain the fitted residuals (ݔොଵ െ  ଵ), which are thenݔ

included in the original model to obtain correct(ed) estimates of the coefficients. Furthermore, to 

interpreting the significance of the fitted residuals requires running the Durbin-Wu-Hausman test 

(Papies et al. 2016). That is, if a coefficient is significant, researchers should revert to the 

endogeneity-corrected estimates.  

The control function approach is particularly advantageous when estimating regression models 

with discrete dependent variables (Petrin and Train 2010). However, such model types currently 

cannot be estimated in PLS-SEM since the standard algorithm requires the dependent constructs 

to be continuous (Lohmöller 1989, Chapter 4). For linear models as typically estimated in PLS-

SEM, the control function approach yields exactly the same results as the 2SLS approach (Papies 

et al. 2016).  

Instrumental Variable-Free Approaches 

When considering the IV approach, identifying conceptually fitting IVs is very challenging 

(Rossi 2014), especially in light of the data constraints characterizing a typical research project. 

Research has suggested instrument-free approaches that do not require IVs to be specified as a 

solution. For example, Park and Gupta (2012) introduced the Gaussian copula approach, which 
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controls for endogeneity by directly modeling the correlation between the endogenous variable 

and the error term by means of a copula. Another instrument-free approach, proposed by Ebbes 

et al. (2005), is conceptually similar to the IV approach in that it splits an endogenous variable 

into an exogenous and an endogenous part. However, this latent instrumental variables (LIVs) 

approach does not draw on an observed variable, but generates an unobserved (i.e., latent) IV. 

Ebbes et al. (2005) assume that the latent instrument is discrete with at least two categories, 

separating the sample into L latent categories. As such, the LIV approach belongs to the class of 

normal mixture models with L components (Papies et al. 2016) whose model parameters can be 

identified for ܮ > 1 and non-normality of the endogenous regressor (Ebbes et al. 2005).  

The LIV approach can be used in a PLS-SEM context, but a fundamental challenge in its 

application is the selection of the number of categories L. A priori, this number is unknown but 

has a substantial effect on the results. While Papies et al. (2016, p. 609) suggest that “the 

researcher fits at least 4 ,3 ,2 = ܮ and 5,” there is no clear guidance regarding the desired stability 

of the estimates in order to vary L and, hence, regarding this parameter’s final choice. At the 

same time, while the statistical software R facilitates the use of the Gaussian copula approach, 

current software support for the LIV approach is limited because models can only include one 

independent and one dependent variable (REndo package version 1.3). As these two issues limit 

the LIV approach’s applicability, we focus on the Gaussian Copula approach, which allows 

correcting for endogeneity in the absence of IVs. 

Table 1 provides an overview of the advantages and disadvantages of (1) the control variable 

approach, (2) the IV approach, and (3) two types of IV-free approaches (i.e., Gaussian copula 

and LIV) when dealing with endogeneity in PLS-SEM. 
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=== Insert Table 1 about here === 

ADDRESSING ENDOGENEITY IN PLS-SEM  

Procedure 

PLS-SEM is a statistical method to estimate path models with latent variables (Lohmöller 1989, 

Chapter 2; Wold 1982). Unlike factor-based SEM, which considers constructs as common 

factors that explain the covariation between the associated indicators (Jöreskog 1978), PLS-SEM 

is a composite-based approach to SEM that uses linear combinations of indicator variables to 

represent conceptual variables in a statistical model (Henseler et al. 2014; Sarstedt et al. 2016). 

PLS-SEM estimates the parameters of a set of equations in a structural equation model by 

combining an approach similar to principal components analysis with regression-based path 

analysis. Specifically, the PLS-SEM method uses partial regressions to estimate the path 

coefficients between the latent variables and their indicators in the measurement models, as well 

as between the latent variables in the structural model; for instance, Lohmöller (1989, Chapter 2) 

and give an introduction to the PLS-SEM algorithm. Approaches for dealing with endogeneity in 

regression models can therefore be readily transferred to PLS-SEM. However, contrary to 

regression analysis, in which the approaches use the (observed) indicator variables as input, their 

implementation in PLS-SEM draws on the composite scores obtained after the algorithm’s 

convergence (Lohmöller 1989, Chapter 2).2 Figure 1 illustrates our systematic procedure for 

dealing with endogeneity in PLS-SEM. The following sections discuss each step in greater 

detail. 

=== Insert Figure 1 about here === 
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Stage 1 of the procedure requires checking if  testing for endogeneity is necessary. Specifically, 

the meaningfulness of considering endogeneity in PLS-SEM depends on whether researchers use 

the method for predictive or explanatory modeling purposes. In predictive modeling, the purpose 

of the analysis is to predict new or future observations (Shmueli 2010). Here, the main concern is 

predicting the case values of the dependent variables, rather than (causally) interpreting the 

structural paths. Controlling for endogeneity is not useful in this case, as it may reduce the 

model’s predictive power (Ebbes et al. 2005). Conversely, in explanatory modeling, which 

involves “the use of statistical models for testing causal explanations,” (Shmueli 2010, p. 290) 

controlling for endogeneity is crucial in order to adequately test hypotheses (Papies et al. 2016). 

