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EXPONENTIAL FIELDS AND CONWAY’S OMEGA-MAP

ALESSANDRO BERARDUCCI, SALMA KUHLMANN,
VINCENZO MANTOVA, MICKAËL MATUSINSKI

Abstract. Inspired by Conway’s surreal numbers, we study real closed fields
whose value group is isomorphic to the additive reduct of the field. We call
such fields omega-fields and we prove that any omega-field of bounded Hahn
series with real coefficients admits an exponential function making it into a
model of the theory of the real exponential field. We also consider relative
versions with more general coefficient fields.

1. Introduction

We study real closed valued fields K, with a convex valuation ring O(1) ⊆ K

satisfying the property that the value group v(K×) is isomorphic to the additive
reduct (K,+, <) of the field, where v is the valuation induced by O(1). We call
omega-field a field with this property. The name is motivated by the fact that
any omega-field admits a map akin to Conway’s omega-map x 7→ ωx on the field
of surreal numbers No [3] or its fragments No(λ) studied in [6], where λ is an
ǫ-number. We need to recall that any real closed field K admits a section of the
valuation, hence it has a multiplicative subgroup G ⊆ K

>0, called a group of
monomials, given by the image of the section. Since G is a multiplicative copy of
v(K×), we have that K is an omega-field if and only if it admits an isomorphism

ω : (K,+, 0, <) ∼= (G, ·, 1, <),

and we shall call omega-map any such isomorphism. The prototypical example
is Conway’s omega-map on the surreal numbers, and in analogy with the surreal
case, we use the exponential notation ωx to denote the image of x under ω.

Here we explore the relation between omega-fields and exponential fields, where
an exponential field is a real closed field K admitting an exponential map,
that is an isomorphism exp : (K,+, 0, <) ∼= (K>0, ·, 1, <). We shall freely write ex

rather than exp(x) when convenient. Note that ωx should not be read as eω log(x)

(the easiest way to see why is that the map x 7→ ωx, if there is such an omega-
map, is not continuous in the order topology of K). While in general there are no
containments between the class of fields admitting an omega-map and that of fields
admitting an exponential map, a non-trivial inclusion of the former in the latter
can be obtained by restricting the analysis to κ-bounded Hahn fields, as discussed
below.
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In general, any real closed valued field K with monomials G is isomorphic to
a truncation closed subfield (see Definition 2.8 (1)) of the Hahn field k((G)) [13],
where k ∼= O(1) /o(1) is the residue field and we write o(1) for the maximal ideal
of O(1). For the sake of simplicity in this introduction we focus on the typical case
k = R, but our results hold more generally assuming that the residue field k is a
model of Tan,exp, the theory of the real exponential field Rexp with all restricted
analytic functions [5]. The full Hahn field R((G)) is always naturally a model of the
theory of restricted analytic functions Tan [5], but it never admits an exponential
function if G 6= 1 [10]. However, for every regular uncountable cardinal κ, there is
a group G such that the κ-bounded Hahn field R((G))κ does admit an exponential
function [12]. We thus restrict our analysis to fields of the form K = R((G))κ
(without assuming a priori that they admit an exponential map). Our first result
is the following. The case G = No(κ) with κ regular uncountable is in [6].

Theorem (3.8). Every omega-field of the form R((G))κ admits an exponential
function making it into a model of Tan,exp.

Our work was partly motivated by the desire to understand the connections
between the surreal numbers, with its various subfields studied in [1, 2], and the
exponential fields of the form R((G))κ constructed by S. Kuhlmann and S. Shelah in
[12]. We shall prove that the latter are not always omega-fields (Theorem 4.5), but
they are omega-fields if and only if G is order-isomorphic to G>1 (Theorem 4.1); in
this case, given a chain isomorphism ψ : G ∼= G>1, there is an omega-map satisfying
ωg = eψ(g) for all g ∈ G.

Let us now discuss Theorem 3.8 in more detail. We show that given K = R((G))κ
and an omega-map ω : K ∼= G, we can construct an exponential function directly
starting from ω and an auxiliary chain isomorphism

h : (K, <) ∼= (K>0, <),

where by chain we mean linearly ordered set. Any choice of h yields an exponential
field (Theorem 3.4) and at least one choice of h will yield a model of Tan,exp (The-
orem 3.8). Varying h we can thus produce a variety of exponential fields; some of
them are models of Texp, while all the others are not even o-minimal (Theorem 3.10),
depending on the growth properties of h (Definition 2.11).

To define the exponential function, it is more convenient to first define a loga-

rithm log : K>0 → K and let exp be the compositional inverse log. To this aim we
start by putting

log(ωω
x

) = ωh(x)

for x ∈ K and log(1 + ε) =
∑∞
n=1(−1)n+1 εn

n for ε ∈ o(1). Note that such infinite
sums make sense in the κ-bounded Hahn field R((G))κ.

The extension of log to the whole of K>0 is then carried out guided by the prin-
ciple that log takes products into sums and ω takes sums into products. We simply
extend this to infinite sums. More precisely, log is determined by log(ω

∑
i<α ω

γiri) =
∑

i<α ω
h(γi)ri and log(ωxr(1 + ε)) = log(ωx) + log(r) +

∑∞
n=1(−1)n+1 εn

n , where
ε ∈ o(1) and r ∈ R. Another way to express the spirit of the construction is that
we first define log on the representatives of the multiplicative archimedean classes
ωω

x

, then we extend it to the representatives of the additive archimedean classes
ωx, and finally to the whole of K. It is not difficult to show that this construction
always yields an exponential field. We now need to show that there is at least one
function h such that the exponential field K arising from ω and h as above is a
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model of Texp. A necessary condition is that the exponential map grows faster than

any polynomial, or equivalently, that its inverse log grows slower than x1/n for all
positive n ∈ N. This translates into the condition h(x) < r · ωx for every x ∈ K

and r ∈ R
>0. We shall abbreviate the above with h(x) ≺ ωx.

