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Abstract

We consider semigroups such that the universal left congruence ωℓ is finitely gener-

ated. Certainly a left noetherian semigroup, that is, one in which all left congruences

are finitely generated, satisfies our condition. In the case of a monoid the condition

that ωℓ is finitely generated is equivalent to a number of pre-existing notions. In partic-

ular, a monoid satisfies the homological finiteness condition of being of type left-FP1

exactly when ωℓ is finitely generated.

Our investigations enable us to classify those semigroups such that ωℓ is finitely gen-

erated that lie in certain important classes, such as strong semilattices of semigroups,

inverse semigroups, Rees matrix semigroups (over semigroups) and completely regu-

lar semigroups. We consider closure properties for the class of semigroups such that ωℓ

is finitely generated, including under morphic image, direct product, semi-direct prod-

uct, free product and 0-direct union. Our work was inspired by the stronger condition,

stated for monoids in the work of White, of being pseudo-finite. Where appropriate,

we specialise our investigations to pseudo-finite semigroups and monoids. In particu-

lar, we answer a question of Dales and White concerning the nature of pseudo-finite

monoids.

Keywords Monoids · Semigroups · Left congruences · Finitely generated · FP1 ·

Pseudo-finite
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1 Introduction

A finitary condition for a class of (universal) algebras is a condition, defined in the

appropriate language, that is satisfied by at least all finite members of the class. The con-

cept was introduced and developed in the early part of the last century by Noether and

Artin in their seminal work. Subsequently, finitary conditions have been of enormous

importance in understanding the structure and behaviour of rings, groups, semigroups

and many other kinds of algebras.

The classes of algebras we examine here are those of semigroups and monoids.

The two finitary conditions we focus on may be stated in many different ways and

arise from a variety of sources, as we explain in Sects. 2 and 3. The simplest way

of approaching them is via the universal relation on a semigroup S, regarded as a

left congruence. We remark that left ideals of semigroups are associated with left

congruences, but, unlike the case for rings, not every left congruence comes from

a left ideal. Left congruences on a monoid determine all monogenic representations

by left actions on sets, in the standard way. We denote the universal left congruence

relation on a semigroup S by ωℓ
S ; on occasion, where S is not named, we write more

simply ωℓ. The finitary conditions for S that are the subject of this article are those

of ωℓ
S being finitely generated (as a left congruence) and the stronger condition of S

being pseudo-finite. Intuitively, the latter condition puts a bound on the length of the

derivation required to relate two words, using only a finite set of relations; we give a

precise definition in Sect. 2. It is well known and easy to see that if G is a group, then

ωℓ
G is finitely generated if and only if G is a finitely generated group. The work of

[24] shows that G is pseudo-finite if and only if G is finite. For arbitrary monoids and

semigroups, the situation is much more complex.

A semigroup S is left noetherian if every left congruence is finitely generated;

certainly then ωℓ
S is finitely generated. The study of left noetherian semigroups was

introduced by Hotzel in [11] and is still a developing topic [19]. At least in the monoid

case, such a condition has been much exploited in the theory of acts over monoids.

For example, if a monoid M is left noetherian, then every finitely generated left M-act

is finitely presented [20]. As shown in [17], if S is left noetherian, then so is every

subgroup of S. Our condition that ωℓ
S is finitely generated may clearly be seen to be

weaker than being left noetherian: it is easy to see that ωℓ
M is finitely generated for any

monoid M with zero. More significantly, our characterisations of semigroups S with

ωℓ
S being finitely generated have conditions that only refer to some ‘top part’ (merely

the identity in the case of a monoid) and properties of a minimum ideal I , including

conditions on the subgroups of I .

We remark that many other finitary conditions have been important in the study of

semigroups and monoids, naturally including the properties of being finitely generated

or finitely presented [23], and other finitary conditions on the lattices of one sided con-

gruences, for example [7,8], both of which arise from model-theoretic considerations.
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In the case of a monoid M the condition that ωℓ
M is finitely generated is equivalent

to a number of notions that have arisen from a variety of sources. From a homological

standpoint the concept of being of type left-FPn was introduced for groups by Bieri [2]

and later extended to monoids [4]. Much of the work into the general property of being

of type left-FPn has been in the case of groups, although a recent shift to monoids can

be seen in [9,10,15,16,21]. Any monoid which possesses a finite complete rewriting

system was shown by Anick [1] to be of type left-FPn for each n. We refer the reader

to [5] for a wider study. Using work of Kobayashi [15], we show that a monoid M is

of type left-FP1 exactly when ωℓ
M is finitely generated. Moreover, ωℓ

M being finitely

generated may be stated in terms of the notion of ancestry introduced by White [24].

We present further formulations in Sect. 3.

The notion of being pseudo-finite was introduced in [24] in the language of ancestry.

Theorem 1.7 of [24] shows that for a monoid M the augmentation ideal ℓ0
1(M) is

finitely-generated if and only if M is pseudo-finite. The work in [24] was motivated

by the Dales-Żelazko conjecture, which states that a unital Banach algebra in which

every maximal left ideal is finitely generated is necessarily finite dimensional. Through

constructing links between the conjecture and ancestry, White showed the conjecture

to be true for Banach algebras of the form ℓ1(M) where M is a weakly right cancellative

monoid. In fact, it was a question posed to the second author by Dales and White [6],

concerning the nature of pseudo-finite monoids, that led to this article. We answer the

question in the negative in Example 7.7.

The objective of this paper is to make a comprehensive study of those semigroups

S such that ωℓ
S is finitely generated, or S is pseudo-finite. Our results often divide

into two kinds: those for semigroups and those for monoids. On the way we consider

numerous constructions, some of which have been considered before in the monoid

case—see [10] for direct products, [18,22] for retracts and [9] for Clifford monoids.

An important word of warning: the property of being of type left-FP1 does not apply

to semigroups. In [9] a semigroup is said to be of type left-FP1 if S1, the monoid

obtained from S by adjoining an identity if necessary, is of type left-FP1. However, for

semigroups, the property of ωℓ
S being finitely generated and that of ωℓ

S1 being finitely

generated differ considerably; see, for example, Corollaries 6.4 and 6.6.

The paper is organised as follows. In Sect. 2 we list some basic properties for a semi-

group S such that ωℓ
S is finitely generated, and formally introduce the stronger property

of being pseudo-finite. In Sect. 3 we explain the relationships between the conditions

that ωℓ
S is finitely generated, or S is pseudo-finite, and a number of other notions such

as ancestry, connected right Cayley graphs, type left-FP1 and right unitary generation

by a subset. In Sect. 4 we consider the closure properties of the class of semigroups

S with ωℓ
S being finitely generated, or of S being pseudo-finite, under standard alge-

braic constructions: morphisms, direct products, semidirect products, free products

and 0-direct unions. In Sect. 5 we focus on inverse semigroups, and establish several

equivalent conditions for an inverse semigroup S for ωℓ
S to be finitely generated, or

for S to be pseudo-finite. We end the section by considering our properties for Brandt

semigroups. Section 6 extends the results for Brandt semigroups to the much wider

context of arbitrary Rees matrix semigroups over semigroups, with and without a

zero and with or without an adjoined identity; the difference in the cases is striking.

In Sect. 7 we return to considering constructions, this time two that are typical to
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semigroups: those of strong semilattices of semigroups and of Bruck–Reilly exten-

sions. We also answer the question of Dales and White by constructing a particular

semilattice of groups. Finally, in Sect. 8, we take a more global view. We consider

semigroups possessing a completely simple minimum ideal (without further restric-

tion), and then specialise to the class of completely regular semigroups (semigroups

which are unions of groups) and then to bands (idempotent semigroups).

We have attempted to make the paper relatively self contained. We give a brief

introduction to Green’s relations in Sect. 2. Many of the algebraic constructions we

use will be standard, such as those of direct product or morphism. The details of those

particular semigroups may be found in [13] or in the case of free products, in [3].