In practice, however, researchers using PLS-SEM generally balance prediction and explanation 

in that they expect their model to have high predictive accuracy, while also being grounded in 

well-developed causal explanations (Sarstedt et al. 2017a). Gregor (2006; p. 626) refers to this 

interplay as explanation and prediction theory, noting that this approach “implies both 

understanding of underlying causes and prediction, as well as description of theoretical 

constructs and the relationships among them.” Such a setting may require the consideration of 

endogeneity, depending on whether explanation (i.e., testing theory) or prediction (e.g., to derive 

managerial recommendations) prevail in a certain research project. 

Stage 2 of the procedure (Figure 1) uses existing theory and prior research findings to identify 

potential endogeneity issues a priori. If  prior research adequately theorized, detected, and treated 

endogeneity issues in a specific research context, this knowledge should be applied when 

proposing a PLS path model and collecting data. This typically involves including control 

variables in the model, or gathering data on IVs for an ex post assessment, using the IV approach 

(e.g., Ebbes et al. 2017; Reeb et al. 2012). Thus, if prior research suggested that endogeneity is 
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an issue, or the results cast doubt that all the endogeneity sources have been detected, researchers 

should also test whether endogeneity substantially affects the model estimates. 

To do so, Stage 3 of the procedure (Figure 1) applies the Gaussian copula approach. If the results 

do not indicate a problem, researchers can use the original model’s estimates. Otherwise, the 

sources of endogeneity must be further explored and controlled for in the next step of the 

procedure. Since endogeneity problems in international marketing often arise from omitted 

variables (Jean et al. 2016), Stage 4 involves conceptually identifying the missing information 

and adding control variables to the PLS path model (Papies et al. 2016). Including suitable 

control variables handles, or at least reduces, the impact of endogeneity on the model estimates 

(Ebbes et al. 2017). In situations where no suitable control variables are available, researchers 

can draw on the IV approach. If IVs are unavailable, or researchers cannot identify at least one 

suitable IV for each endogenous variable in a partial regression model, they can use the Gaussian 

copula results, if available, and report that they cannot identify adequate omitted variables that 

explain the endogeneity problem. If the Gaussian copula results are not available, because they 

do not meet the method’s requirements, researchers should interpret the original PLS path model 

estimates and specify the reason(s) for not addressing the potential endogeneity issues as a 

limitation (Figure 1).  

The Gaussian copula approach in PLS-SEM 

To illustrate the Gaussian copula approach in PLS-SEM, consider a simple path model with one 

dependent latent variable Y1, explained by two independent latent variables X1 and X2. Each of 

the latent variables is measured using three indicators. Figure 2 shows this simple path model. 

The hexagons represent composites formed by linear combinations of the indicator variables, as 

indicated by the arrows linking the indicators and the composites. These arrows do not 
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necessarily correspond to the measurement model specification, which can be reflective or 

formative (Sarstedt et al. 2016). However, we use this illustration because PLS-SEM forms 

composites from the indicator variables to represent the conceptual variables in the model 

estimation.  

=== Insert Figure 2 about here === 

Model estimation in PLS-SEM draws on a three-stage approach that belongs to the family of 

(alternating) least squares algorithms (Mateos-Aparicio 2011). Stage 1 of the PLS-SEM 

algorithm iteratively determines indicator weights, composite scores, and path coefficients. The 

algorithm converges when the indicator weights change only marginally from one iteration to the 

next. Stages 2 and 3 use the final composite scores from Stage 1 as input for a series of ordinary 

least squares regressions. These regressions produce the final indicator loadings, indicator 

weights, and path coefficients, as well as related elements, such as the indirect and total effects, 

and R2 values (e.g., Sarstedt et al. 2017a). With reference to our example, the final stage of the 

PLS-SEM algorithm entails regressing Y on X1 and X2 to estimate the structural model path 

coefficients ߚଵ and ߚଶ:  
 ܻ = ߚ + ଵߚ ଵܺ + ߚଶܺଶ +  (4) ߝ

Let us assume that the independent variable X1 is thought to be correlated with the error term (ߝ) 
of the dependent variable Y, and may therefore induce an endogeneity problem in the estimation 

of Equation 4.  

The Gaussian copula approach requires the composite scores of the endogenous construct X1 to 

be non-normally distributed. If this requirement is met, the Gaussian copula of X1 can be 

calculated as follows (Papies et al. 2016): 
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כܿ  = Ȱିଵ(ܪ( ଵܺ)),  (5) 

where (ݔ)ܪ is the empirical cumulative density function and Ȱିଵ is the inverse normal 

cumulative density function. Next, the copula is included as an additional independent variable 

that controls for the correlation between the error term and the endogenous independent 

construct in the regression model: 

ݕ  = ߚ + ଵݔଵᇱߚ + ଶݔଶᇱߚ + כଷܿଵߚ +  Ԣ (6)ߝ

To attend to the endogeneity problem, estimating Equation 6 yields the new path coefficients ߚଵᇱ 
and ߚଶᇱ . 
To determine whether endogeneity is at a critical level, researchers need to assess the copula 

coefficient’s (ߚଷ) significance using bootstrapping (Hausman 1978; Park and Gupta 2012). A 

significant coefficient indicates a critical level of endogeneity. If the copula coefficient is 

significant, researchers can assume that an endogeneity issue is presenteven though treated by 

including the copula in the regression model (Equation 6). If the coefficient is not significant, no 

critical endogeneity issue affects the regression results. 