Since ωx is discontinuous (its values are the respresentatives of the archimedean
classes), and h is continuous in the order topology of K (being a chain isomorphism
from K to K

>0), the existence of such an h is not immediate. In the case of
Gonshor’s h on the surreal numbers [7], the condition h(x) ≺ ωx is forced by the
inductive definition of h. However, this cannot be generalized to our more general
setting where similar inductive definitions make no sense, and we use instead a
bootstrapping procedure (Lemma 3.6). Granted this, the final exp on K is easily
seen to yield a model of Texp using [15, 5] (Theorem 3.8).

All the logarithms considered in this paper are analytic (Definition 2.10): for
ε ∈ o(1), the function x 7→ log(1 + x) is given by the familiar Taylor expansion

log(1+ε) =
∑∞

n=1(−1)n+1 εn

n , whereas for g ∈ G, log(g) is a purely infinite element
of R((G))κ, and for r ∈ R, log(r) is the usual real logarithm.

Theorems 3.4 and 3.8 produce analytic logarithms satisfying two additional re-
strictions: log(ωω

x

) ∈ G for all x ∈ K, and log brings “infinite products” to “infinite
sums”. It turns out, however, that all analytic logarithms arise in this way, up to
changing the omega-map ω : K ∼= G. More precisely, we have the following classifi-
cation result.

Theorem (Corollary 4.2). Every analytic logarithm on an omega-field of the form
K = R((G))κ arises from some omega-map x 7→ ωx and some chain isomorphism
h : K ∼= K

>0.

The surreal numbers fit into the above picture if we allow κ to be the proper class
of all ordinals and G to be the image of Conway’s omega-map x 7→ ωx. Gonshor’s
exponentiation is induced by the omega-map and Gonshor’s function h [7]; by the
above results, any other analytic logarithm on No arises in this way, possibly after
replacing Conway’s omega-map with another isomorphism from No to its group of
monomials and Gonshor’s h with another chain isomorphism.

2. Preliminaries

2.1. Valuations. Let K be an ordered field (possibly with additional structure)
and let O(1) ⊆ K be a convex subring. Then O(1) is the valuation ring of a
valuation v and we denote by o(1) the unique maximal ideal of O(1). If K is real
closed, it has a subfield k ⊆ K isomorphic to the residue field O(1) /o(1) of the
valuation, namely we can write O(1) = k+o(1). We shall always assume in the
sequel that K is real closed and O(1), o(1),k are as above.

Definition 2.1. For x, y ∈ K we define:

• x� y if |x| ≤ c|y| for some c ∈ O(1) (domination);
• x≍ y if x� y and y� x (comparability);
• x≺ y if x � y and x 6≍ y (strict domination);
• x ∼ y if x− y ≺ x (x is asymptotic to y).

With these notations we have O(1) = {x : x� 1} and o(1) = {x : x≺ 1}.

Definition 2.2. A multiplicative subgroup G of K<0 is a group of monomials if
it consists in a family of representatives for each ≍-class. In other words a group
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of monomials is an embedded copy of the value group. It is well known that any
real closed field admits a group of monomials.

Remark 2.3. For x, y ∈ K we have:

• x ≺ y if and only if c|x| < |y| for all c ∈ O(1) (or equivalently for all c ∈ k);
• x≍ y if and only if x = cy(1 + ε) for some c ∈ k× and ε ∈ o(1);
• x ∼ y if and only if x = y(1 + ε) for some ε ∈ o(1).
• if x 6= 0 there are unique r ∈ k×, g ∈ G, ε ∈ o(1) such that x = gr(1 + ε).

2.2. Hahn groups. By a chain we mean a linearly ordered set. We describe a
well known procedure to build an ordered group starting from a chain.

Definition 2.4. Given a chain Γ and an ordered abelian group (C,+, <), the
Γ-product of C is the abelian group of all functions f : Γ → C with reverse well-
ordered support {γ ∈ Γ : f(γ) 6= 0} and pointwise addition, ordered by declaring
f > 0 if f(γ) > 0, where γ is the biggest element in the support.1

If we write G in additive notation, a typical element of G can be written in the
form

∑

γ∈Γ γrγ , representing the function sending γ ∈ Γ to rγ ∈ C, while G itself is

denoted
∑

ΓC. We prefer however to use a multiplicative notation and write G as
∏

tΓC and a typical element of G as
∏

γ∈Γ t
γrγ . In this notation the multiplication

is given by




∏

γ∈Γ

tγrγ









∏

γ∈Γ

tγr
′

γ



 =
∏

γ∈Γ

tγ(rγ+r
′

γ)

Since the supports are reverse well-ordered, we can fix a decreasing enumeration
(γi : i < α) of the support, where α is an ordinal, and write an element of

∏

tΓC

in the form

f =
∏

i<α

tγiri ∈
∏

tΓC .

According to our conventions, f > 1 ⇐⇒ r0 > 0 and tγ > tβ ⇐⇒ γ > β.
If Γ has only one element, we may identify

∏

tΓC with a multiplicative copy tC

of (C,+, <).

When C = (R,+, <), we obtain the Hahn group over Γ, which can be charac-
terized as a maximal ordered group with a set of archimedean classes of the same
order type as Γ [8]. Recall that two positive elements are in the same archimedean
class if each of them is bounded, in absolute value, by an integer multiple of the
other.

Notation 2.5. Let κ be a regular cardinal. If in the definition of the Γ-product
we only allow supports of reverse order type < κ, we obtain the κ-bounded version

(

∏

tΓC
)

κ
⊆

∏

tΓC .

