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An approach of the impact feature extraction method based 

on improved modal decomposition and singular value 

analysis 

Fengfeng Bie1, Kirill V. Horoshenkov2, Jin Qian1 and Junfeng Pei1 

 

Abstract 

For non-stationary vibration useful information of impact feature tends to be 

overwhelmed with strong routine components, which make it difficult to implement 

pattern recognition. This paper proposes improved signal processing methods of 

variational mode decomposition (VMD) and singular value decomposition (SVD) for 

non-stationary impact feature extraction in application to condition monitoring of 

reciprocating machinery. The impact feature is firstly simulated with the dynamics 

analysis of the driving mechanism of a reciprocating pump. Through comparison the 

merit of the improved VMD method is demonstrated. The singular value of the 

decomposed modes is extracted with SVD method. The support vector machine method 

is used as the classifier for the extracted set of features. The performance of the proposed 

VMD-based method is validated practically through a set of measured data from the 

reciprocating pump setup. 

Keywords 
Reciprocating machinery; impact feature; Variational Mode Decomposition; singular 

value; pattern recognition 

1. Introduction 

In reciprocating machinery condition monitoring impact features are the main indicator 

of the non-stationary faults (Yang et al., 2010;Bolaers et al., 2011). Most of the 

traditional analysis methods lose the efficiency owing to their boundedness on the feature 

extraction and pattern recognition (Kostyukov et al. 2016; El-ghamry et al. 2010). Signal 

decomposition methods have been developed in vibration analysis, in which the original 

vibration signal is been composed into several constituent components so that the key 

feature characteristics can be extracted to make them more apparent (Wang et al, 2015; 

Cui et al.,2009). A majority of the popular time-frequency analysis methods developed 

for the nonstationary signal with time-varying frequencies, such as Wavelet Transform 

(WT) and STFT (Auger et al.,1995; Jurado et al., 2002), Wigner–Ville (Ghofrani et al., 

2009) and others (Loughlin and Davidson, 2001; Baccigalupi and Liccardo, 2016) are 

based on the assumption that the signal of impact feature can be accurately expressed as 

the sum of a number of base functions which are assumed known a priori. In these 
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methods the signal is effectively constrained to match the model definition, rendering 

occasional difficulty in the process of selecting the useful (usually faint) feature from the 

estimating or updating the fundamental frequency in the data.  

The method of Empirical Mode Decomposition (EMD) is an alternative to the above 

time-frequency analysis methods. It was developed at the end of last century (Huang et 

al., 1998; Zhang et al., 2017) and become popular because its flexibility in terms of the 

functional basis. The EMD is based on the Intrinsic Mode Functions (IMFs) which are 

estimated in the recursive sifting process to represent the key features of the vibration 

pattern more accurately. It has been tested effectively when applied to represent a single 

fault mode process or stationary vibration pattern, while the mode overlap tends to occur 

due to its sensibility on the disturbing instantaneous frequencies for the signal of the 

reciprocating machinery. Another improved method of Variational Mode Decomposition 

(VMD) was also developed with its analytical theory framework and self-adaptive 

characteristics for spaced mode decomposition (Dragomiretskiy and Zosso, 2014). It was 

shown that the VMD method works well to extract closely spaced modes from stationary 

signals recorded on rotating machinery (Yue et al.,2016). However, for practical 

vibration signals from reciprocating machinery, which are not necessarily stationary with 

the internal impacting feature, the successful applications of this method have remained 

problematic (McNeil, 2016).  

The purpose of this paper is to study the performance of the EMD and VMD in 

combination with a popular classification method based on support vector machines 

aiming at the impact feature analysis for the reciprocating machinery. The paper is 

organized in the following manner. Section 2 is the theoretical foundation. Section 3 

illustrates the dynamics and simulation process on the impact feature analysis, where the 

proposed method is basically verified on the driven mechanism of reciprocating 

machinery. The results and discussions of the proposed method applied in the typical 

modes of reciprocating machinery are finally presented in Section 4 which is followed by 

the Conclusions section. 