While the standard Gaussian copula approach assumes a single endogenous variable, Park and 

Gupta (2012) also discuss the case of modeling multiple endogenous variables simultaneously. 

Doing so requires creating the copula for each individual endogenous variable and adding all 

copulas to the original model. The procedure separately computes all the Gaussian copulas of the 

specified endogenous variables (Park and Gupta 2012). 
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Control Variables in PLS-SEM 

If  the Gaussian copula approach indicates a significant degree of endogeneity, researchers should 

use control variables to identify its sources. The introduction of control variables should always 

be grounded in strong theory (Bernerth and Aguinis 2016). That is, researchers should be explicit 

(rather than implicit) regarding the role of control variables in the analysis and potentially even 

match the hypotheses precisely to their choice (Spector and Brannick 2010). Typical examples of 

control variables used in international marketing models include a company’s location, age, size, 

export experience, years of global experience, percentage of products sold overseas, number of 

countries entered, and cultural distance (e.g., Peng Cui et al. 2014; Shu et al. 2017).  

The use of control variables in PLS-SEM is analogous to regression models. More precisely, 

control variables are included as single-item constructs in a PLS path model. Each control 

variable is then linked to the dependent latent variable whose predictor constructs have been 

identified (or are assumed to be) as possibly exhibiting endogeneity. Note that criticism of the 

use of single-item constructs (Diamantopoulos et al. 2012) does not apply to control variables, as 

they usually represent observable characteristics. However, if the control variables represent 

unobservable concepts (e.g., cultural dimensions), they need to be measured by means of 

multiple items. Finally, the interpretation of the control variables’ effect is also analogous to 

regression models and depends on each control variable’s measurement scale, which can be 

categorical or metric in PLS-SEM (Hair et al. 2017). 

Once specified, researchers need to use bootstrapping to assess the control variables’ 

significance. Similar to the analysis of interaction effects in PLS-SEM (Hair et al. 2017; Chapter 

7), the assessment of significant control variables should use the f2 effect size to also consider 
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their relevance. According to Chin (1998) f² values of 0.02, 0.15, and 0.35 suggest small, 

moderate, and substantial effects. 

The Instrumental Variable Approach in PLS-SEM 

Implementing the IV approach in the context of PLS-SEM requires adjusting the final stage of 

the PLS-SEM algorithm. In its original form, this stage uses the composite scores obtained after 

convergence as input to run a series of ordinary least squares regressions that estimate the 

structural model path coefficients. Instead of using ordinary least squares regressions, however, 

this stage now uses 2SLS (Benitez et al. 2016). When implementing the IV approach in PLS-

SEM, researchers need to ensure that they include at least one IV per endogenous variable.  

Analogous to regression analysis, the IV approach’s implementation requires researchers to find 

IVs that are highly correlated with the independent variables (instrument relevance), but are 

uncorrelated with the dependent variable’s error term (exclusion restriction). In international 

marketing, previous regression-based models used IVs such as the organization quality, brand 

quality, environmental causes, brand strength (Swoboda and Hirschmann 2017), exposure to a 

multinational companies’ marketing (Swoboda and Hirschmann 2016), and export memory 

(Souchon et al. 2016). However, the identification of suitable IVs is highly context-specific and 

the most challenging step in the analysis (e.g., Larcker and Rusticus 2010). Angrist and Pischke 

(2009, p. 17) argue that finding good IVs requires “a combination of institutional knowledge and 

ideas about processes determining the variable of interest,” especially as there is no true test for 

their quality (Rossi 2014).  

To illustrate the implementation of the IV approach in PLS-SEM, consider the simple model in 

Figure 2 with the construct X1 possibly exhibiting endogeneity. We now introduce an IV (i.e., 
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Z1), measured by three indicators, that correlates strongly with the construct X1, but not with the 

error term of Y1 in the original model. Thereafter, we create and estimate the model shown in 

Figure 3. 

=== Insert Figure 3 about here === 

Next, a 2SLS analysis uses the composite scores of X1 and X2, obtained from the first model 

(Figure 2), and the composite scores of Z1, derived from the second model (Figure 3). 

Specifically, we regress X1 on Z1 and X2 to obtain ܺଵ: 
 ܺଵ = ߛ +  ଶܺଶ.  (7)ߛ +ଵܼଵߛ

We first assess the IV’s strength by comparing the R² values of the first stage regression 

(Equation 7) with and without the IV. The results of an F-test indicate whether the R² value of 

the regression model with and without the IVs differ significantly. If there are significant 

differences, we continue with the analysis by theoretically substantiating that Z1 is not correlated 

with the error term of Y1 (e.g., Semadeni et al. 2014; Staiger and Stock 1997). In the case of an 

over-identified model, statistical assessments by means of the Sargan test and the Hansen’s J test 

may support this analysis.  