We shall also consider the case when Γ is a proper class and κ = On, in which
case

(
∏

tΓC
)

On
is the ordered group of all functions f : Γ → C whose support is a

reverse well ordered set (rather than a reverse well ordered class).

1Other authors prefer to use well-ordered supports, but one can pass from one version to the
other reversing the order of Γ.
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2.3. Hahn fields. Given a field k and a multiplicative ordered abelian group G,
let k((G)) denote the Hahn field with coefficients in k and monomials in G. The
underlying additive group of k((G)) coincides with the G-product of k: its elements
are functions f : G → k with reverse well-ordered supports, which we write either
in the form f =

∑

g∈G grg, where rg = f(g), or in in the form

f =
∑

i<α

giri

where α is an ordinal, (gi)i<α is a decreasing enumeration of the support, and
ri = f(gi) ∈ k∗. Addition is defined componentwise and multiplication is given by
the usual Cauchy product. We order k((G)) according to the sign of the leading
coefficient, namely f > 0 ⇐⇒ r0 > 0.

Remark 2.6. It can be proved that if k is real closed and G is divisible, then k((G))
is real closed [9]. Moreover, k((G)) is spherically complete: any decreasing
intersection of valuation balls has a non-empty intersection.

Notation 2.7. Inside k((G)), we let O(1) be the valuation ring of all the elements
x with |x| ≤ r for some r ∈ k, and o(1) be the corresponding maximal ideal. We
then have O(1) = k+o(1). With respect to this valuation ring, k is a copy of the
residue field and G is a group of monomials. We shall use similar notations for any
subfield K ⊆ k((G)) containing k and G.

2.4. Restricted analytic functions. A family (fi)i∈I of elements of k((G)) is
summable if the union of the supports of the elements fi is reverse well-ordered
and, for each g ∈ G, there are only finitely many i ∈ I such that g is in the support
of fi. In this case

∑

i∈I fi is defined as the element f =
∑

g grg of k((G)) whose

coefficients are given by rg =
∑

i∈I rg,i ∈ k where rg,i is the coefficient of g in fi.
This makes sense since, given g ∈ G, only finitely many rg,i are non-zero.

By Neumann’s lemma [14] for any power series P (x) =
∑

n∈N
anx

n with coeffi-
cients in k and for any ε ≺ 1 in k((G)), the family (an ε

n)n∈N is summable, so we
can evaluate P (x) at ε obtaining an element P (ε) =

∑

n∈N
an ε

n of k((G)). Similar
considerations apply to power series in several variables.

Definition 2.8. Let K ⊆ k((G)) be a subfield. We say that K is an analytic

subfield if

(1) K is truncation closed: if
∑

i<α giri belongs to K, then
∑

i<β giri belongs
to K for every β ≤ α;

(2) K contains k and G;
(3) If P (x) =

∑

n∈N
anx

n is a power series with coefficients in k and ε ≺ 1 is
in K, then the element P (ε) =

∑

n∈N
an ε

n ∈ k((G)) lies in the subfield K.
Similarly for power series in several variables.

We recall that Tan is the theory of the real field with all analytic functions
restricted to the poly-intervals [−1, 1]n ⊆ K

n [5]. (By rescaling, we can equivalently
use any other closed poly-interval.)

Fact 2.9. We have:

(1) The field R((G)) admits a natural intepretation of the analytic functions
restricted to the poly-interval [−1, 1]n ⊆ K, making K into a model of Tan.

(2) The same holds for any analytic subfield of R((G)), and in particular for
R((G))κ for every regular uncountable κ.
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(3) More generally, if k is a model of Tan, then any analytic subfield K of
k((G)) is naturally a model of Tan.

The proof of (1) is in [5] and is based on a quantifier elimination result in the
language of Tan. The other points follow by the same argument. We interpret the
restricted analytic functions in the analytic subfield K ⊆ k((G)) as follows. Given
a real analytic function f converging on a neighbourhood of [−1, 1]n ∩R

n, we need
to define f(x+ ε) where x ∈ [−1, 1]n∩kn and ε ∈ o(1)n ⊆ K

n. We do this by using

the Taylor expansion f(x+ ε) =
∑

i
Dif(x)
i! εi where i is a multi-index in N

n. Here

Dif(x) ∈ k (using the fact that k is a model of Tan) and the infinite sum is in the
sense of the Hahn field k((G)).

2.5. Exponential fields. A prelogarithm on a real closed field K is a morphism
from (K>0, ·, 1, <) to (K,+, 0, <) and a logarithm is a surjective prelogarithm. An
exponential map is the compositional inverse of a logarithm, that is an isomor-
phism from (K,+, 0, <) to (K>0, ·, 1, <). We say that K is an exponential field if it
has an exponential map. Given a logarithm log, we write exp for the corresponding
exponential map and we write ex instead of exp(x) when convenient. Now assume
k has a logarithm and consider the Hahn field k((G)). It turns out that if G 6= 1,
k((G)) never admits a logarithm extending that on k [10]. On the other hand if κ
is a regular uncountable cardinal, then for suitable choices of G, the logarithm on
k can be extended to k((G))κ, and when k = R this can be done in such a way
that k((G))κ is a model of Texp [12].

Definition 2.10. Let k be an exponential field and let K be an analytic subfield
of k((G)), for instance K = k((G))κ with κ regular uncountable. An analytic

logarithm on K is a logarithm log : K>0 → K with the following properties:

(1) log : K>0 → K extends the given logarithm on k.

(2) log(1+ε) =
∑∞

i=1
(−1)i+1

i εi for all ε ≺ 1 in K (the assumption ε ≺ 1 ensures
the summability).