2. Theoretical foundation    

2.1. Empirical mode decomposition  

Let us assume that )(tS  is a vibration acceleration signal recorded on a reciprocating 

machine and that this signal can be expressed as a combination of a set of periodic 

functions. Instead of using a traditional spectral analysis method, e.g. the Fourier 

analysis, we will use the EMD method which is a decomposition of the signal, )(tS  into 

a set of the Intrinsic Mode Function (IMF) components. This decomposition is based on 

the concept of mono-components from which the instantaneous amplitude and frequency 

(Baccigalupi and Liccardo, 2016; Huang et al., 1998) can be derived. This decomposition 

is a repetitive sifting process of seeking for the mode components, )(tCi , in the original 

data, )(tS , until the midterm residual component, )(tri , is relatively small. The 

decomposition of the original vibration signal is then a sum of several IMF components,

)(tCi , and the final residual )(trn : 

)()()(
1

trtCtS n

n

i

i +=∑
=

.                                          (1) 
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It is then common to deal with the analytic form for )(tCi , i.e.: 

( )
( ) ( ) ( ) ( ) ij t

i i i iZ t C t jH t A t e
θ= + =                                  (2)  

where ( )iH t  is the Hilbert transform of ( )iC t :  

( )1
( ) i

i

C
H t d

t

τ τ
π τ

+∞

−∞
=

−∫ .                                         (3) 

In the above equations ( )iA t  is the amplitude function, ( )i tθ  is the phase function and 

1j = − . Then the instantaneous pulsation 
iω  can be defined as 

( )
i

i

d t

dt

θω =                                                 (4) 

   Virtually, the decomposition process of local wave functions could be considered as 

wave filtering when the practical signal was decomposed into components with 

frequency series of high to low.  

2.2. Basic principle of VMD  

Similarly to the EMD, the VMD algorithm works by decomposing the original signal,

)(tS , into mode series (IMFs or sub-signals) with a limited frequency bandwidth. As a 

result, each mode k is required to be compact around a central frequency 
k

ω , which is 

used to determine the decomposition. The VMD algorithm is used to estimate the 

bandwidth of a signal as follows: 

  (1) For each mode ku , the Hilbert transform is used to obtain the narrow band spectrum. 

  (2) For each mode, the frequency of the spectral band is changed by the mixed 

exponential tuned to the respectively estimated center frequency.   

  (3) The bandwidth is preliminarily estimated by the Gauss method, for example, the 

square of the L2-norm gradient. Then, a constrained variational approach (Dragomiretskiy 

and Zosso, 2014) is applied to estimate the IMF, ku : 

})](*))([({min
2

,
∑ −+∂=

k

tj

kt
u

k

kk

etu
t

j
t

ω

ω π
δ                （5） 

with 

∑ =
k

k tSu )( ,                           （6） 

where δ is the delta-function, t is the time, t is the time derivative, and ∗ denotes the 

convolution. Effectively )(tuk represents the IMFs decomposed through the VMD and 𝜔𝜔𝑘𝑘 

represents central frequency series of the IMFs. 

In order to achieve the desired unconstrained arguments, the following augmented 

Lagrange function introduced as follows: 

L({𝑢𝑢𝑘𝑘}, {𝜔𝜔𝑘𝑘},𝜆𝜆) = 𝛼𝛼∑ �𝜕𝜕𝑡𝑡 ��δ (𝑡𝑡) +
𝑗𝑗𝜋𝜋𝑡𝑡� ∗ 𝑢𝑢𝑘𝑘(𝑡𝑡)� 𝑒𝑒−𝑖𝑖𝜔𝜔𝑘𝑘𝑡𝑡�22𝑘𝑘 +‖S(𝑡𝑡) − ∑ 𝑢𝑢𝑘𝑘(𝑡𝑡)𝑘𝑘 ‖22 +〈𝜆𝜆(𝑡𝑡)S(𝑡𝑡) − ∑ 𝑢𝑢𝑘𝑘(𝑡𝑡)𝑘𝑘 〉,     （7） 

where 𝛼𝛼 denotes the balancing parameter of the data fidelity constraint and the 

Lagrangian multiplier 𝜆𝜆 is a common way of enforcing constraints strictly (Jiang et al., 

2016). 
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With the detailed saddle point of the above augmented Lagrange function, the 

decomposition procedure for the original signal is then accomplished. The detailed VMD 

algorithm can be found in (Dragomiretskiy and Zosso, 2014).  