Finally, we re-estimate the original model by regressing Y on X2 and ܺଵ from Equation 7 to 

obtain the corrected path coefficient estimates ߚଵᇱ and ߚଶᇱ : 
 ܻ = ᇱߚ + ଵᇱߚ ܺଵ + ଶᇱܺଶߚ +  Ԣ. (8)ߝ

The Durbin-Wu-Hausman test (Hausman 1978) allows for testing whether ߚଵᇱ (Equation 8) 

differs significantly from ߚଵ (Equation 5). If so, researchers should revert to the IV approach’s 
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coefficients (Equation 8). Otherwise, if the difference is not significant researchers should 

continue using the results of the partial regression model’s original PLS-SEM estimation.  

EMPIRICAL EXAMPLE TO ADDRESS ENDOGENEITY IN PLS-SEM  

Model and Data 

To illustrate our procedure for identifying and treating endogeneity (Figure 1), we draw on a 

corporate reputation model originally presented by Eberl (2010). The goal of this model is to 

explain the effects of competence (COMP) and likeability (LIKE), which represent corporate 

reputation’s two dimensions (Sarstedt et al. 2013; Schwaiger 2004), on customer satisfaction 

(CUSA), and ultimately on customer loyalty (CUSL). This model has been used to illustrate 

aspects of the PLS-SEM method (e.g., Hair et al. 2017; Hair et al. 2018) and has also been 

frequently applied in an international marketing context.3 For example, Zhang and Schwaiger 

(2012) use this model to study the differentiating effects of corporate social responsibility and 

other antecedent dimensions on corporate reputation in three Western countries (Germany, the 

USA, and the UK) and in China. Similarly, Radomir and Alan (2018) apply this model to 

contrast the effects of service quality and relationship investment on corporate reputation 

assessments of Romanian and UK consumers. Furthermore, Walsh et al. (2009) developed and 

validated a variant of this model using cross-country data, which features prominently in the 

international marketing literature. For example, several researchers have used this model to 

analyze the moderating effect of institutional country differences (Swoboda et al. 2016) and 

cultural dimensions (Swoboda and Hirschmann 2017) on the relationship between corporate 

reputation and customer loyalty.  
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Figure 4 shows the original model, which includes two partial regression models: (1) CUSL is 

regressed on COMP, CUSA, and LIKE, while (2) CUSA is regressed on COMP and LIKE. The 

following illustrations focus on the first, more complex, regression model. The measurement 

models of COMP, LIKE, and CUSL draw on three reflective items each, whereas CUSA is 

measured with a single item. The model estimation draws on data from two major German 

mobile communications network providers and two smaller competitors. A total of 344 

respondents rated each item on a seven-point Likert scale. Observations with missing values 

were deleted, leaving a total sample size of 336. We used the statistical software R (R Core 

Team 2018), STATA (StataCorp 2015), and SmartPLS 3 (Ringle et al. 2015) for the 

computations. For the PLS-SEM estimations, we use Mode A for all composites (Sarstedt et al. 

2017a). The results of the bootstrap routine with 5,000 samples, applying the no sign changes 

option, enable us to test for the coefficients’ significance. We find that the measurement models 

meet all the relevant evaluation criteria. In the structural model assessment, all the path 

coefficient estimates, except COMP to CUSL, are significant and the model’s R² values are 

satisfactory (for this application, Hair et al. 2017 provide further details of the PLS-SEM results 

and their assessment).  

=== Insert Figure 4 about here === 

Most of the corporate reputation model’s analyses take a predictive perspective (e.g., Schwaiger 

2004). However, in line with Eberl (2010), who elaborates on the causal effects of corporate 

reputation’s two components (i.e., COMP and LIKE) on CUSA and CUSL, we consider our 

analysis primarily explanatory in nature. Hence, following Stage 1 of the procedure (Figure 1), 

we continue by applying the Gaussian copula approach. 
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Application of the Gaussian copula approach in PLS-SEM 

Before initiating the Gaussian copula approach, to meet its assumptions, we first verify if the 

variables, which potentially exhibit endogeneity, are non-normally distributed (Figure 1). We do 

so by running the Kolmogorov–Smirnov test with Lilliefors correction (Sarstedt and Mooi 2014) 

on the standardized composite scores of COMP, LIKE, and CUSA, which the PLS path model 

estimation provides. The results show that none of the constructs has normally distributed scores, 

which allows us to consider them endogenous in the Gaussian copula analysis. 

Next, we create three regression models in which we consider the independent constructs COMP 

(model 1), LIKE (model 2), and CUSA (model 3) as possibly exhibiting endogeneity. In addition, 

to simultaneously account for multiple endogenous variables when applying the Gaussian copula 

approach, we create four regression models that include all possible combinations of multiple 

endogenous variables in this PLS path model example: LIKE and COMP (model 4), LIKE and 

CUSA (model 5), COMP and CUSA (model 6), and LIKE, COMP, and CUSA (model 7).  