Our canonical notation for a semigroup is S and for a monoid is M ; the identity of a

monoid M is denoted by 1. We write X to denote a set {(1, x) : x ∈ X} for a subset

X of a monoid M . For any X ⊆ S we denote by X2 both the set of pairs X × X and

the set {xy : x, y ∈ S}, depending on the context, which we will always endeavour to

make clear. The identity relation on any set X is denoted by ι or ιX . Given a subset A

of S2 for a semigroup S, the left congruence on S generated by A will be denoted by

either ρA or 〈A〉. The set of idempotents of a semigroup S is denoted by E(S).

2 Preliminaries

We make some initial observations surrounding the condition that ωℓ is finitely gen-

erated. This leads naturally to the point where we can define the property of being

pseudo-finite. We start with the following well-known result.

Lemma 2.1 [14, Lemma I.4.37] Let S be a semigroup and A be a subset of S2. Then,

for any a, b ∈ S, a ρA b if and only if either a = b or there exists a sequence

a = t1c1, t1d1 = t2c2, . . . , tndn = b

where ti ∈ S1 and (ci , di ) ∈ A ∪ A−1 for all 1 ≤ i ≤ n.

The sequence in the above lemma is referred to as an A-sequence of length n; if

n = 0, we interpret this sequence as being a = b.

Given a pair of left congruences δ and δ′ on S, we say that δ is a principal extension

of δ′ if δ ⊃ δ′ and there exists (a, b) ∈ S2 such that δ = 〈δ′ ∪ {(a, b)}〉. Clearly, if δ

covers δ′ in the lattice of left congruences on S then δ is a principal extension of δ′,

but the converse is not true. This may be easily seen by observing that for any monoid

M with 0, we have that ωℓ
M = 〈ι ∪ {1, 0}〉, but M may have non-trivial proper left

congruences.

The proof of the next lemma is straightforward.

Lemma 2.2 Let S be a semigroup. Then the following are equivalent:

(1) ωℓ
S is finitely generated;

(2) there is a finite chain ι = δ0 ⊂ δ1 ⊂ · · · ⊂ δn = ωℓ
S of left congruences on S

where each δi is a principal extension of δi−1 for all 1 ≤ i ≤ n;
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(3) there exists a finite subset X of S such that ωℓ
S = 〈X2〉;

(4) there exists a finite subset X of S such that for any x ∈ X, ωℓ
S = 〈{x} × X〉;

(5) for any u ∈ S there exists a finite subset X of S such that u ∈ X and ωℓ
S =

〈{u} × X〉.

It follows from Lemma 2.2 that, for a semigroup S with ωℓ
S being finitely generated,

we always have a generating set for ωℓ
S of the form X2 for some finite subset X ⊆ S.

Moreover, in the case when S is a monoid, we always have a generating set of the

form X = {(1, x) : x ∈ X} for some finite X ⊆ S\{1}. We shall make use of this

observation throughout the paper without reference.

Definition 2.3 Let S be a semigroup with ωℓ
S being generated by A, where A ⊆ S2 is

finite. We say that S is pseudo-finite with respect to A if there exists n ∈ N such that

for any a, b ∈ S, there is an A-sequence from a to b of length at most n.

We say that S is pseudo-finite with respect to X if X ⊆ S is finite and S is pseudo-

finite with respect to X2.

Remark 2.4 Let S be a semigroup with A ⊆ S2 finite. Then S is pseudo-finite with

respect to A if and only if ωℓ
S is the union of a finite chain of reflexive, symmetric

relations ρn
A where a ρn

A b if there is an A-sequence of length at most n relating a to b.

The following lemma shows that the property of ωℓ
S being generated by a finite set,

or of S being pseudo-finite with respect to a finite generating set, is independent of

the given set of generators.

Lemma 2.5 Let S be a semigroup and let ωℓ
S be finitely generated by H ⊆ S2. Suppose

ωℓ
S = 〈K 〉 for some K ⊆ S2. Then there exists a finite subset K ′ of K such that

ωℓ
S = 〈K ′〉.

Further, if there exists m ∈ N such that for any a, b ∈ S, there is an H-sequence

from a to b of length at most m, then there is an m′ ∈ N such that for any a, b ∈ S,

there is a K ′-sequence from a to b of length at most m′.

Proof The first statement is well known, but we give a short proof here for completeness

and convenience.

We are given that ωℓ
S = 〈H〉 = 〈K 〉. Let (h, k) ∈ H . Then there is a K -sequence

of length n := n(h, k)

h = t1c1, t1d1 = t2c2, . . . , tndn = k,

where (ci , di ) ∈ K ∪ K −1 and ti ∈ S1.

Let

K(h,k) =
(

{(c1, d1), . . . , (cn, dn)} ∪ {(c1, d1), . . . , (cn, dn)}−1
)

∩ K ,

so that K(h,k) ⊆ K , |K(h,k)| < ∞ and (h, k) ∈ 〈K(h,k)〉. Let

K ′ =
⋃

(h,k)∈H

K(h,k).
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Since H is finite, K ′ is a finite subset of K and it is clear that H ⊆ 〈K ′〉. Thus

ωℓ
S = 〈H〉 ⊆ 〈K ′〉 ⊆ ωℓ

S,

giving ωℓ
S = 〈K ′〉 as required.

Further, suppose there exists m ∈ N such that for any a, b ∈ S, there exists an

H -sequence from a to b of length at most m, that is,

a = s1h1, s1k1 = s2h2, . . . , smkm = b,

where (hi , ki ) ∈ H ∪ H−1 and si ∈ S1. Notice that for each (h, k) ∈ H , there

is a K ′-sequence of length n(h, k) for some n ∈ N connecting h to k, and hence

a sequence of the same length connecting uh to uk, for any u ∈ S1. Replace each

(si hi , si ki ), 1 ≤ i ≤ m in above sequence with a K ′-sequence of length n(hi , ki ).

Let

m′ = m × max{n(h, k) : (h, k) ∈ H}.

Then there is a K ′-sequence from a to b of length at most m′. ⊓⊔

We make use of Lemma 2.5 in the definition below.

Definition 2.6 A semigroup S is pseudo-finite if it is pseudo-finite with respect to some

finite A ⊆ S2, or equivalently, if it is pseudo-finite with respect to some finite X ⊆ S.

The following result is essentially folklore (see [24]):

Proposition 2.7 Let G be a group and A ⊆ G2. Then:

(1) ωℓ
G is generated by A if and only if G is generated by {a−1b : (a, b) ∈ A};

(2) G is pseudo-finite if and only if it is finite.

Let M be monoid and let B ⊆ M. Then:

(3) if M is generated by B, then ωℓ
M is generated by B × {1}.

Note that in Proposition 2.7, if A is finite then certainly so is {a−1b : (a, b) ∈ A}. On

the other hand, if we have a finite set C of generators of G, then C×{1}finitely generates

ωℓ
G using (3). We now give a way of extending Proposition 2.7(3) to semigroups.

Lemma 2.8 Let S be a semigroup generated by X ⊆ S. Then ωℓ
S is generated by W 2

X ,

where WX = X ∪ {xy : x, y ∈ X}. Moreover, if X is finite, then so is WX .

Proof Fix x ∈ X . For xi1 xi2 · · · xik
∈ S where xi j

∈ X , 1 ≤ j ≤ k, we have

xi1 · · · (xik−1
xik

) ρW 2
X

xi1 · · · xik−1

= xi1 · · · (xik−2
xik−1

) ρW 2
X

· · · ρW 2
X

xi1 xi2 ρW 2
X

xi1 ρW 2
X

x .