(3) log(G) = K
↑, where K

↑ := k((G>1)) ∩ K is the group of purely infinite

elements, namely the series of the form
∑

i<α giri with gi ∈ G>1 for all i.

Conditions (1) and (2) are rather natural, and ensure that the restrictions of
log(1 + x) to small finite intervals agree with the natural Tan-interpretations of
Fact 2.9. A motivation for (3) is the following. The multiplicative group K

>0

admits a direct sum decomposition

K
>0 = Gk>0(1 + o(1)),

namely any element x of K>0 can be uniquely written in the form x = gr(1 + ε)

where r ∈ k>0, g ∈ G and ε ∈ o(1). Applying log to both sides of the above
equation, we get (by (1) and (2)) a direct sum decomposition

K = log(G)⊕ k⊕o(1)

of the additive group (K,+). Indeed by (1) we have log(k>0) = k and log(K>0) =
K, while (2) implies that the logarithm maps 1 + o(1) bijectively to o(1) with

inverse given by exp(ε) =
∑

n∈N

εn

n! . We have thus proved that log(G) is a direct
complement of O(1) = k+o(1). Although there are several choices for such a
complement, the most natural one is log(G) = K

↑, as required in point (3), since
it is the unique one closed under truncations.



EXPONENTIAL FIELDS AND CONWAY’S OMEGA-MAP 7

2.6. Growth axiom and models of Texp. Ressayre proved in [15] that an ex-
ponential field is a model of Texp if and only it satisfies the elementary properties
of the real exponential restricted to [0, 1] and satisfies the growth axiom scheme
x ≥ n2 → exp(x) > xn for all n ∈ N.

Definition 2.11. Given an analytic subfield K ⊆ k((G)), we say that an analytic
logarithm log : K>0 → K satisfies the growth axiom at infinity if log(x) < x1/n

for all x > k and all positive integers n.

Proposition 2.12. If k is a model of Tan,exp (for instance k = R) and K ⊆ k((G))
is an analytic subfield with an analytic logarithm satisfying the growth axiom at
infinity, then K (with the natural intepretation of the symbols) is a model of Tan,exp.

Proof. This follows from [15, 5] but we include some details. The inverse exp of

an analytic logarithm is easily seen to satisfy eε =
∑∞

n=0
εn

n! for all ε ∈ o(1). Since
moreover exp extends the given exponential on k, it follows that the restriction of
exp to [−1, 1] agrees with the natural Tan-interpretation of Fact 2.9. This shows
that K is at least a model of Texp |[−1,1], as it is in fact the restriction of a model
of Tan to a sublanguage. Since the interpretation of exp grows faster than any
polynomial (by the growth axiom at infinity plus the fact that k is a model of
Texp), we can conclude by the axiomatisations of [15, 5]. �

The above result rests on the quantifier elimination result for Tan,exp. We do
not know whether it suffices that k is a model of Texp to obtain that k((G))κ is a
model of Texp (or even Texp |[0,1]).

3. Omega fields

Definition 3.1. A real closed field (K,+, ·, <) with a convex valuation ring O(1)
and corresponding group of monomials G ⊆ K

>0 is an omega-field if (K,+, <) is
isomorphic to (G, ·, <) as an ordered group. Given an omega-field K we shall call
omega-map any isomorphism of ordered groups

ω : (K,+, 0, <) ∼= (G, ·, 1, <).

Since the group G of monomials is isomorphic to the value group of K, we
have that K is an omega-field if and only if (K,+, <) is isomorphic to its value
group. The definition of omega-map is inspired by Conway’s omega map ωx on
the surreal numbers. We recall that the surreals can be presented in the form
No = R((ωNo))On, with the image of the omega-map being the group ωNo of
monomials. The subscript On indicates that we only consider series whose support
is a set, rather than a proper class. The surreals should thus be considered as a
bounded Hahn field rather than a full Hahn field.

3.1. Construction of omega-fields. In the sequel let κ be a regular uncountable
cardinal.

Theorem 3.2. Given an exponential field k, there is a group G such that the field
K = k((G))κ admits an omega-map ω : K → G.

When k = R one can take G = No(κ) as in [6]. In the general case the proof is
a variant of a similar construction in [12]. Given a chain Γ and an additive ordered
group C (in our application C = (k,+, <)), let H(Γ) denote, in the following
Lemma, the ordered group

(
∏

tΓC
)

κ
.
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Lemma 3.3. Fix a chain Γ0 and a chain embedding η0 : Γ0 → H(Γ0) (for instance
η0(γ) = tγ). Then there is a chain Γ ⊇ Γ0 and a chain isomorphism η : Γ ∼= H(Γ)
extending η0.

Proof. We consider H as a functor from chains to ordered abelian groups: if j :
Γ′ → Γ′′ is a chain embedding, we define H(j) : H(Γ′) → H(Γ′′) as the group
embedding which sends

∏

i t
γiri to

∏

i t
j(γi)ri . We do an inductive construction in

κ-many steps. At a certain stage β < κ we are given

Gβ = H(Γβ)

and a chain embedding ηβ : Γβ → Gβ together with embeddings jα,β : Γα → Γβ
for α < β. Let Γβ+1 be a chain isomorphic to (Gβ , <) (for instance Gβ itself
considered as a chain) and fix a chain isomorphism fβ : Gβ → Γβ+1. Now let
jβ : Γβ → Γβ+1 be the composition fβ ◦ ηβ and let Gβ+1 = H(Γβ+1)κ. We can
then find a commutative diagram of embeddings

(1) Γβ

jβ

��

ηβ
// H(Γβ)

H(jβ )

��

fβ

yytt
t
t
t
t
t
t
t
t

Γβ+1

ηβ+1
// H(Γβ+1),

by letting ηβ+1 = H(jβ) ◦ f
−1
β . We can now define jβ,β+1 = jβ and jα,β+1 =

jβ,β+1 ◦ jα,β for α < β.
We iterate the contruction along the ordinals. At a limit stage λ, let Γλ =

lim
−→β<λ

Γβ and let jβ,λ : Γβ → Γλ be the natural embedding for β < λ.