We use the constructs’ standardized composite scores to compute the Gaussian copula of the 

partial regressions in the structural model. To cross-validate the results, we used two different 

statistical software packages, which returned the same results: STATA 14 (StataCorp 2015) and 

the REndo package of the R program (Gui et al. 2017). To implement STATA, we used specific 

commands (1) to compute the Gaussian cumulative distribution function, (2) to create the copula 

as the inverse of the Gaussian normal cumulative distribution function, and (3) to calculate the 

model that includes the Gaussian copula. Since the REndo package does not currently support 

the computation bootstrap standard errors, we used our own R code and the boot package (Canty 

and Ripley 2017) to run this part of the analyses. 
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=== Insert Table 2 about here === 

The results in Table 2 show that only one Gaussian copula (i.e., cCUSA) is significant (p < 0.1) 

when treating one endogenous variable, which points to a potential endogeneity issue. Including 

the significant Gaussian copula in the model changes the effect of CUSA on CUSL by 0.073 units 

(from 0.509 to 0.582), which points to a potential endogeneity problem for CUSA (model 3). 

Similarly, cCUSA is also significant in the CUSA models in combination with LIKE (model 5, p < 

0.1), COMP (model 6, p < 0.05), and LIKE and COMP (model 7, p < 0.1). This confirms the 

possibility of CUSA being endogenous.4  

Application of the control variable approach in PLS-SEM 

Following Stage 3 of the procedure for identifying and treating endogeneity (Figure 1), we next 

include control variables in the model, which from a theoretical perspective, are likely to 

influence customers’ loyalty (Eberl 2010). The first control variable (serviceprovider) 

distinguishes between large, globally operating mobile phone services providers 

(serviceprovider=1; n(1) = 251) and smaller, locally operating competitors (serviceprovider=2; 

n(2) = 85). In addition, we include a second control variable (servicetype), which is relevant from 

a service marketing perspective and distinguishes between customers with a contract and those 

with a prepaid plan. 

Analyzing the impact of the two control variables, both separately and jointly, shows that neither 

has a significant influence on the CUSL construct. Specifically, the servicetype variable has 

a -0.003 effect (sig.=0.917; f²=0.000), and the serviceprovider variable has a -0.038 effect 

(sig.=0.319; f²=0.003) on CUSL when included separately. Including both control variables 

simultaneously changes the results only marginally. As none of the control variables identifies a 
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source of endogeneity, we continue with the procedure (Figure 1) by running the IV approach on 

the data.  

Application of the IV approach in PLS-SEM 

The application of the IV approach in the context of our model requires selecting an IV that is 

correlated with COMP, CUSA, and LIKE. At the same time, the IV needs to be uncorrelated with 

the omitted determinants of customer loyalty and, hence, be uncorrelated with CUSL’s error 

term. Our implementation of the IV approach uses customers’ perceived switching costs as an 

IV. Switching costs comprise the time, money, and effort that consumers expect to expend when 

changing the service provider. In the mobile phone market, switching costs come primarily in the 

form of transfer costs (Klemperer 1987) when ending a relationship with one provider and 

starting a new one with another. Specifically, the implementation and configuration of the new 

relationship require the customer to invest time, effort, and other assets, while ending an old 

service may also require procedural tasks (Ray et al. 2012). Hence, in terms of the instrument 

relevance criterion, it is reasonable to assume that the perceived switching costs correlate with 

the customers’ satisfaction and reputation assessments, because significant transfer costs limit 

their freedom to configure the business relationship. Given the manifold factors that influence 

loyalty, arguing that perceived switching costs are uncorrelated with omitted variables that affect 

customer loyalty (exclusion restriction) is more difficult. However, research has identified 

customers’ variety seeking tendency—that is, the “tendency of individuals to seek diversity in 

their choices of services or goods” (Kahn 1995, p. 139)—as a major determinant of customer 

loyalty (e.g., Berné et al. 2001). Since this tendency is a psychological trait that is independent of 

individuals’ preference structures and is stable over time (Menon and Kahn 1995), variety 

seeking is probably unrelated to customers’ perception of the switching costs. Network quality is 
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another key determinant of customer loyalty that is relevant for the context of our study (e.g., in 

terms of coverage, stability, and voice quality; Lim et al. 2006). Network quality can differ 

substantially, especially in rural areas, and cannot be fully observed a priori. Poor network 

coverage will have a strong negative effect on customer loyalty, independent of the customers’ 

perception of the switching costs.5  

We use an extended version of Jones et al.’s (2000) scale and measure the switching costs by 

using four reflective indicators (switch1 to switch4), each measured on a five-point Likert scale. 

For our analysis, we extract all (standardized) composite scores from the SmartPLS 3 software. 

We subsequently run the IV approach by using STATA’s ivregress method (StataCorp 2017), as 

well as the statistical software R with its AER package (Kleiber and Zeileis 2017), to validate the 

results. Both programs provide the same results. Table 3 shows the results of the analysis for the 

IVs. 

To assess if the IV is strong (Figure 1), we use the weakID test’s F-value, which compares the R² 

values of the first stage regression with and without the IV. We consider three models, each of 

which considers another predictor construct of CUSL as likely to exhibit endogeneity (i.e., LIKE, 

COMP, and CUSA). The results in Table 3 show that including the IV significantly increases the 

1st stage R2 value when considering COMP and LIKE as endogenous, as evidenced by the 

weakID test values well above 10. Conversely, the model’s R2 value only increases marginally 

when considering CUSA as likely to exhibit endogeneity. Hence, in the following step, we use 

the Wu-Hausman test to assess whether the coefficients of the IV approach differ significantly 

from the original coefficients. The results in Table 3 show that, in our analysis, the original and 

IV coefficients do not differ significantly. When considering LIKE and COMP as endogenous, 

the Wu-Hausman test specifically returns p-values of 0.216.6 
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=== Insert Table 3 about here === 

Including switching costs as an IV does not explain the endogeneity problem’s origin. More 

specifically, the IV correction of CUSA increases the corresponding point estimate to above one, 

further indicating that the switching costs construct is not a suitable IV.  