2.3. Implementation of VMD with Singular Value Decomposition  

2.3.1. Crucial arguments in the implementation 

Although the VMD algorithm and EMD are both rely on a similar sifting 

implementation, the algorithms are based on different theoretical framework. 

Specifically, the number of the IMF modes of the EMD is definite with the preset value 

for the final residual being the stoppage criterion. This criterion is not specified in the 

VMD. The evaluating method for the frequency domain analysis of the IMFs in the EMD 

is totally different to the way the central frequencies are estimated in the case of the 

VMD. The latter depends on the maximum value of k (Dragomiretskiy and Zosso, 2014) 

so that to the correct assignment of k is a key problem fumbled with the experience in 

practical cases. 

In this paper, the number of the IMFs from both methods are studied on the dynamics 

simulation signal. It is definite as the tendency component figured out with the EMD 

method, while it can only be sought out with the vanishing of overlap effect among the 

modes. In this section the central frequency could be the crucial indicator, which is 

estimated respectively on the unilateral frequency spectrum from the Hilbert transform of 

each IMF mode. 

 Another aided parameter for the decomposition process is the correct assignment of 

the balancing parameterα in Eq. (7). It has been found that the value of α may render 

quite different mode components for the original impacting signals. The smaller this 

parameter, the greater the bandwidth of the IMF component, and vice versa - the smaller 

the bandwidth of the component signal. In former studies, it is found that a bigger α  is 

suitable for low-frequency component (e.g., trend term) detection since the important part 

of distinctive spectrum would be share by the adjacent modes which may render overlaps, 

as the result the value of k is also be affected  (Mohanty, et al. 2014). A smaller α  is 

sensitive on feature variation though the part of the decomposition modes may contains 

extra noise, it is comparably effective in detecting the impacting feature from vibration 

signal. Thus, for the decomposition,α  is set a comparably smaller one in the preliminary 

study from the beginning with the gradual adjusting in the procedure as an aided 

reference. Since the default balancing (fidelity) parameter is 2000, the value of α  is set 

as 1000 manually in view of the cross affection between the value of K and α  in the 

decomposition procedure. 

2.3.2. Singular value extraction and classification 

   With the modes from the EMD/VMD processing, the original signal is decomposed 

into a digital matrix that may remain unrecognizable. In order to describe the matrix 

character with the orthogonality of eigenvectors of the matrix remained, a lower-ranked 

transformation is needed. To achieve this, the Singular Value Decomposition (SVD) is 

applied. While for the recognizing the IMFs from the decomposition, the singular value 

would be introduced in the analysis of the matrix A with the IMF data.  

   The process can be described as follows. We assume that A is an dn×  matrix with n 

rows and d columns. It can be represented through singular vectors, rvvv ,,, 21  , and 
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corresponding singular values 𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎𝑟𝑟. The matrix A can be decomposed into a sum 

of rank one matrices as (Rockfellar, 1973) 

A = UΣV ,      

    （8） 

where ,U V are the matrices with left-singular and right singular vectors, respectively, 

and Σ  is the diagonal matrix with the singular values 1 2, ,..., rσ σ σ . In this way, the IMF 

matrix can be characterized by the distinctive singular vectors and corresponding singular 

values which are useful for the purpose of condition classification. With the singular 

value group employed as the distinctive parameters in this paper, the largest one could be 

chosen as the depiction of the research object. 