⊓⊔
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In the above result, if S =
⋃

1≤i≤n X i for n ∈ N, then clearly there is a bound

on the length of ρW 2
X

-sequences needed to connect elements of S, so that if X is

finite, then S is finite and demonstrably, S is pseudo-finite. The same comments apply

to Proposition 2.7(3). However, we show in Example 5.5 that there exists a finitely

generated monoid which is not pseudo-finite. On the other hand, if M is any monoid

with 0, it is clear that M is pseudo-finite with respect to {(1, 0)}.

For what follows, it is convenient to recall a few details of Green’s relations on a

semigroup S, and their associated pre-orders; for further information, we recommend

[13]. The relation ≤L is defined on a semigroup S by the rule

a ≤L b ⇔ S1a ⊆ S1b.

It is easy to see that ≤L is a right compatible pre-order, so that the associated equiva-

lence relation L is a right congruence. The relations ≤R and R are defined dually, and

the relations ≤J and J are obtained using principal two-sided ideals. The relation H

is defined as L ∩ R; any H-class containing an idempotent e is a maximal subgroup,

denoted by He.

We now make some observations which will be very useful for later sections.

Lemma 2.9 Let S be a non-trivial semigroup such that ωℓ
S = 〈A〉 for some A ⊆ S2.

Let c(A) = {x : ∃(x, y) ∈ A ∪ A−1}. Then for every s ∈ S there exists some x ∈ c(A)

such that s ≤L x.

Proof As S is non-trivial we have A �= ∅ and then c(A) �= ∅. Let s ∈ S and choose

u ∈ S with s �= u. Since s ρA u, we have s = t x for some t ∈ S1 and x ∈ c(A), giving

s ≤L x . ⊓⊔

Proposition 2.10 Let S be a semigroup. Then ωℓ
S is finitely generated (S is pseudo-

finite) if and only if ωℓ
S1 is finitely generated (S1 is pseudo-finite) and there is a finite

set U ⊆ S such that for every a ∈ S we have a ≤L u for some u ∈ U.

Proof It suffices to consider the case where S is not a monoid.

Suppose first that ωℓ
S is finitely generated by A ⊆ S2. The subset U exists by

Lemma 2.9 and clearly ωℓ
S1 is finitely generated by A ∪ {(1, u)} for any u ∈ S.

Conversely, suppose that U exists as given and ωℓ
S1 is finitely generated. Without

loss of generality we can assume that X generates ωℓ
S1 for some finite X ⊆ S. Let

Y = X2 ∪ {(u, ux) : u ∈ U , x ∈ X} so that Y ⊆ S2 and is finite.

Let s, t ∈ S. We know that s ρX t , so there exists an X -sequence

s = t1c1, t1d1 = t2c2, . . . , tndn = t

from s to t . Let zi = ti ci for 1 ≤ i ≤ n. Suppose first that no zi = 1 and consider

(ti ci , ti di ) for 1 ≤ i ≤ n. Clearly ti �= 1 and so ti = pu for some p ∈ S1 and u ∈ U .

Then (ti ci , ti di ) = (puci , pudi ) and (uci , udi ) ∈ Y . It follows that s ρY t in this case.

The other situation is where zi = 1 for some 1 < i ≤ n. Let i be least such that

zi = 1. We must have that ti−1 = 1 = ti = di−1 = ci , so that (ci−1, di−1) = (x, 1)
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and (ci , di ) = (1, y) for some x, y ∈ X . Then s ρY ti−1ci−1 = x ρY y = di ti = zi+1,

interpreting zn+1 by t . An inductive argument now completes the proof that s ρY t .

The claim involving pseudo-finiteness is clear from the argument above. ⊓⊔

In dealing with semigroups such that ωℓ
S is finitely generated we may, where con-

venient, call up the above description involving the monoid S1.

The following result will be particularly useful when considering semigroups with

a minimum ideal.

Lemma 2.11 Let S be a semigroup and let I be a left ideal of S. Then ωℓ
S is finitely

generated if and only if there exists a finite subset X of S such that for every a ∈ S

we have some x ∈ X with a ≤L x and ωℓ
I = ρX2 |I×I . In addition, S is pseudo-finite

if and only if there exists n ∈ N such that for any a, b ∈ I , there is an X2-sequence

from a to b of length at most n.

Proof Suppose that ωℓ
S = 〈X2〉 for some finite subset X of S. Clearly, ωℓ

I = ρX2 |I×I

and it follows from Lemma 2.9 that for every a ∈ S there exists some x ∈ X such that

a ≤L x . Conversely, let X be a finite subset of S satisfying the required properties.

Fix some u ∈ I and let Y = X ∪ {u}. For each a ∈ S, there exists x ∈ X such that

a ≤L x and so a = t x for some t ∈ S1. It follows from the assumption ωℓ
I = ρX2 |I×I

that a = t x ρY 2 tu ρY 2 u as u, tu ∈ I , so that ωℓ
S = ρY 2 .

The second statement now follows from Lemma 2.5. ⊓⊔

Corollary 2.12 Let S be a monoid and let I be a left ideal of S. Then ωℓ
S is finitely

generated if and only if there exists a finite subset X of S such that ωℓ
I = ρX2 |I×I . In

addition, S is pseudo-finite if and only if there exists n ∈ N such that for any a, b ∈ I ,

there is an X2-sequence from a to b of length at most n.

As a consequence of Lemma 2.11 we obtain the following extension of an existing

result for monoids [9, Proposition 6]. This result also follows from the corresponding

result for monoids in [9], together with Proposition 2.10. In the monoid case clearly

we may drop the condition on the relation ≤L below. Note also that the converse does

not hold in general, as seen in [9, Example 1].

Corollary 2.13 Let S be a semigroup and I be a left ideal of S. Suppose that ωℓ
I is

finitely generated (I is pseudo-finite) and there exists a finite subset X of S such that

for every a ∈ S we have some x ∈ X with a ≤L x. Then ωℓ
S is finitely generated (S is

pseudo-finite).

Corollary 2.14 The following are equivalent for a semigroup S with zero:

(1) there exists a finite subset X of S such that for every a ∈ S we have some x ∈ X

with a ≤L x;

(2) ωℓ
S is finitely generated;

(3) S is pseudo-finite.

Proof Clearly, {0} forms an ideal of S, and hence the required result holds by

Lemma 2.11. ⊓⊔

Note that in the above, ωℓ
S is generated by X ×{0}. In the monoid case, this reduces

to {(1, 0)}, so, as we have already observed:

Corollary 2.15 Any monoid with zero is pseudo-finite.
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3 Alternative conditions for !
ℓ to be finitely generated

In this section we give a variety of alternative conditions for semigroups and monoids

such that ωℓ is finitely generated. For monoids these conditions are already known,

involving the notions of ancestry [24], right Cayley graphs, the homological condition

called type left-FP1, and of being right unitarily generated [15]. We remind the reader

that in [9] a semigroup S is said to be of type left-FP1 if and only if the monoid S1 is of

type left-FP1. Although we do not attempt to consider here the property of being type

left-FP1 for semigroups, we take an essentially different approach to [9]. Namely, for a

semigroup S, we consider the property that ωℓ
S is finitely generated, which is a stronger

property than ωℓ
S1 being finitely generated. Indeed, according to Corollary 2.15, ωℓ

S1

is finitely generated for any semigroup with 0. On the other hand if N is an infinite

null semigroup, then as it has infinitely many maximal left ideals, Corollary 2.14 tells

us that ωℓ
N is not finitely generated.

Our first condition involves the notion of a left M-act over a monoid M .1 Let S

be a semigroup and let A be a non-empty set. Then A is a left S-act if there is a map

S × A → A where (s, a) �→ s · a, such that for all s, t ∈ S and a ∈ A we have

s · (t · a) = (st) · a. If S = M is a monoid then we also insist that 1 · a = a for

all a ∈ A. The notion of a left M-act A being finitely presented is the standard one

from universal algebra, that is, A is isomorphic to a finitely generated free left M-act

factored by a finitely generated left M-act congruence. The free left M-act on one

generator is isomorphic to M regarded as a left ideal of itself, and as such, a left M-act

congruence is precisely a left congruence on M . For further details of monoid and

semigroup acts we refer the reader to the monograph [14].