Following the procedure in Figure 3, we should therefore examine the results of the Gaussian 

copula approach. Specifically, researchers should reinterpret the results that assume CUSA is 

endogenous, since including CUSA’s significant Gaussian copula in the model changes the 

relationship of CUSA on CUSL from 0.509 to 0.582 (Table 3). This finding is in line with prior 

research, which has theoretically and empirically substantiated endogeneity problems with 

customer satisfaction, especially its relationship to customer loyalty (Ivanov et al. 2013). 

Nevertheless, this analysis also illustrates that, in the context of our empirical example, 

considering endogeneity does not, from a theory testing perspective, change any conclusions 

drawn from the model estimation.  

To summarize, by carrying out the procedure shown in Figure 1, we identified a potential 

endogeneity issue based on the Gaussian Copula results. However, we have not been able to 

explain the problem by the available control and instrumental variables. Thus, in this kind of 

situation the researcher should report the Gaussian Copula approach’s solution, acknowledging 

that the findings do not reveal the origins of the endogeneity.  

SUMMARY AND CONCLUSIONS 

While addressing endogeneity has become an integral component of regression-based analyses in 

international marketing (Jean et al. 2016), users of the PLS-SEM method have overlooked this 

issue. A potential reason for this disregard is the predictive nature of PLS-SEM, which, if taken 
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into full consideration when using the method, renders endogeneity irrelevant (Ebbes et al. 

2011). However, researchers conventionally use PLS-SEM to test formal hypotheses, which 

corresponds to an explanation perspective, while simultaneously deriving managerial 

implications, which follows a prediction perspective. Endogeneity becomes an important 

concern, therefore, depending on whether researchers emphasize explanation or prediction in 

their analyses. 

Similar to scholars who have applied PLS-SEM in international marketing and other disciplines, 

methodological researchers have also failed to consider endogeneity in PLS-SEM, with some 

authors suggesting that endogeneity cannot be accounted for in a PLS-SEM framework (e.g., 

Antonakis et al. 2010; Rönkkö and Evermann 2013). Such notions are astonishing, since PLS-

SEM is a regression-based technique, which makes common approaches for identifying and 

treating endogeneity accessible in this specific methodological context. Benitez et al. (2016) took 

a first step in this direction by combining the standard PLS-SEM algorithm with the 2SLS 

method without, however, considering actual IVs that allow for decomposing the independent 

variables’ variance into endogenous and exogenous parts. Broadening the scope of their research, 

this study introduces a systematic procedure for identifying and treating endogeneity in PLS-

SEM that takes into account the most recent statistical developments in the literature on 

endogeneity. Specifically, implementing the Gaussian copula approach addresses the significant 

concerns associated with identifying strong and valid IVs. Moreover, combining this novel 

approach with the inclusion of control variables and the classic IV approach enables a 

comprehensive assessment of endogeneity when applying PLS-SEM for explanatory purposes.  

Our application of the procedure to empirical data discloses endogeneity in Eberl’s (2010) 

corporate reputation model, which has been frequently used in different variations in 
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international marketing and international business research (e.g., Swoboda et al. 2016; Zhang 

and Schwaiger 2012). Our analysis suggests that the CUSA construct is subject to endogeneity 

but control variables or IVs were not able to handle this problem. Correcting for endogeneity 

using the Gaussian copula approach leads to a pronounced change in the model estimates, while 

nevertheless leaving the general conclusions intact.  

We hope this article will be the starting point for future PLS-SEM research on endogeneity. 

Researchers may endeavor to introduce bootstrapping-based approaches to test the strength of an 

IV, its validity, and relevance in PLS-SEM. Further, the weakID test and Wu-Hausman test are 

parametric tests and therefore violate the nonparametric nature of PLS-SEM, thus requiring other 

tests to be identified. Moreover, further research should advance the understanding and 

applicability of IV-free approaches, such as Gaussian copulas or Ebbes et al.’s (2005) LIV  

method. For example, simulation study results could provide researchers with thresholds for 

deciding if a significant Gaussian copula entails a rather negligible, or a substantial, endogeneity 

problem. Future research should also identify ways to parametrize the LIV approach, which our 

study did not consider due to its strong dependency on the selection of the number of latent 

instrument categories (Papies et al. 2016) and lack of software support. Such a step would open 

ways for a benchmarking study of the Gaussian copula and LIV approaches in the context of 

PLS-SEM. In these regards, a Monte Carlo simulation study, in which prespecified levels of 

endogeneity bias the parameter estimates, would allow for comparing the IV  and IV-free 

approaches’ efficacy regarding identifying and treating endogeneity.  