In order to realize the final pattern recognition from the singular value, the Support 

Vector Machine (SVM) learner (Vapnik, 1995; Zanaty, 2012) is employed as a classifier 

for singular values 𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎𝑟𝑟 of A as the final step. The SVM learner is trained with a 

training dataset. The main purpose of the learner is to find an optimal segmentation of the 

hyper plane from the input singular value matrix by constructing the classification hyper 

plane, the two classes are separated and the maximum classified spaces of the two kinds 

are obtained effectively with the assigned-kernel SVM algorithm. 

2.4. Procedure of the proposed method 

In summary, the pattern recognition procedure of the proposed method is shown 

schematically in Figure 1. The method is studied in two stages: on the simulated vibration 

signal and on real data. The dynamics simulation is used to study the performance of the 

two decomposition methods. At this stage the arguments of k and α are optimized to 

improve the quality of the VMD method in application to the simulated data. Then the 

singular value of the modes from the decomposition is achieved by SVD, and the pattern 

recognition from the SVM classification shows that the VMD-based method is effective 

for single fault mode recognition from the normal. The second stage is the experimental 

validation of the VMD-based method on practical testing vibration signals from an 

experiment on reciprocating machinery. At this stage the improved VMD-based method 

is applied to extract the singular value from the IMFs with the SVD technique to use as 

the consequent input of the SVM classification for the ultimate pattern recognition.  

 
    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. An illustration of the EMD/VMD-SVD analysis procedure. 

3. Dynamics simulation and preliminary analysis 

3.1. Dynamics analysis and simulation 

 Collect original vibration signal 

Time-frequency domain analysis Improved VMD and implementation 

Extracting singular value 

Pattern recognition with SVM classification 

Approach of EMD and VMD with dynamics simulation 
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As the preliminary study for the proposed method, the comparison between EMD and 

VMD is implemented here in a typical reciprocating mechanism with a distinctive 

impacting feature configurated through the simulation system. In a typical reciprocating 

mechanism, e.g. 3NB-1300 slurry pump shown schematically in Figure 2, the 

relationship between the crank angle, and the displacement, velocity and acceleration of 

the driven end of the pump are known and were used in this work (Ranjbarkohan et al., 

2011; Jomartov et al.,2015). In the dynamics simulation process specified parameters 

were stiffness coefficient, force exponents, damping and penetration depth of the 

kinematic pairs in the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) 

modelling tool. First of all, the motion of the key components of crankshaft was 

simulated with the given dimensions of crankshaft (diameter of 42mm ) and connection 

rod (length of 236mm), the equation of the d (displacement), v (velocity) and a 

(acceleration) with the variation of the angle θ is: 

d = R[(n + 1) − cos 𝜃𝜃 − �𝑛𝑛2 − (sin𝜃𝜃)2]                      （9） 

v = ωR[sin𝜃𝜃 +
sin2𝜃𝜃2[𝑛𝑛2−(sin𝜃𝜃)2]1/2]                               （10） 

a = 𝜔𝜔2𝑅𝑅[cos𝜃𝜃 +
sin2𝜃𝜃4[𝑛𝑛2−(sin𝜃𝜃)2]

32 +
cos2𝜃𝜃

[𝑛𝑛2−(sin𝜃𝜃)2]1/2]                  （11） 

where R is the diameter of the crank, L is the length of the rod, and n = 𝐿𝐿 𝑅𝑅� . 

  

 
Figure 2. Fault simulated by the imposed force on the first bush-shaft assembly.

 
Figure 3. The parameters of the crankshaft parts as a function of the angle. 
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For the later, the impact load F is applied on the bearing bush as designed according to 

the maximum value of a in equation (11), which is illustrated in Figure 2. With the 

dynamics analysis as shown in Figure 3, the acceleration signal is more sensible in 

reflecting the system deformation caused by impacting forces. Two typical conditions for 

the crankshaft connecting-journal bearing were simulated: normal and fault. In this fault 

arrangement, the abnormal impact load is set on the first bush-shaft assembly, which is 

precisely simulated with the constrain parameters of the system configuration.  