We then define ηλ : Γλ → H(Γλ) as the composition

Γλ = lim
−→
β<λ

Γβ → lim
−→
β<λ

H(Γβ) → H(lim
−→
β<λ

Γβ) = H(Γλ).

More explicitly, for each γ ∈ Γλ, pick some β < λ and θ ∈ Γβ such that γ = jβ,λ(θ),
and define ηλ(γ) ∈ Gλ as the image under H(jβ,λ) : Gβ → Gλ of ηβ(θ) ∈ Gβ . Since
κ is regular, when we arrive at stage κ we have an isomorphism

ηκ : Γκ ∼= Gκ

and we can define Γ = Γκ and η = ηκ. �

Proof of Theorem 3.2. By Lemma 3.3, there is a chain Γ and a chain isomorphism

(2) η : Γ ∼= G = H(Γ)

Now let K = k((G))κ and define an omega-map ω : K → G by setting

(3) ω
∑

i<α giri =
∏

i<α

tγiri .

where gi = η(γi). In particular ωη(γ) = tγ for every γ ∈ Γ. �

3.2. The logarithm. In the sequel let κ be a regular uncountable cardinal. Our
next goal is to prove the following theorem.

Theorem 3.4. Every omega-field of the form K = R((G))κ admits an analytic
logarithm. More generally, if k is an exponential field, then every omega-field of
the form K = k((G))κ admits an analytic logarithm.
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Proof. We construct a logarithm depending both on the omega-map and on an
auxiliary function h. Let h : K → K

>0 be a chain isomorphism (any ordered field
admits such a function, for instance h(x) = (−x+1)−1 for x ≤ 0 and h(x) = x+ 1
for x ≥ 0). For x ∈ K, we let

log(ωω
x

) = ωh(x).

This defines log on the subclass ωω
K

of G, which we call the class of fundamen-

tal monomials. They can be seen as the representatives of the multiplicative
archimedean classes.

Next we define log(g) for an arbitary g in G. Since G = ωK, we can write
g = ωx for some x ∈ K. We then write x =

∑

i<α giri =
∑

i<α ω
xiri and set

log(g) =
∑

i<α ω
h(xi)ri. Summing up, the definition of log|G takes the form

(4) log
(

ω
∑

i<α ω
xiri

)

=
∑

i<α

ωh(xi)ri.

The idea is that ω
∑

i<α giri should be thought as an infinite product
∏

i<α ω
giri ,

and we stipulate that log maps infinite products into infinite sums.
We can now extend log to the whole of K>0 as follows. For x ∈ K

>0 we write
x = gr(1 + ε) with g ∈ G, r ∈ k

>0 and ε ≺ 1, and we define

(5) log(x) = log(g) + log(r) +

∞
∑

n=1

(−1)n+1 ε
n

n
.

The infinite sum makes sense because the terms under the summation sign are
summable and the sum belongs to k((G))κ (becacuse κ is regular and uncountable).

We must verify that with these definitions log is an analytic logarithm (Def-
inition 2.10). It is not difficult to see that log is an increasing morphism from
(K>0, ·, 1, <) to (K,+, 0, <). To prove the surjectivity let us first observe that k =

log(k>0) ⊆ log(K>0). Moreover, for ε ≺ 1 we have log(1 + ε) =
∑∞
n=1(−1)n+1 εn

n

with inverse given by eε =
∑

n
εn

n! , and therefore log(1 + o(1)) = o(1). Since

K = K
↑ + k+o(1), to finish the proof of the surjectivity it suffices to show that

log(G) = K
↑. So let x =

∑

i<α giri ∈ K
↑, namely gi ∈ G>1 for all i. We must show

that x is in the image of log. Since h : K → K
>0 is surjective and G = ωK, we

have G>1 = ω(K>0) = ωh(K), so we can choose xi ∈ K so that gi = ωh(xi) for all i.
Now by definition log

(

ω
∑

i<α ω
xiri

)

=
∑

i<α ω
h(xi)ri = x concluding the proof of

surjectivity. �

In the above theorem we have considered k((G))κ, rather than an arbitrary
analytic subfield K of k((G)), because for the proof to work we need to know that
whenever

∑

i<α ω
xiri ∈ K, we also have

∑

i<α ω
h(xi)ri ∈ K.

Definition 3.5. We call logω,h : K>0 → K the analytic logarithm induced by the

omega-map ω : K → G and the chain isomorphism h : K → K
>0 as given by (4)-(5)

in the proof of Theorem 3.4, and we call expω,h its compositional inverse.

3.3. Getting a logarithm satisfying the growth axiom. The structures con-
structed so far are exponential fields, but not necessarily models of Texp. In this
section we show how to get models of Texp. We need the following lemma to take
care of the growth axiom at infinity.
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Lemma 3.6. Let K = k((G))κ be equipped with an omega-map ω : K ∼= G. Then
there exists a chain isomorphism h : K → K

>0 such that h(x) ≺ ωx for all x ∈ K.

Proof. The idea is a bootstrapping procedure. Given an h we produce a log and
an exp, and given the exp we produce a new h. We then glue together a couple of
h’s obtained in this way to produce the final h.

To begin with, consider the following chain isomorphism K → K
>0, definable in

any ordered field:

h0(x) =

{

x+ 1 for x ≥ 0
1

1−x for x < 0,
h1(x) =

{

1
2x+ 1 for x ≥ 0
1

1−x for x < 0.