Proposition 3.1 Let M be a monoid. Then ωℓ
M is finitely generated if and only if the

trivial left M-act �M = {z} is finitely presented.

Proof If ωℓ
M is finitely generated then �M

∼= M/ωℓ
M is finitely presented.

Conversely, if �M is finitely presented, then by a standard result of algebra, it has

finite presentation with respect to any set of generators. Thus ωℓ
M , which is the kernel

of the M-act morphism M → �M , is finitely generated. ⊓⊔

For the corresponding result for semigroups we need a little more care. Let S be a

semigroup. We say that an S-act A is quasi-free if A is a disjoint union of copies of S,

where S is regarded as a left ideal of itself. To ease notation, we write A =
⋃

i∈I Si ,

where Si = {si : s ∈ S}, si = t j if and only if i = j and s = t , and for any si ∈ A

and t ∈ S we have t · si = (ts)i .

Proposition 3.2 Let S be a semigroup. Then ωℓ
S is finitely generated if and only if the

trivial S-act �S is isomorphic to a quasi-free S-act A =
⋃

i∈I Si where I is finite,

factored by a finitely generated congruence.

Proof If ωℓ
S is finitely generated then with I = {i} and identifying A = S1 with S we

have S → �S has kernel ωℓ
S .

1 The authors are grateful to Professor Nik Ruškuc for this observation.
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Conversely, suppose that �S
∼= A/ρ where A =

⋃

i∈I Si , ρ = 〈H〉 and I and H

are finite. Putting K = {(u, v) : ∃(ui , v j ) ∈ H for some i, j ∈ I }, it is easy to see

that ρK = ωℓ
S . ⊓⊔

We next consider the notion of ancestry in a monoid due to White [24].

Definition 3.3 [24] Let M be a monoid and let X be a non-empty subset of M . We say

that an element a ∈ M has an ancestry of length n with respect to X if there exists

a finite sequence (zi )
n
i=1 of length n in M such that z1 = a, zn = 1 and for each

1 < i ≤ n there exists x ∈ X such that either zi x = zi−1 or zi = zi−1x .

Lemma 3.4 Let M be a monoid and let X be a finite subset of M. Then ωℓ
M is (finitely)

generated by X (M is pseudo-finite with respect to X) if and only if every element of

M has an ancestry (of bounded length) with respect to X.

Proof Suppose that ωℓ
M = ρX . For any a ∈ M we have a ρX 1, so that there exists a

sequence a = t1c1, t1d1 = t2c2, . . . , tndn = 1, where ti ∈ S1 and (ci , di ) ∈ X ∪ X
−1

for all 1 ≤ i ≤ n. Let z1 = a, zn = 1 and zi = ti di for all 1 < i < n. If

(ci , di ) = (1, x) ∈ X we have zi−1 = ti ci = ti and so zi = ti di = zi−1x . On the

other hand, if (di , ci ) = (1, x) ∈ X then zi = ti di = ti and so zi−1 = ti ci = zi x .

Hence (zi )
n
i=1 is an ancestry of a with respect to X of length n.

Conversely, suppose that an element a ∈ M has an ancestry of length n with respect

to X . Then there exists a finite sequence (zi )
n
i=1 in M such that z1 = a, zn = 1 and

for 1 < i ≤ n, there exists x ∈ X such that zi x = zi−1 or zi = zi−1x . In the first case,

(zi−1, zi ) = (zi x, zi ) = (zi , zi )(x, 1) and in the second, (zi−1, zi ) = (zi−1, zi−1x) =

(zi−1, zi−1)(1, x). We thus obtain that z1 = a, z2, . . . , zn = 1 is a ρX -sequence of

length n from a to 1. Hence ωℓ
M = ρX .

The statement involving pseudo-finiteness is clear from the above. ⊓⊔

We may restate the concept of ancestry by using right Cayley graphs.

Definition 3.5 Let M be a monoid and X a subset of M (we do not assume that X is

a generating set for M). The right Cayley graph Ŵr (M, X) of M with respect to X is

defined as follows:

(1) the vertex set is M ;

(2) there is a directed edge labelled by x ∈ X from a to b, denoted by a
x
−→ b, if

b = ax .

By definition, a right Cayley graph Ŵr (M, X) is directed. However, underlying any

right Cayley graph is an undirected labelled graph Ŵr
u(M, X). We say that Ŵr

u(M, X)

is of bounded width if there is n ∈ N such that any two distinct vertices are joined by

a path of length no greater than n; note that this implies Ŵr
u(M, X) is connected.

Proposition 3.6 Let M be a monoid and let X be a finite subset of M. Then ωℓ
M is

finitely generated by X if and only if Ŵr
u(M, X) is connected. Moreover, M is pseudo-

finite with respect to X if and only if Ŵr
u(M, X) has bounded width.
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Proof Suppose that ωℓ
M = ρX . Let a, b ∈ M . Then there exists an X -sequence

a = t1c1, t1d1 = t2c2, . . . , tndn = b

where (ci , di ) ∈ X ∪ X
−1

and ti ∈ M for all 1 ≤ i ≤ n. Notice that for every pair

(ti ci , ti di ) we have a path in Ŵr (M, X) of the form ti ci = ti
di
−→ ti di if ci = 1, or

ti ci
ci

←− ti = ti di if di = 1, so that a is connected to b in Ŵr
u(M, X).

Conversely, suppose that Ŵr
u(M, X) is connected. Suppose there exists an edge

between a pair of elements a and b of S, so that we must have a = bx or b = ax

for some x ∈ X and (a, b) ∈ ρX . Since any two vertices are connected by a path it

follows that ρX = ωℓ
M .

The second claim of the proposition is clear from the above proof. ⊓⊔

Corollary 3.7 Let S be a semigroup. Then ωℓ
S is finitely generated (pseudo-finite) if and

only if there exists some finite subset X of S such that Ŵr
u(S1, X) of S1 is connected

(has bounded width), and there is a finite set U ⊆ S such that for every a ∈ S we have

a ≤L u for some u ∈ U.

Proof This follows from Propositions 2.10 and 3.6, together with the fact we may

assume that if Ŵr
u(S1, X) is connected, then 1 /∈ X . ⊓⊔

Another way to characterise a monoid M with ωℓ
M being finitely generated is to

use a connection between right Cayley graphs and the property of being right unitarily

generated. This equivalence was established by Kobayashi [15], together with the

equivalence to the property of M being type left-FP1, as we now briefly explain.

Further details may be found in [15].

Definition 3.8 [15] Let M be a monoid and N be a submonoid of M . Then N is said

to be right unitary if for any n ∈ N and m ∈ M ,

mn ∈ N ⇒ m ∈ N .

Let X be a subset of M and let U r (X) denote the smallest right unitary submonoid

of M containing X . If M = U r (X), then M is said to be right unitarily generated by

X .

Definition 3.9 [15] Let M be a monoid and ZM be the monoid ring of M over the

integers Z. For n � 0, M is of type left-FPn if there is a resolution

An → An−1 → · · · → A1 → A0 → Z → 0

of Z, regarded as a left ZM-module with trivial action, such that A0, A1, . . . , An are

finitely generated left ZM-modules.

Our next result, collecting together the equivalent conditions for ωℓ
M to be finitely

generated, follows from Proposition 3.2, Lemma 3.4 and Proposition 3.6, with the

remaining conditions coming from [15, Proposition 2.4, Theorem 2.6].
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Theorem 3.10 Let M be a monoid with a finite subset X. The following conditions are

equivalent:

(1) ωℓ
M is finitely generated by X;

(2) the trivial M-act �M is isomorphic to M/ρX and so is finitely presented;

(3) each element of M has an ancestry with respect to X;

(4) the undirected right Cayley graph Ŵr
u(M, X) of M with respect to X is connected;

(5) M is right unitarily generated by X.