Recent PLS-SEM developments, such as the consistent PLS-SEM approach (Dijkstra and 

Henseler 2015), which allows for mimicking factor-based SEM results, and the introduction of 

model fit criteria into PLS-SEM (e.g., Henseler et al. 2014) may help researchers with specific 
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explanatory research goals. The next logical step is to extend PLS-SEM’s capabilities to address 

endogeneity issues in empirical international marketing research when using consistent PLS-

SEM to estimate models on the grounds of common factor model data (Rigdon et al. 2017; 

Sarstedt et al. 2016). This kind of advancement should be straightforward in terms of our 

research findings, since the consistent PLS-SEM method uses the composite scores obtained 

from a standard PLS-SEM-based estimation as input. 

Future research should also explore other approaches to detect endogeneity problems in PLS-

SEM. Research has brought forward a number of latent class techniques such as finite mixture 

PLS (Hair et al. 2018), PLS prediction oriented segmentation (Becker et al. 2013), and PLS 

iterative reweighted regression segmentation (Schlittgen et al. 2016) to uncover unobserved 

heterogeneity. Sarstedt et al. (2017b) recently introduced a systematic procedure for identifying 

and treating unobserved heterogeneity in PLS path models. Combining several latent class 

techniques, the procedure enables researchers to (1) check if unobserved heterogeneity has a 

critical impact on the results, (2) decide on the number of latent segments to retain from the data, 

and (3) recover the segment-specific model estimates. However, future research needs to assess 

the interplay between the various sources of heterogeneity on the one hand and endogeneity on 

the other and develop guidelines to assess if endogeneity is at a non-critical level in the segment-

specific solutions.  

It would be particularly interesting to also consider the fuzzy-set qualitative comparative analysis 

of regression models (fsQCA; Woodside 2013). A joint consideration of these techniques may 

allow researchers to better assess and control for endogeneity embedded in unobserved 

heterogeneity (Ivanov et al. 2013; Schlittgen et al. 2016). Moreover, in this study we did not 

address how to deal with endogeneity issues in PLS path models that include interaction terms, 
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which are used, for example, in PLS-SEM-based moderator analyses (Hair et al. 2017; Henseler 

and Chin 2010). As international marketing researchers frequently apply such analyses (e.g., Jin 

et al. 2016; Leonidou et al. 2017), future studies should use insights from research on regression 

analysis (e.g., by using special 2SLS analyses to account for interaction terms and IVs or the 

control function approach; see, for example, Sande and Ghosh 2018) to furnish recommendations 

on how to adequately address this issue in PLS-SEM.  

Finally, in its standard form PLS-SEM does not support estimating longitudinal or panel data 

without limitations (Roemer 2016). Once the PLS-SEM method advances in these directions, 

assessing the efficacy of other approaches for handling endogeneity, such as the lagged variable 

approach (Jean et al. 2016), the cross-lagged correlation procedure (Tyagi and Wotruba 1993), 

the Arellano–Bond (1991) estimator (Kumar and Pansari 2016), and the Granger causality test 

(Filipescu et al. 2013), would be particularly interesting. Relatedly, extending the PLS-SEM 

algorithm to accommodate binary dependent variables would provide an opportunity to consider 

endogeneity methods specific to such model settings, such as the control function approach and 

its extensions (e.g., Garen 1984; Wooldridge 2015). These kinds of advances would be 

particularly beneficial for international marketing research, which frequently relies on 

longitudinal and panel data (e.g., Kumar and Pansari 2016), as well as binary outcome variables 

(e.g., Obadia et al. 2017; Westjohn et al. 2017). 
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TABLES 

Table 1: Comparison of Approaches to Deal with Endogeneity 

Methods 
Criteria 

Control variable 
approach 

Instrumental variable 
(IV) approach 

Instrumental variable-free approaches 
Gaussian copula Latent instrumental variable 

(LIV) 
Number of variables Data on additional 

variables must be 
collected 

Instrumental variables 
have to be identified and 
data has to be collected 

No additional variables needed No additional variables needed 

Distribution of variables No assumptions 
required 

No assumptions required Endogenous variables have to be non-
normally distributed 

Endogenous variables have to be 
non-normally distributed 

Nature of dependent 
variable 

Discrete or continuous Continuous Discrete or continuous Continuous 

Statistical tests Not necessary Test for significance  
and relevance 

Test for significance Test for significance 

Acceptance in scientific 
community 

Widely accepted and 
commonly used 

Widely accepted and 
commonly used 

Relatively new and therefore rarely used  Relatively new and therefore rarely 
used  

Implementation in 
software 

No additional 
implementation 
necessary 

Supported by, for 
example, SPSS, STATA, 
and R software packages 

The REndo (Gui et al. 2017) package 
supports the Gaussian copula approach 

The REndo (Gui et al. 2017) 
package supports LIV model with 
one dependent and one independent 
variables 
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Table 2: Results of the Gaussian Copula Approach 

 Original model Gaussian copula 
model 1 

(endogenous 
variable: COMP) 

Gaussian copula 
model 2 

(endogenous 
variable: LIKE ) 

Gaussian copula 
model 3 

(endogenous 
variable: CUSA) 