In the model, the crankshaft, connecting rod, piston and pin according to the real 

dimension of the pump mechanism were set with the specified constrains, including the 

stiffness coefficient, force exponent, damping and penetration depth of the contacting 

surface of crankshaft and bearing bush. Among these parameters in the configuration, the 

stiffness is the basic and most influential one for the impacting force which leads to most 

of the rotating faults. In the practical force simulation, the value of force exponent rests 

upon the material of the parts, the damping coefficient relies on the set of the stiffness, 

and the penetration depth needs to be manually selected according to the actual 

restrictions. 

 In order to simulate the applied impacting force specifically, the stiffness coefficient 

was set according to: 

*2

1

3

4
ERK =                                    (12) 

where 
21

111

RRR
+= , 𝑅𝑅1and 𝑅𝑅2 are the radii of the two colliding parts, and  

2

2

2

1

2

1

*

111

EEE

υυ −
+

−
=  , 1ν  and 2ν  are the respective Poisson’s ratio, 𝐸𝐸1and 𝐸𝐸2 as the 

respective elasticity modulus. The force exponent of the metal-metal is set as 1.5. The 

maximum damping coefficient is set as 1% of the stiffness for the energy loss simulation, 

and the penetration depth is defined as the invasion between both colliding interfaces, 

which is optimized subjecting to the permissible damping and finally chosen as the 

default value of 0.1mm. 

3.2. Impact character simulation 

With the dynamic simulation of targeted configuration, a series of acceleration signals 

from the crankshaft vibration are obtained. The time and frequency domain of the typical 

vibration signals are shown in Figure 4 and 5 respectively, which illustrates that the 

cyclical impact with different magnitudes of the reciprocating machinery is embodied in 

two typical conditions of normal and fault mode. In particular, the impacting features 

caused by the abnormal force on the bush are added to the simulated fault mode as shown 

in time domain signal. We can also find some difference in the spectrum distribution of 

the two approximately from 500Hz to 1500Hz as shown in Figure 5.In order to basically 

testify the VMD-SVM model for the impacting feature extraction in the simulation stage, 

the contrast of EMD and VMD on the signals with the SVM classifier are achieved 

individually. 
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Figure 4. Acceleration time domain signal of normal (left) and fault (right) status. 

 

 
Figure 5. Spectrum of normal (left) and fault (right) status. 

 

The EMD and VMD methods were applied to the data of both conditions. In the VMD 

decomposition process, the value of k was not defined until the central frequency of the 

adjacent two modes come out as similar in avoiding the over decomposition (overlap). 

Since IMF6 and IMF7 are found to contain similar central frequencies here, the number 

of the IMF was set to k = 6 in this analysis. The signal decomposition is shown in Figure 

6 for the normal and fault conditions. In view of the overall distinction between the 

decompositions of the two methods, we can find that the impact feature of the vibration 

involved in the time domain signal is mostly embodied in the main IMFs other than the 

high orders and tendency component, therefore the first 6 IMFs of EMD are selected as 

the analysis object. In the contrast of the decomposition results of EMD, we can find that 

VMD can adaptively decompose the simulated signal into a succinct ensemble of 

intrinsic mode functions of specialized bands with the given k , which is more efficient 

and suitable for the following feature recognition.  
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a. Decomposition of VMD 

  
b. Decomposition of EMD 

Figure 6. Signal decomposition for the fault simulation (left as normal, right as fault). 
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mentioned previously, the value of α is sought as 1000 which is smaller than the default 

value of 2000 in the algorithm. 
 

 

Table 1  

Singular values for the two conditions obtained with the two methods. 

 
Condition  Method k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 

Normal VMD 1.0082    0.3464     0.3523     0.4108      0.3541 0.3415 

EMD 1.9524    1.2098     0.6914     1.18      0.4127    0.2109 

Fault  VMD 4.2386    2.5321     1.3815     1.3254     0.7526     1.2582 

EMD 2.1924    1.3291     0.5477     1.2522     0.5025     0.3368 

 

According to the algorithm requirement of the SVM classifier (Zanaty EA, 2012), 32 

sets of the singular value samples extracted from the VMD decomposition of the two 

statuses were used as the input. Randomly selected 8 sets of feature vector were training 

data, the remaining 24 groups were test data. With the training completed, the normal 

signal samples were regarded as +1, and the samples of the fault signal as -1. 24 groups 

of samples were input into the fault classifier and the result is shown in Figure 7. The 

classification success rate with this method was 100%. While as the comparison with the 

proposed VMD based method, the fault identification rate of EMD was 79.2% with the 

same set of the input singular values.  