Further, M is of type left-FP1 if and only if any (all) of these conditions hold.

Analogous omnibus results also hold for semigroups, and for pseudo-finite monoids

and semigroups. In the case of being right unitarily generated, we would require a

further concept of the number of steps involved in the generation of M .

4 Standard constructions

The aim of this section is to consider several standard constructions and their behaviour

with respect to ωℓ being finitely generated, and of being pseudo-finite. As usual, there

are two kinds of questions one can ask: whether the class of semigroups with ωℓ being

finitely generated is closed under a particular construction, and whether the fact that

ωℓ is finitely generated passes down to components of the construction. The properties

we look at include morphisms, direct products, semidirect products, free products and

0-direct unions. We also provide a number of examples.

Our first result is known in the case of a retract of a monoid [21, Theorem 3].

Proposition 4.1 Let S be a semigroup and let T be a morphic image of S. If ωℓ
S is finitely

generated (S is pseudo-finite), then ωℓ
T is finitely generated (T is pseudo-finite).

Proof Suppose that ωℓ
S = ρA for some finite subset A of S2 and ϕ : S −→ T is an

epimorphism. For any u, v ∈ T , there exists s, t ∈ S such that sϕ = u and tϕ = v.

Hence there exists a sequence s = s1a1, s1b1 = s2a2, . . . , snbn = t where si ∈ S1

and (ai , bi ) ∈ A ∪ A−1 for all 1 ≤ i ≤ n. By applying ϕ to the above sequence, we

have

u = sϕ = (s1ϕ)(a1ϕ), (s1ϕ)(b1ϕ) = (s2ϕ)(a2ϕ), . . . , (snϕ)(bnϕ) = tϕ = v

giving that ωℓ
T = ρAϕ where Aϕ = {(uϕ, vϕ) : (u, v) ∈ A}. Clearly, if S is pseudo-

finite with respect to A, then T is pseudo-finite with respect to Aϕ. ⊓⊔

In [10], a direct product of a pair of monoids M and N is shown (in the context of

being of type left-FP1) to have the property that ωℓ
M×N is finitely generated if and only

if both ωℓ
M and ωℓ

N are finitely generated. We now extend this result to cover pseudo-

finiteness. The first part of the lemma below follows immediately from Proposition 4.1,

by applying the projection morphisms.

Proposition 4.2 Let S and T be semigroups. If ωℓ
S×T is finitely generated (S × T is

pseudo-finite) then both ωℓ
S and ωℓ

T are finitely generated (pseudo-finite). If S and T

are monoids, then the converse is true.
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Proof Let S and T be monoids such that ωℓ
S = ρX2 and ωℓ

T = ρY 2 for some finite

subsets X ⊆ S and Y ⊆ T . For any (s, t), (u, v) ∈ S × T , we have s = s1a1, s1b1 =

s2a2, . . . , smbm = u where m ∈ N0, si ∈ S1, (ai , bi ) ∈ X2 for all 1 ≤ i ≤ m, and

t = t1c1, t1d1 = t2c2, . . . , tndn = v where n ∈ N0, ti ∈ T 1, (ci , di ) ∈ Y 2 for all

1 ≤ i ≤ n. If n � m, then we put sm+1 = · · · = sn = sm and am+1 = bm+1 = · · · =

an = bn = bm . Then

(s, t) = (s1a1, t1c1), (s1b1, t1d1) = (s2a2, t2c2), . . . , (snbn, tndn) = (u, v),

so that

(s, t)=(s1, t1)(a1, c1), (s1, t1)(b1, d1)=(s2, t2)(a2, c2), . . . , (sn, tn)(bn, dn)=(u, v).

A similar discussion holds for n < m, so that ωℓ
S×T = ρ(X×Y )2 . Since the length of

the (X ×Y )2-sequence required is no greater than the maximum of m and n, it is clear

that the statement on pseudo-finiteness also holds. ⊓⊔

The converse of Proposition 4.2 does not necessarily hold if we remove the condition

that S and T are monoids.

Example 4.3 Let C be the infinite cyclic monoid generated by a. It follows from Propo-

sition 2.7 we have ωℓ
C = ρA where A = {(a, a2)}. For any i ∈ N, if (a, ai ) = s(a j , ak)

where s ∈ C2 we have s = (1, 1) and (a, ai ) = (a j , ak). Lemma 2.9 now says ωℓ
C×C

is not finitely generated.

Let S and T be monoids such that T acts on S. If t · (ss′) = (t · s)(t · s′) for all

t ∈ T and s, s′ ∈ S, then we say that T acts on S by morphisms. In this case we can

form the semidirect product S ⋊ T with underlying set S × T and binary operation

given by (s, t)(s′, t ′) = (s(t · s′), t t ′). It is easy to see that S ⋊ T is a semigroup, and

if T acts monoidally, that is, if t · 1S = 1S for all t ∈ T , then S ⋊ T is a monoid with

identity (1, 1) := (1S, 1T ).

Proposition 4.4 Let S and T be monoids such that ωℓ
S = 〈U 2〉 and ωℓ

T = 〈V 2〉 for

some finite subsets U ⊆ S and V ⊆ T . Suppose T acts monoidally on S by morphisms.

Then ωℓ
S⋊T is finitely generated. Moreover, if S and T are pseudo-finite, then so is

S ⋊ T .

Proof Let W = P ∪ Q where P = {((s, 1), (s′, 1)) : s, s′ ∈ U } and Q =

{((1, t), (1, t ′)) : t, t ′ ∈ V }. We claim that ωℓ
S⋊T = 〈W 〉. For this we notice that

if u ∈ S is connected to 1 ∈ S via a U 2-sequence of length n, then (u, 1) is connected

to (1, 1) in S ⋊ T via a P-sequence of the same length. A similar statement holds for

T and Q. Now let (s, t) ∈ S ⋊ T . Then

(s, t) = (s, 1)(1, t) ρW (s, 1)(1, 1) = (s, 1) ρW (1, 1),

and so the required results hold. ⊓⊔
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Since T is a morphic image of S ⋊ T , if ωℓ
S⋊T is finitely generated (S ⋊ T is

pseudo-finite), then ωℓ
T is finitely generated (T is pseudo-finite). In the case of a

direct product, we know that if ωℓ
S×T is finitely generated then so is ωℓ

S . For arbitrary

semidirect products, this need not hold, as we will see in Example 5.6.

The following example shows that in Proposition 4.4, the action of T on S being

monoidal is necessary.

Example 4.5 Let X be a finite set and let X∗ be the free monoid generated by X . By

Proposition 2.7, ωℓ
X∗ is finitely generated. Let Y be the join semilattice consisting of

all finite subsets of X∗ including the empty word ǫ under union and let Y0 = Y ∪ {0}.

Since Y0 has identity {ǫ} and a zero, ωℓ
Y0 is finitely generated by Corollary 2.15.

Define an action of X∗ on Y0 as follows:

w · 0 = 0, w · A = wA = {wa : a ∈ A} for w ∈ X∗ and A ∈ Y .

It is easy to check that this is an action by morphisms, but is not a monoid action

because w · {ǫ} = {w} �= {ǫ}. Put T = Y0 ⋊ X∗. Let x ∈ X and, for each i ∈ N,

suppose ({ǫ}, x i ) = (B, u)(Y , wi ) for some (B, u) ∈ T 1 and (Y , wi ) ∈ T . Then

{ǫ} = B ∪ (u · Y ), so that B = u · Y = {ǫ}, giving u = ǫ, and wi = x i . Hence T has

infinitely many maximal L-classes, and ωℓ
T is not finitely generated by Lemma 2.9.