Definition 3.5 yields two logarithmic functions log0 = logω,h0
and log1 = logω,h1

on k((G))κ associated with h0 and h1 (and the given omega-map). Since h1(x) ≤
h0(x), we have log1(x) ≤ log0(x) for all x ∈ K

>1. The corresponding exponential
functions exp0, exp1 satisfy the opposite inequality: exp0(x) ≤ exp1(x) for x > 0.

We claim that

exp0(x) ≺ ωx for x > k and exp1(x) ≺ ωx for x ≤ −ω3.

Indeed, note that h0(x) > x for all x ∈ K and h1(x) < x for x > 2. Taking the
compositional inverse we obtain x > h−1

0 (x) for all x ∈ K and x < h−1
1 (x) for x > 2.

Now let y ∈ K
>k, and let rωx be the leading term of y (where r ∈ k

>0, x ∈ K
>0).

Then

exp0(y) ≺ exp0 (2rω
x) = ω2rωh

−1
0 (x)

≺ ω
r
2ω

x

≺ ωy,

since 2rωx − y > k, y − r
2ω

x > k, and ωh
−1
0 (x) ≺ ωx.

Similarly, h1(x) < x for all x ∈ K
>2. Let y ∈ K

≥ω3

, and let rωx be the leading
term of y. Then r ∈ k>0, x ∈ K

>2 and

exp1(y) ≻ exp1

(r

2
ωx

)

= ω
r
2ω

h
−1
1

(x)

≻ ω2rωx

≻ ωy.

Letting z = −y ≤ −ω3, we obtain exp1(z) =
1

exp1(y)
≺ 1

ωy = ωz, and the claim is

proved.
We can now build the final chain isomorphism h : K → K

>0 by taking the
functions exp0, exp1 restricted to suitable convex subsets of K, and defining h on
the complement as an increasing function in such a way that globally h is increasing
and bijective. A concrete choice can be the following. Let c = exp1(−ω

3) > 0.
Define

h(x) =



















exp0(x) for x > k

2c+ x for 0 < x and x � 1

2c+ c
ω3x for − ω3 ≤ x ≤ 0

exp1(x) for x < −ω3.

By construction, h is a chain isomorphism h : K → K
>0: it is order preserving

because exp0, exp1 are themselves chain isomorphisms, and it is surjective since
exp0(K

>k) = K
>k, exp1((−∞,−ω3)) = (0, c). Moreover, h(x) ≺ ωx for all x ∈ K,

as desired:

• if x > k, then h(x) = exp0(x) ≺ ωx;
• if 0 < x � 1, then h(x) = 2c+ x � 1 ≺ ωx;

• if −ω3 ≤ x ≤ 0, then h(x) ≍ c = exp1(−ω
3) ≺ ω−ω3

� ωx;
• if x < −ω3, then h(x) = exp1(x) ≺ ωx. �
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We next show that an h as constructed above is sufficient to guarantee the growth
axiom at infinity.

Lemma 3.7. Let log = logω,h : K>0 → K be as in Definition 3.5. If h satisfies
h(x) ≺ ωx for every x ∈ K, then log(y) < yr for all positive r ∈ k and all y > k

(where yr is defined as er log(y)).

Proof. Assume h(x) ≺ ωx for all x ∈ K. This means that h(x) < ωxr for all

r ∈ k>0. Let y = ωω
x

. Then log(y) = log(ωω
x

) = ωh(x) < ωω
xr = yr. We have

thus proved that log(y) < yr for y of the form ωω
x

and r ∈ k
>0.

We now prove the inequality for y of the form ωx, where x ∈ K
>0. To this

aim we write the exponent x in the form
∑

i<α ω
xiri and observe that r0 > 0

and log(ωx) = log
(

ω
∑

i<α ω
xiri

)

=
∑

i<α log(ω
ωxi

)ri. By the special case we have

log(ωω
xi
) < ωω

xia ≤ ωω
x0a for every i < α and a ∈ k>0. Letting a = rr0/2 it

follows that

log(ωx) < ωω
x0a =

(

ωω
x0r0

)
a
r0
<

(

ω2x
)

a
r0 = ωxr.

For a general y > k, write y in the form ωxs(1 + ε) with s ∈ k>0, x > 0 and ε ≺ 1,

and observe that log(y) < log(2s) + log(ωx) < (ωx)
r
2 < yr for any r ∈ k>0. �

In the case when the residue field k is archimedian, the statement in the conclu-
sion of Lemma 3.7 is equivalent to the growth axiom at infinity (Definition 2.11).
We are now ready for the main result of this section.

Theorem 3.8. Every omega-field of the form K = R((G))κ admits an analytic
logarithm making it into a model of Tan,exp. More generally, if k is a model of
Tan,exp, then every omega-field of the form K = k((G))κ admits an analytic loga-
rithm making it into a model of Tan,exp.

Proof. By Proposition 2.12 and Lemma 3.7. �

3.4. Growth axiom and o-minimality. We now discuss the connections between
the growth axiom and o-minimality (see [4] for the development of the theory of
o-minimal structures).

Lemma 3.9. Let K be an o-minimal exponential field. Note that exp must be
differentiable and by a linear change of variable, we can assume that exp′(0) = 1.
Then exp(x) > xn for all positive n ∈ N and all x > N.