 

 

Figure 7. Fault identification result (left is VMD, right is EMD). 
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0 4 8 12 16 20 24

Test set sample

-1

1

C
a
te

g
o
ry

 l
a
b
e
l

The actual classification of VMD

Actual test set classification

Prediction test set classification

0 4 8 12 16 20 24

Test set sample

-1

1

C
a
te

g
o
ry

 l
a
b
e
l

The actual classification of EMD

Actual test set classification

Prediction test set classification

0 4 8 12 16 20 24

Test set sample

-1

1

C
a
te

g
o
ry

 l
a
b
e
l

The actual classification of VMD

Classification of actual test sets

Classification of prediction test sets

0 4 8 12 16 20 24

Test set sample

-1

1

C
a
te

g
o
ry

 l
a
b
e
l

The actual classification of EMD

Classification of actual test sets

Classification of prediction test sets



11 

 

4.1. Experiment set-up 

The experimental platform was composed of three parts: the reciprocating pump (type: 

BW250) with the driven mechanism of crankshaft components as the research target; the 

data collection system (IOtech640U) with an ICP accelerometer (sensitivity of 102 

mV/g); and a monitoring and analysis system shown in Figure 8. The accelerometer was 

attached to the side of the driven mechanism (crankshaft parts). The sampling frequency 

was 10 kHz and the number of sampling points in each of the recorded time sequence 

was 1600. This number of points was found to be sufficient to capture representative sets 

of data at sufficient frequency resolution of 3.125 Hz in the frequency range of 0 – 5 kHz.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Experimental setup. 

Aiming at the typical fault mode research, the driven mechanism that illustrated in the 

first picture in Figure 9 was taken apart and three types of the main faults were 

introduced: (I) gear abrasion; (II) bearing bush scratched on the inner contact surface; and 

(III) end bearing with a ball peeled off.  

 

 

Acceleration sensor location 

Driven mechanism-crankshaft parts 

Data collection instrument 

Monitoring laptop 
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Figure 9. Faults setting in the crankshaft components. 

4.2. Data acquisition and preliminary analysis 

 In order to avoid the coupling impact of water on the system in our experiment, the 

pump rotated with no load at the speed of 200 rev/min. The obtained vibration signal was 

obtained for normal, fault I, fault II and fault III conditions. Figure 10 presents the time 

histories of example signals recorded in the absence (a) and presence (b-d) faults. The 

results shown in Figure 10 suggest that the three typical faults cause a higher overall 

vibration magnitude, whereas Fault I and Fault II results in a distinct impacting vibration 

character. Figure 11 presents the spectrograms which correspond to the signals shown in 

Figure 10. The root mean square (RMS) magnitude of the spectra shows is clearly 

different in these four cases.  

On account of typical failure mode of various mechanical components, the vibration 

magnitude of the fault modes increased in time domain description compared with the 

normal condition, nevertheless, they still share some generalities, e.g. the spectrum 

distribution of the four conditions in low-frequency stage are roughly similar, and their 

magnitudes in waterfall description are at the identical scale. 

 

 

Bearing bush scratched Bearing peeling off  Gear abrasion 
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a. Normal                                        b. Fault I 

 

 
c. Fault II                                        d. Fault III 

Figure 10. Example time histories of the vibration signal recorded in the absence (a) and 

presence (b-d) of the faults. 

 

 

 

  
a. Normal                                                          b. Fault I 
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c. Fault II                                                            d. Fault III 

Figure 11. Waterfall plot of the vibration signal. 