Variable Value p-value Value p-value Value p-value Value p-value 

COMP 0.016 0.746 0.014 0.848 0.017 0.763 0.021 0.707 

LIKE 0.331 < 0.01 0.331 < 0.01 0.370 < 0.01 0.331 < 0.01 

CUSA 0.509 < 0.01 0.509 < 0.01 0.511 < 0.01 0.582 < 0.01 

cCOMP   0.002 0.974     

cLIKE     -0.033 0.245   

cCUSA       -0.041 0.063 

 Gaussian copula 
model 4 

(endogenous 
variables: 

LIKE, COMP) 

Gaussian copula 
model 5 

(endogenous 
variables: 

LIKE, CUSA) 

Gaussian copula 
model 6 

(endogenous 
variables: 

COMP, CUSA) 

Gaussian copula 
model 7 

(endogenous 
variables: 

LIKE, COMP, 
CUSA) 

Variable Value p-value Value p-value Value p-value Value p-value 

COMP -0.006 0.939 0.021 0.705 -0.027 0.717 -0.037 0.653 

LIKE 0.381 0.000 0.341 0.000 0.333 0.000 0.362 0.000 

CUSA 0.509 0.000 0.580 0.000 0.592 0.000 0.589 0.000 

cCOMP 0.019 0.737   0.039 0.432 0.047 0.405 

cLIKE -0.041 0.283 -0.008 0.790   -0.024 0.509 

cCUSA   -0.039 0.084 -0.049 0.045 -0.047 0.061 
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Table 3: Results of the IV Approach 

Endogenous 

Variable 

Coefficients R² values Weakid test Wu-Hausman test 

COMP LIKE  CUSA 
First stage  

without IV 

First stage  

with IV 
F-value Significant? p-value 

LIKE -0.075 0.506 0.454 0.496 0.560 49.478 YES 0.216 

COMP 0.120 0.278 0.490 0.433 0.560 97.647 YES 0.216 

CUSA -0.087 0.081 1.113 0.295 0.300 2.575 NO 0.216 
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Table A1: International marketing studies that apply PLS-SEM 

Journal 
 
Year 

International Marketing Review  Journal of 
International 

Business Studies  

Journal of International Marketing  

2017 Gomes et al. (2017); Moon and Oh (2017); Pinho 
and Thompson (2017); Rahman et al. (2017) 

  Ashraf et al. (2017); Obadia et al. (2017) 

2016 Andéhn and L'Espoir Decosta (2016); Henseler et 
al. (2016b); Jean et al. (2016); Richter et al. 
(2016); Schlegelmilch et al. (2016) 

Lew et al. (2016)   

2015 
Rippé et al. (2015); Sinkovics et al. (2015) 

Khan et al. (2015); 
Obadia et al. (2015) 

Griffit h and Yanhui (2015); Morgeson et al. (2015); 
Sheng et al. (2015) 

2014 Freeman and Styles (2014); Griffith et al. (2014)   Ashraf et al. (2014); Diamantopoulos et al. (2014) 
2013 

Sinkovics et al. (2013) 
Schotter and 
Beamish (2013) 

Magnusson et al. (2013); Obadia (2013); Swoboda 
and Elsner (2013) 

2012 
  Lam et al. (2012) 

Hilmersson and Jansson (2012); Johnston et al. 
(2012) 

2011 
    

Hortinha et al. (2011); Nijssen and Douglas (2011); 
Sichtmann et al. (2011) 

2010 
Duque and Lado (2010) Shi et al. (2010) 

Navarro et al. (2010); Sichtmann and von 
Selasinsky (2010) 

2009   Fey et al. (2009) Lages et al. (2009); Nijssen and Herk (2009) 
2008     Brettel et al. (2008); Nijssen and Douglas (2008) 

Number of articles 
(2008-2017) 

15 7 21 
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FIGURES 

 

* Consider continuing at Stage 3 and use the Gaussian copula approach to assess to what extent the endogeneity problem has been successfully addressed by the model.  

Figure 1: Procedure to Address Endogeneity in PLS-SEM  
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Figure 2: Simple PLS Path Model 
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Figure 3: First Stage of the IV Approach  
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Figure 4: The Simple Corporate Reputation Model 
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ENDNOTES 

 
1 Other sources of endogeneity include measurement error and nonrecursive relationships 

between constructs (Wooldridge 2010). 

2 This implementation is similar to other methodological extensions, such as finite mixture PLS 

(Hair et al. 2018), which uses composite scores as input for mixture regressions. 

3 The model and data can be downloaded from https://www.pls-sem.net/.  

4 The parallel findings from the application of the Gaussian copula approach to single and 

multiple endogenous variables is not surprising, since the technique computes the copulas 

separately when considering multiple endogenous variables in the PLS path model. 

5 While these arguments support the use of perceived switching costs, we note that this is not an 

ideal IV, as one could expect this variable to correlate with other service perceptions (e.g., 

perceived service quality) that are relevant for customer loyalty and which the two reputation 

dimensions only capture indirectly (e.g., Raithel and Schwaiger 2015). 

6 We also ran the control function approach on the model using switching costs as the IV. We 

used the statistical software R for the calculation and the boot package to bootstrap the standard 

errors (Canty and Ripley 2017). As expected, the results parallel those of the IV approach. 

https://www.pls-sem.net/
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