For the next result it is convenient to have the notion of length |w| of an element

w in the free product S ∗ T of semigroups S and T . We say that w has length n if

w = a1a2 . . . an where, if ai ∈ S (respectively, T ), then ai+1 ∈ T (respectively, S).

Notice that |ww′| = |w| + |w′| or |w| + |w′| − 1.

Proposition 4.6 Let S and T be semigroups. Then ωℓ
S∗T is finitely generated if and

only if ωℓ
S and ωℓ

T are finitely generated. The semigroup S ∗ T is never pseudo-finite.

Proof Suppose first that ωℓ
S = ρU 2 and ωℓ

T = ρV 2 where U and V are finite. Fix u ∈ U

and v ∈ V and put W = U ∪ V ; note that u ρW 2 v. We claim that ωℓ
S∗T = ρW 2 . If w

is an element of length 1 in S ∗ T then either w ∈ S, so that as w ρU 2 u in S, we also

have w ρW 2 u in S ∗ T ; similarly if w ∈ T . Suppose now that n > 1 and any element

of length n −1 is ρW 2 -related to u (or, equivalently, to v). Let w = a1a2 . . . an ∈ S ∗T

have length n. By our inductive hypothesis, w ρW 2 a1u and w ρW 2 a1v. Since one of

a1u, a1v has length 1, we have completed our claim.

Conversely, suppose that ωℓ
S∗T is finitely generated by P2. Consider the monoid

S1. Clearly S embeds into S1 and there is the trivial morphism T → S1 that takes

every element of T to 1. By the nature of free products, these morphisms can be

simultaneously extended to a morphism from S ∗ T to S1 that is clearly onto. By

Proposition 4.1, ωℓ
S1 is finitely generated. Either S is trivial, so that clearly ωℓ

S is

finitely generated, or we can find distinct s, u ∈ S. In the latter case there exists a P2-

sequence connecting s to u, of which the first step gives s = tc for some t ∈ (S ∗ T )1

and c ∈ P . It follows that (with a natural identification) we have t ∈ S1 and c ∈ S.

From Proposition 2.10 we deduce ωℓ
S is finitely generated, and similarly for ωℓ

T .

To see that S ∗ T is never pseudo-finite, suppose for contradiction that S ∗ T is

pseudo-finite with respect to P2, and the bound on the length of the P2-sequences
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needed to connect elements of S ∗ T is k. Let ht , hb be the lengths of the longest and

shortest elements of P , respectively. Consider t ∈ (S ∗ T )1 and c, d ∈ P . Then

| |tc| − |td| | = | |t | + |c| − |t | − |d| ± 1 | = | |c| − |d| ± 1 | ≤ ht − hb + 1.

Let w ∈ S ∗ T have length r where r > k(ht − hb + 1). It is now clear that w cannot

be related to any element of length 1 by a P2-sequence of length k. Thus S ∗ T cannot

be pseudo-finite. ⊓⊔

Turning our attention to the case of the monoid free product of two monoids

M ∗m N (where, of course, the monoid identities are identified, so that M ∗m N =

M ∗ N/〈(1M , 1N )〉, we note from [16, Proposition 4.1] that if M and N are finitely

presented, then ωℓ
M∗m N is finitely generated if ωℓ

M and ωℓ
N are. A similar argument to

that in Proposition 4.6 allows us to extend this to arbitrary monoids. The new compli-

cation is that although length is still well defined, the length of a product of w and v

may be less than |w| + |v| − 1, since right cancellative elements at the end of w may

cancel with left cancellative elements at the start of v. Bearing this in mind, we can

adapt the proof of Proposition 4.6 to show:

Corollary 4.7 Let M and N be monoids. Then ωℓ
M∗m N is finitely generated if and only

if ωℓ
M and ωℓ

N are finitely generated. The monoid M ∗m N is never pseudo-finite unless

one of M, N is pseudo-finite and the other is trivial.

Proof The first statement follows as in Proposition 4.6. For the second, suppose for

contradiction that M ∗m N is pseudo-finite with respect to P2, and the bound on

the length of the P2-sequences needed to connect elements of M ∗m N is k. Let h

be the length of the longest element of P . Notice if a ∈ M ∗m N and b ∈ P then

|ab| = |a| + p where −h ≤ p ≤ h. Consider t ∈ M ∗m N and c, d ∈ P . Then there

exists −h ≤ p, q ≤ h such that |tc| = |t | + p and |td| = |t | + q, and so

| |tc| − |td| | = | (|t | + p) − (|t | + q) | = | p − q |≤ 2h.

The proof then follows that of Proposition 4.6 by taking w to have length r > 2kh.

Finally, if neither monoid is trivial then an argument as in Proposition 4.6, adjusted

as indicated above, gives that M ∗m N is not pseudo-finite. Without loss of generality

suppose that N is trivial. Then M ∗m N is isomorphic to M and so is pseudo-finite if

and only if M is. ⊓⊔

We end this section by considering 0-direct unions. We only need consider semi-

groups, since any monoid with 0 is pseudo-finite.

Proposition 4.8 Let S and T be semigroups with zero and let P = S ∪ T be the 0-

direct union of S and T . Then ωℓ
P is finitely generated if and only if both ωℓ

S and ωℓ
T

are finitely generated. Moreover, P is pseudo-finite if and only if both S and T are

pseudo-finite.

Proof Recall from Corollary 2.14 that for a semigroup S with zero, ωℓ
S is finitely

generated if and only if S is pseudo-finite.
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If S and T are pseudo-finite, then there are finite subsets U of S (V of T ) such that

for every a ∈ S (b ∈ T ) there is some u ∈ U (v ∈ V ) such that a ≤L u (b ≤L v). Let

W = U ∪ V ; it is then clear that for every p ∈ P we have p ≤L w for some w ∈ W .

Corollary 2.14 gives that P is pseudo-finite.

For the converse, we need only remark that S and T are morphic images of P , and

invoke Proposition 4.1. ⊓⊔

By a simple induction argument we note that the result above holds for the 0-direct

union of finitely many semigroups.

5 Inverse semigroups

Inverse monoids M such that ωℓ
M is finitely generated were briefly considered in [9] in

the case where M has a least idempotent. In the case where M is a semilattice of groups,

this latter condition follows from the fact that ωℓ
M is finitely generated, however, as we

show, it is not necessary for M to have a least idempotent in order that ωℓ
M is finitely

generated. Our focus in this section is to give a complete characterisation of those

inverse semigroups S such that (i) ωℓ
S is finitely generated, and (i i) S is pseudo-finite.

We begin by remarking that if S is an inverse semigroup and ωℓ
S is generated by

A ⊆ S2, then the universal relation, regarded as a right congruence and denoted by

ωr
S , is generated by A1 = {(a−1, b−1) : (a, b) ∈ A} and so ωℓ

S is finitely generated if

and only if ωr
S is finitely generated.

Theorem 5.1 Let S be an inverse semigroup and E(S) be the set of idempotents of S.

Then the following statements are equivalent:

(1) ωℓ
S is finitely generated;

(2) (i) there is a finite set U ⊆ E(S) such that for every e ∈ E(S) we have e ≤ u

for some u ∈ U; and

(ii) there is a finitely generated inverse subsemigroup W of S such that for all

a ∈ S and e ∈ E(W ), there exists w ∈ W with aw = ew−1w;

(3) (i) there is a finite set U ⊆ E(S) such that for every e ∈ E(S) we have e ≤ u

for some u ∈ U; and

(iii) there is a finitely generated inverse subsemigroup W of S such that for all

a ∈ S there exists w ∈ W with aw ∈ E(W ).

Proof (1) ⇒ (2) Condition (i) follows easily from Proposition 2.10 and the fact that

S is inverse.