Proof. Given a definable differentiable unary function f : K → K in an o-minimal
expansion of a field, its derivative f ′ is definable, and if f ′ is always positive, then
f is increasing. It follows that if f, g are definable differentiable functions satisfying
f(a) ≤ g(a) and f ′(x) < g′(x) for all x ≥ a, then f(x) < g(x) for every x > a.
Starting with 0 < exp(x) and integrating we then inductively obtain that for each
positive k, n ∈ N there is a positive c ∈ N such that kxn ≤ ex for all x > c. �

By the above observation and Ressayre’s axiomatization [15], an exponential
field is a model of Texp if and only if it satisfies the complete theory of restricted
exponentiation and it is o-minimal.

Theorem 3.10. Assume K = R((G))κ has an omega-map ω : K ∼= G. Fix a chain
isomorphism h : K ∼= K

>0 and put on K the logarithm induced by ω and h as in
Definition 3.5. Then K is either a model of Texp or it is not even o-minimal.
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Proof. We have already seen that if h(x) ≺ ωx for all x ∈ K, then K is a model
of Texp (Theorem 3.8). Now suppose that h(x) 6≺ ωx for some x. Then there

is some n ∈ N
>0 such that h(x) ≥ 1

nω
x. Letting y = ω

1
n
ωx

, we have log(y) =
1
n log(ωω

x

) = 1
nω

h(x) ≥ 1
nω

1
n
ωx

= 1
ny, hence y

n ≥ ey, contradicting o-minimality
by Lemma 3.9 (since exp extends the real exponential function, we have exp′(0) = 1,
so the hypothesis of the lemma are satisfied). �

4. Other exponential fields of series

4.1. Criterion for the existence of an omega-map. In this section we try to
classify all possible analytic logarithms on k((G))κ. We show that in the case of
omega-fields every analytic logarithm arises from an omega-map and some h.

Theorem 4.1. Assume that K = k((G))κ has an analytic logarithm log. Then:

(1) K has an omega-map ω : K ∼= G if and only if G is isomorphic to G>1 as
a chain;

(2) moreover, if G ∼= G>1, there is an omega-map and a chain isomorphism
h : K ∼= K

>0 such that the logarithm induced by ω and h coincides with the
original logarithm.

Proof. First note that K, being an ordered field, is always isomorphic to K
>0 as

a chain. If there is an omega-map ω : K ∼= G, we obtain an induced isomorphism

from G = ωK to G>1 = ωK
>0

.
For the opposite direction, assume that G is isomorphic to G>1 as a chain and

let ψ : G ∼= G>1 be a chain isomorphism. Define ω : K → G by

ω
∑

i<α giri = e
∑

i<α ψ(gi)ri .

In particular we have ωg = eψ(g). Clearly ω is a morphism from (K,+, 0, <) to
(G, ·, 1, <) and to prove that it is an omega-map it only remains to verify that it is
surjective. To this aim recall that log(G) = K

↑ (by definition of analytic logarithm),

so for the corresponding exp we have G = exp(K↑). Since e
∑

i<α ψ(gi)ri is an
arbitrary element of exp(K↑), the surjectivity of ω follows. Now since ψ : G ∼= G>1

and G = ωK, there is a chain isomorphism h : K → K
>0 such that

ψ(ωx) = ωh(x).

Since eψ(ω
x) = ωω

x

, we obtain ωω
x

= eω
h(x)

and thefore log(ωω
x

) = ωh(x). It then
follows that log coincides with the analytic logarithm induced by ω and h. �

Corollary 4.2. Every analytic logarithm on an omega-field of the form K =
k((G))κ arises from some omega-map and some chain isomorphism h : K ∼= K

>0.

4.2. The iota-map. Our next goal is to show that k((G))κ may have an analytic
logarithm without being an omega-field. This will be proved in the next subsection.
Here we recall the following two results from [12] with a sketch of the proofs for
the reader’s convenience (considering that the notations are different). We use the
same notation H(Γ) =

(
∏

tΓC
)

κ
employed in Lemma 3.3, with C = (k,+, <).

Fact 4.3 ([12]). Let k be an exponential field. Let Γ be a chain and suppose there
is an isomorphism of chains ι : Γ ∼= H(Γ)>1. Let G = H(Γ) and let K = k((G))κ.
Then:

(1) there is an analytic logarithm log : K>0 → K such that log(tγ) = ι(γ) ∈ G.
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(2) if k is a model of Tan,exp and ι(γ) < tγr for each r ∈ k>0, then log satisfies
the growth axiom at infinity, thus making K into a model of Tan,exp.

2

Proof. Define log = logι on G by

log(
∏

i<α

tγiri) =
∑

i<α

ι(γi)ri ∈ k((G>1))κ

Given x ∈ K
>0, write x = gr(1 + ε) for some r ∈ k>0, g ∈ G and ε ∈ o(1);

now define log(x) = log(g) + log(r) +
∑∞

n=1(−1)n+1 εn

n , where log(r) refers to the
given logarithm on k, and observe that since ε ≺ 1 and κ > ω the infinite sum
belongs to K = k((G))κ. Clearly log is an analytic logarithm and (1) is proved.
The verification of point (2) is as in Theorem 3.4. �

Fact 4.4 ([12]). Fix a chain Γ0 and a chain embedding ι0 : Γ0 → H(Γ0)
>1 (for

instance ι0(γ) = tγ). Then:

(1) there is a chain Γ ⊇ Γ0 and a chain isomorphism ι : Γ ∼= H(Γ)>1 extending
ι0;

(2) if ι0(γ) < tγr for every γ ∈ Γ0 and r ∈ C>0, then ι(γ) < tγr for every
γ ∈ Γ and r ∈ C>0.