As to the fault modes, the impact feature is somehow illustrated by the energy clusters 

in the spectrum. The VMD-based method is employed to furtherly explore the 

overshadowed difference of the time-frequency distribution among the normal and fault 

modes.  

4.3. Model implementation 

In order to find the number of IMF (k), the central frequency series, 
kω , of the 

modes are obtained through Hilbert transform, which is shown in Table 2. As previously 

mentioned, the value of k can be defined once two neighboring central frequencies are 

unveiled as close that may cause overlapping or over decomposition. As shown in Table 

2 on this principle, The central frequency of the 6th IMF is nearly identical with the 7th 

as for the normal mode, therefore the decomposition terminates in the 6th step. In a 

similar fashion, the values of k of Fault I, II and III modes are sought as 6, 5, 5 so as to 

avoid frequency overlap in the decomposition process according to the former study. It 

also can be observed that the first three central frequencies of the four modes are similar 

with each other, while distinctive for high-order IMFs. This indicates that both the 

generality and distinctive impact feature involved in various frequency bands could be 

extracted with VMD method, so that it could be used as the mode comparison and 

recognition. 

The decomposition results are shown in Figure 12 individually. We can find that 

most of the IMFs of each status through the improved VMD unveils the aperiodic feature 

of various conditions. To avoid mode overlap or even duplication, which is similar with 

the simulation study in the previous section, the balancing parameter of the data-fidelity 

constraint α in the VMD was also set as 1000. Each of the characteristic vector of the 

decomposition modes was characterized by singular value from the SVD method, which 

may be set as the input of the classifier.  
 

Table 2 

Central frequency of the IMFs for different k.  

 
Status IMF Central frequency /Hz 

1 2 3 4 5 6 7 

Normal 152 330 520 823 1190 1560 1570 

Fault I 145 294 490 833 1085 1296 1305 
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Fault II 135 305 515 685 795 808  

Fault III 155 294 478 653 865 870  

 

 

 

  
a. Normal                                           b. Fault I 

 

 

 

 
c. Fault II                                                d. Fault III 

Figure 12. Signal decomposition. 
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In Table 3, the singular value of the normal and fault condition is obviously different 

with the impact feature in each state as the modal overlap avoided. The 24 groups of 

samples of normal, fault I, fault II and fault III were extracted from the VMD 

decomposition and tested respectively. We randomly selected 8 groups of feature vector 

for classification training. The remaining 16 groups were tested data. When training 

samples classifier, the normal samples was selected as +1, the fault I as +2, fault II as +3, 

while fault III as +4. 
Table 3  

Singular values for the four conditions obtained with the VMD method.  

 
Status k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 

Normal 5.6534 5.2394 4.7241 6.1244 3.6092 3.7025 

Fault I 10.5952 10.2861 6.0257 6.2329 3.9251 3.8665 

Fault II 12.3346 6.7968 5.5243 5.0209 4.0225  

Fault III 16.2279 11.1894 9.5624 5.1258 3.9227  

 

 

 
Figure 13. Faults identification.  

Similar with the process of the simulation study, samples of 24 groups are set as the 

input of the multi-fault classifier here, through which the training is processed in the 

observation test as shown in Figure 13, the samples are identified by the SVM multi fault 

classifier recognition rate. The classification success rate for this method was 98%. 

5. Conclusions 

In order to accurately capture the impacting feature and identify the fault patterns of the 

driven mechanism of reciprocating machinery, an improved simulation and analysis 

method based on the VMD has been proposed. The method is based on acceleration data 

recorded on vibrating case of reciprocating machinery. The condition classification was 

carried out using the singular value decomposition applied to the IMFs matrix to obtain 

the vector with singular values. The obtained singular values were used to develop a train 

a suitable support vector machine. Simulated data were used to show that the improved 

VMD is superior to the EMD. It is shown that the method is 98% efficient when applied 

to real data recorded on reciprocating machinery with different faults. This work 

illustrates that the method can overcome the deflect of mode overlap which tends to 
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confuse popular pattern recognition algorithms. The research provides a new effective 

way for the reciprocating machinery fault diagnosis. 
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