To show (i i), suppose that ωℓ
S = 〈X2〉 for some finite subset X ⊆ S. Let W be

the subsemigroup of S generated by X ∪ X−1 where X−1 is the set of all inverses of

elements in X . First, we show that, for any a, b ∈ S, a finite sequence

b = s1 p1, s1q1 = s2 p2, . . . , snqn = a
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where si ∈ S1, pi , qi ∈ X for 1 ≤ i ≤ n, gives as = bs−1s with s =

q−1
n pn · · · q−1

1 p1. If n = 1, then

as = aq−1
1 p1 = s1q1q−1

1 p1 = s1 p1 p−1
1 q1q−1

1 p1 = bp−1
1 q1q−1

1 p1 = bs−1s.

Suppose that the result holds for n = k. We show the result also holds for n = k + 1.

Here we have

b = s1 p1, s1q1 = s2 p2, . . . , skqk = sk+1 pk+1, sk+1qk+1 = a.

Put skqk = sk+1 pk+1 = c. Then, by induction,

c(q−1
k pk · · · q−1

1 p1) = b(q−1
k pk · · · q−1

1 p1)
−1(q−1

k pk · · · q−1
1 p1).

Now we have

a(q−1
k+1 pk+1q−1

k pk · · · q−1
1 p1)

= sk+1qk+1(q
−1
k+1 pk+1q−1

k pk · · · q−1
1 p1)

= sk+1 pk+1(p−1
k+1qk+1q−1

k+1 pk+1)(q
−1
k pk · · · q−1

1 p1)

= sk+1 pk+1(q
−1
k pk · · · q−1

1 p1)(q
−1
k pk · · · q−1

1 p1)
−1

(p−1
k+1qk+1q−1

k+1 pk+1)(q
−1
k pk · · · q−1

1 p1)

= c(q−1
k pk · · · q−1

1 p1)(q
−1
k pk · · · q−1

1 p1)
−1

(p−1
k+1qk+1q−1

k+1 pk+1)(q
−1
k pk · · · q−1

1 p1)

= b(q−1
k pk · · · q−1

1 p1)
−1(q−1

k pk · · · q−1
1 p1)

(q−1
k pk · · · q−1

1 p1)
−1(p−1

k+1qk+1q−1
k+1 pk+1)(q

−1
k pk · · · q−1

1 p1)

= b(q−1
k pk · · · q−1

1 p1)
−1(p−1

k+1qk+1q−1
k+1 pk+1)(q

−1
k pk · · · q−1

1 p1)

= b(q−1
k+1 pk+1q−1

k pk · · · q−1
1 p1)

−1(q−1
k+1 pk+1q−1

k pk · · · q−1
1 p1).

Choosing b = e ∈ E(W ) we have as = es−1s.

(2) ⇒ (3) is clear.

(3) ⇒ (1) Suppose that W is a finitely generated inverse subsemigroup of S with a

finite set Y = Y −1 of generators, and U is the set of all idempotents guaranteed by (i).

We show that ωℓ
S = 〈H2〉 where H = Y ∪ U . Let w1w2 · · · wk be a finite product of

elements in Y . Then for each 1 ≤ i ≤ k there exists some ei ∈ U such that wi = wi ei ,

and so

e1 ρH2 w1 = w1e1 ρH2 w1w2 ρH2 · · · ρH2 w1w2 · · ·wk−1

= w1w2 · · · wk−1ek−1 ρH2 w1w2 · · · wk−1wk .

For any a ∈ S, by assumption, there exists w ∈ W such that aw ∈ W . By taking

e ∈ U such that a ≤L e, we have a = ae ρH2 aw ρH2 e, so ρH2 = ωℓ
S , as required. ⊓⊔
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Corollary 5.2 Let S be an inverse monoid S. Then ωℓ
S is finitely generated if and only

if (i i) or (i i i) of Theorem 5.1 hold.

Now we specialise Theorem 5.1 to the pseudo-finite case. We first make the follow-

ing observation: if S is an inverse semigroup and the semilattice E(S) of idempotents

of S has least element (zero) e, then He = eSe. Indeed, for any s ∈ S,

ese R e(ses−1) = e and ese L (s−1es)e = e

so that ese H e and so eSe ⊆ He. Clearly, He ⊆ eSe and so He = eSe.

Proposition 5.3 Suppose that S is an inverse semigroup with semilattice of idempotents

E(S). Then S is pseudo-finite if and only if there is a finite set U ⊆ E(S) such that

for every f ∈ E(S) we have f ≤ u for some u ∈ U; E(S) has a least element e, and

the group H-class He is finite.

Proof Suppose that S is pseudo-finite with respect to X ⊆ S. The first condition

follows from Theorem 5.1. For any pair of idempotents f , g ∈ E(S), there exists an

X2-sequence

g = t1c1, t1d1 = t2c2, . . . , tndn = f

where ti ∈ S, (ci , di ) ∈ X2 for 1 ≤ i ≤ n. It follows from the proof of Theorem 5.1 that

f h = gh−1h where h = d−1
n cn · · · d−1

1 c1. As S is an inverse semigroup, f h = gh−1h

gives f h( f h)−1 = gh−1h(gh−1h)−1, and so f hh−1 = gh−1h. Note that every

idempotent f , g ∈ E(S) leads to such an idempotent h−1h. As S is pseudo-finite, we

can bound the length of the X2-sequences required and find a finite set H consisting

of those h obtained as above. Let w be the product of all h−1h such that h ∈ H .

Then f w = gw, and so f gw = gw, giving e = gw is least element for E(S) and

He = eSe. Further, He is a morphic image of S via ϕ : S → He defined by sϕ = ese.

Indeed, for any a, b ∈ S,

aebe = aebb−1be = ab(b−1eb)e = abe,

and so

(aϕ)(bϕ) = (eae)(ebe) = eaebe = eabe = (ab)ϕ.

By Proposition 4.1, He is pseudo-finite and hence a finite group by Proposition 2.7.

Conversely, suppose that E(S) has a least element e, He = eSe is finite and U

exists as given; put Y = He ∪ U . For any a ∈ S,

e = (a−1ea)e = a−1(eaa−1ae) = a−1(eaea−1a) = a−1e(aea−1)a = a−1ea

giving ae = aa−1ea = ea and so eae = ae. Moreover, there exists f ∈ U such that

a ≤L f , so that a = a f ρY 2 ae = eae ρY 2 e. Clearly then S is pseudo-finite with

respect to Y . ⊓⊔
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Clearly in the case of a monoid we may drop the first condition on Proposition 5.3.

We also have the following consequence of Theorem 5.1.

Corollary 5.4 [9, Corollary 4]. Let M be an inverse monoid with a least idempotent e.

Then ωℓ
M is finitely generated if and only if He is finitely generated.

Our next example shows that the existence of a least idempotent is not necessary

for ωℓ to be finitely generated.

Example 5.5 Consider the Bicyclic monoid B. Then ωℓ
B is finitely generated but B is

not pseudo-finite.

Proof Regarding the underlying set of B as N0 × N0, it is clear that B is finitely

generated by {(0, 1), (1, 0)} and so ωℓ
B is finitely generated by Proposition 2.7. The

idempotents of B form an infinite descending chain, and thus B is not pseudo-finite

by Corollary 5.4. ⊓⊔

For any monoid M with a finitely generated minimum ideal, we have by [9, Propo-

sition 6] and Proposition 2.7 that ωℓ
M is finitely generated. We have seen that a

pseudo-finite inverse semigroup possesses a minimum ideal which is finitely gen-

erated (in fact finite). The following example shows that the same is not true for

inverse semigroups S satisfying the weaker condition that ωℓ
S is finitely generated.

Example 5.6 Let G be the infinite cyclic group on g and let Y = {ei : i ∈ Q} ∪ {1}

be a semilattice, with ei e j = ek where k = min{i, j} and 1 is the identity. Define an

action of G on Y by

gi · 1 = 1, gi · e j = ei+ j .