Proof. The proof of (1) is similar to the proof of Lemma 3.3, the only difference
is that we use H(Γ)>1 instead of H(Γ). Starting with the initial chain embedding
ι0 : Γ0 → H(Γ0)

>1 we inductively produce chain embeddings ιβ : Γβ → H(Γβ)
>1

and jα,β : Γα → Γβ for α < β. The step from β to β + 1 is based on the following
diagram

(6) Γβ

jβ

��

ιβ
// H(Γβ)

>1

H(jβ )

��

fβ

yyss
s
s
s
s
s
s
s
s

Γβ+1

ιβ+1
// H(Γβ+1)

>1

where Γβ+1 is a chain isomorphic to H(Γβ)
>1, fβ is a chain isomorphism, and the

embeddings jβ and ιβ+1 are defined so that the diagram commutes. Limit stages
are handled as in Lemma 3.3. Finally we set Γ = Γκ = lim

−→β<κ
Γβ and ι = ικ and

observe that ι : Γ → H(Γ)>1 is a chain isomorphism.
To prove (2), we show by induction on β < κ that ιβ(γ) < tγr for every γ ∈ Γβ

and r ∈ C>0, provided this holds for β = 0. Since limit stages are easy, it suffices
to prove the induction step from β to β + 1. So let η ∈ Γβ+1. Then η = fβ(x) for

some x =
∏

i t
γiri ∈

(
∏

tΓβC
)>1

κ
. The embedding ιβ sends η to

∏

i t
jβ(γi)ri where

jβ = fβ◦ιβ is the embedding of Γβ into Γβ+1. We must prove that
∏

i t
jβ(γi)ri < tηr

for every r ∈ C>0. This is equivalent to saying jβ(γ0) < η, which in turn is
equivalent to ιβ(γ0) <

∏

i t
γiri . The latter inequality follows from the inductive

hypothesis and the proof is complete. �

4.3. A model without an omega-map. We can now show that there are fields
of the form R((G))κ which admit an analytic logarithm but not an omega-map.

Theorem 4.5. Given a regular uncountable cardinal κ, there is G such that the
field K = R((G))κ has an analytic logarithm making it into a model of Texp but G
is not isomorphic to G>1 as a chain (so K is not an omega-field).

2In the cited paper the authors consider k = R, but the general case is the same.
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Proof. Start with the chain Γ0 = ω1 × Z ordered lexicographically and the initial

embedding ι0 : Γ0 →
(
∏

κ t
Γ0 k

)>1
= H(Γ0)

>1 given by ι0((α, n)) = t(α,n−1).

Define Γ = lim
−→β<κ

Γβ and ι : Γ ∼= H(Γ)>1 as in Fact 4.4 and note that ι(γ) < tγr

for every γ ∈ Γ and r ∈ k>0 (since this holds for ι0 and is preserved at later
stages). Now take G = H(Γ) and put on the field K = k((G))κ the log induced
by ι as in Fact 4.3. By the above inequalities the log satisfies the growth axiom
at infinity, so K is a model of Texp. It remains to show that G 6∼= G>1 as a chain.
Note that the image of ι0 : Γ0 → H(Γ0)

>1 = Γ1 is cofinal and coinitial in H(Γ0)
>1.

It follows that for each β ≤ κ, the image of ιβ : Γβ → H(Γβ)
>1 is cofinal and

coinitial in H(Γβ)
>1 = Γβ+1. Likewise, by an easy induction, for each β ≥ 0 the

image of Γ0 in Γβ is initial and cofinal. In particular the image of Γ0 in the final
chain Γκ = Γ ∼= H(Γ)>1 is coinitial and cofinal. Since Γ0 has cofinality ω1 and
coinitiality ω, it follows that Γ and H(Γ)>1 have cofinality ω1 and coinitiality ω.
Now observe that 1/x is an order-reversing bijection from H(Γ)<1 to H(Γ)>1, and
therefore H(Γ) = H(Γ)<1 ∪ 1 ∪ H(Γ)>1 has cofinality and coinitiality both equal
to ω1. We conclude that G = H(Γ) cannot be chain isomorphic to G>1, because
they have different coinitiality. �

5. Omega-groups

A group isomorphic to the value group of an omega-field will be called omega-

group. It would be interesting to give a characterization of the omega-groups. As
a partial result, we characterise those groups G such that k((G))κ is an omega-field.
We also clarify the relation between having an omega-map and having an analytic
logarithm.

Proposition 5.1. Let K be a field of the form k((G))κ. Then:

(1) if K is an omega-field, then G is isomorphic to
(
∏

tΓ k
)

κ
, where the chain

Γ is order-isomorphic to (the underlying chain of) G itself;
(2) if K has an analytic logarithm, then G is isomorphic to

(
∏

tΓk
)

κ
, where Γ

is order-isomorphic to G>1.

Proof. (1) The elements of K can be written in the form
∑

i<α giri. So the elements

of G are of the form ω
∑

i<α giri . This corresponds to the element
∏

i<α t
giri ∈

(
∏

tGk
)

κ
via an isomorphism.

(2) Since log(G) = K
↑, we have G = exp(K↑), and therefore an element g of

G can be written in the form exp(
∑

i<α giri) with gi ∈ G>1 and ri ∈ k. This

corresponds to
∏

i<α t
giri ∈

(

∏

tG
>1

k

)

κ
via an isomorphism. �

In the following corollary we abstract some of the properties of the groups con-
sidered above. We refer to [11] for the definition of the value-set.

Corollary 5.2. Let K be a field of the form k((G))κ.

(1) If K has an analytic logarithm, then G is a k-module, the value set Γ of
G is order isomorphic to G>1, and all the k-archimedean components of G
are isomorphic to the additive group of k.

(2) If K is an omega-field, the same properties hold (as in particular K has an
analytic logarithm) and in addition G is isomorphic to G>1 as a chain.
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versitätsstraße 10, 78457 Konstanz, Germany

E-mail address: salma.kuhlmann@uni-konstanz.de
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