It is easy to see that this is an action by morphisms. Let T = Y ⋊ G, noting that

T forms an E-unitary inverse monoid with identity (1, g0). Hence Sect. 5.9 of [13]

applies, so that (1, gn)−1 = (1, g−n) and (eq , gn)−1 = (g−n ·eq , g−n) = (eq−n, g−n)

for each q ∈ Q and n ∈ Z. Let W be the inverse subsemigroup of S generated by

{(1, g), (e1, g)}. Then it is a simple exercise to show that

W = 〈(1, g), (1, g−1), (e1, g), (e0, g−1)〉 = {(1, gn), (em, gn) : m, n ∈ Z},

with E(W ) = {(1, g0), (en, g0) : n ∈ Z}. Let (A, gn) ∈ S. If A = ep for some

p ∈ Q then take k ∈ Z such that n + k < p, and if A = 1 then take any k ∈ Z. Then

(ek, g−n) ∈ W and

(A, gn)(ek, g−n) = (Aen+k, gn−n) = (en+k, g0) ∈ E(W ).

Hence ωℓ
S is finitely generated by Corollary 5.2.

Note that (A, gn)J (B, gm) if and only if there exist z, t ∈ Z such that gz · A ≤ B

and gt · B ≤ A. If A = ep and B = eq then this can be satisfied for any z, t <

min{p − q, q − p}, while if A = B = 1 then this is satisfied for any z, t . It follows

that the J -classes of T are J = {(1, gn) : n ∈ Z} and S\J . Hence S\J is the unique

proper ideal of S, and is not finitely generated.
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Note that Example 5.6 gives the desired example of a semidirect product S ⋊ T

with ωℓ
S⋊T being finitely generated, but such that ωℓ

S is not.

Corollary 5.7 Let E be a semilattice. Then the following statements are equivalent:

(1) ωℓ
E is finitely generated;

(2) E is pseudo-finite;

(3) E has a least element and there is a finite set U ⊆ E such that for every e ∈ E

we have e ≤ u for some u ∈ U.

Proof (1) ⇒ (3) follows from Theorem 5.1 and the fact a finitely generated sub-

semigroup of a semilattice is finite. (3) ⇒ (2) is immediate from Proposition 5.3 and

(2) ⇒ (1) follows by definition. ⊓⊔

Corollary 5.8 [9, Theorem 9] Let E be a semilattice with identity 1. Then ωℓ
E is finitely

generated if and only if E is pseudo-finite if and only if E has a least element.

It follows from Theorem 5.1 and Proposition 5.3 that:

Corollary 5.9 Let S = B0(G, I ) be a Brandt semigroup over a group G. Then the

following statements are equivalent:

(1) I is finite;

(2) ωℓ
S is finitely generated;

(3) S is pseudo-finite.

Notice that we find another approach to Corollary 5.9 in the next section when

dealing with arbitrary Rees matrix semigroups.

6 Rees matrix semigroups

In this section we examine Rees matrix semigroups M = M[S; I ,�; P] and Rees

matrix semigroups with zero M0 = M0[S; I ,�; P] over a semigroup S. Note that

we make no restriction on the elements of P = (pλi ). Of course, if S = G is a

group, then M = M[G; I ,�; P] is completely simple, and if every row/column of

P contains a non-zero entry then M0 = M0[G; I ,�; P] is completely 0-simple. We

recall from [9] that completely simple semigroups of type left-FP1 were considered,

but the convention in [9] is that one considers the property for the corresponding

monoid obtained by adjoining an identity.

There are four cases for us to consider that arise from the existence or otherwise of

an identity, and the existence or otherwise of a zero:

(1) T = M0[S; I ,�; P]1;

(2) T = M[S; I ,�; P];

(3) T = M0[S; I ,�; P];

(4) T = M[S; I ,�; P]1.

We discuss each of them in turn and specialise to the case where S is a group. We

conclude with some remarks on the pseudo-finite case.
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The first case is trivial, because any monoid with zero is pseudo-finite by Corollary

2.15.

We now consider the second case.

Theorem 6.1 Let T = M[S; I ,�; P] be a Rees matrix semigroup over a semigroup

S. Then ωℓ
T is finitely generated if and only if the following conditions hold:

(1) I and � are finite;

(2) there is a finite set V ⊆ S such that with

H = {(pνi a, pν j b) : ν ∈ �, i, j ∈ I , a, b ∈ V },

every element of S is ρH -related to an element of V .

Proof Suppose that ωℓ
T = 〈U 2〉 for some finite set U = I ′ × V × �′ where I ′, V ,�′

are finite subsets of I , S and �, respectively. If T is finite we can take T = U and

V = S and we are done. Otherwise, let (i, a, λ), ( j, b, μ) ∈ T be distinct. Then there

exists a U 2-sequence

(i, a, λ) = t1(i1, a1, λ1), t1( j1, b1, μ1) = t2(i2, a2, λ2), . . . , tn( jn, bn, μn) = ( j, b, μ)

where tm ∈ T 1 and ((im, am, λm), ( jm, bm, μm)) ∈ U 2 for all 1 ≤ m ≤ n. Clearly

λ = λ1 ∈ �′, so that � = �′ is finite. Furthermore, if I is infinite, then we can pick i

and j above as being distinct elements of I\I ′. It is then easy to see that each ti ∈ T

and reading from left to right the first co-ordinate of each tk is equal to i , which is not

possible in view of the final equality. Hence I is finite. On the other hand, choosing

i = j, λ = μ, and b ∈ V , then taking a ∈ S to be arbitrary we have that a is connected

to an element b′ ∈ V via an H -sequence. Indeed, either tk ∈ T for 1 ≤ k ≤ n, in

which case b = b′, or letting k be least with tk = 1, we have a ρH ak = b′ ∈ V .

Conversely, suppose that (1) and (2) hold. Let W = {a ∈ S : (a, b) ∈

H for some b ∈ S}. We claim that ωℓ
T = 〈Q2〉 where Q = I × (V ∪ W ) × �.

To see this, let (i, a, λ) ∈ T . If (i, a, λ) ∈ Q we are done. Otherwise, a is connected

via an H -sequence

a = k1a1, k1b1 = k2a2, . . . , knbn = b

where b ∈ V . Fix our notation as (al , bl) = (pηl il ul , pηl jl vl) ∈ H for all 1 ≤ l ≤ n.

If every kℓ ∈ S, then we have a Q2-sequence

(i, a, λ) = (i, k1, η1)(i1, u1, λ), (i, k1, η1)( j1, v1, λ)

= (i, k2, η2)(i2, u2, λ), . . . , (i, kn, ηn)( jn, vn, λ) = (i, b, λ).

On the other hand, if ℓ is the least occurrence of kℓ = 1, we have a Q2-sequence

(i, a, λ) = (i, k1, η1)(i1, u1, λ), (i, k1, η1)( j1, v1, λ)

= (i, k2, η2)(i2, u2, λ), . . . , (i, kℓ−1, ηℓ−1)( jℓ−1, vℓ−1, λ) = (i, c, λ)
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where c ∈ W . In either case, (i, a, λ) is Q2-related to an element of Q, completing

the proof. ⊓⊔

Consequently, for the Rees matrix semigroup T = M[S; I ,�; P], if ωℓ
T is finitely

generated, then P is a finite matrix and ωℓ
S is finitely generated. The following example

shows that the converse needs not be true.

Example 6.2 Let S be an infinite monoid with zero, so that ωℓ
S is finitely generated by

Corollary 2.15. Let P be the 1 × 1 matrix P = (0). Then T = M[S; 1, 1; P] is an

infinite null semigroup, and thus ωℓ
T is not finitely generated.

Corollary 6.3 Let T = M[G; I ,�; P] be a Rees matrix semigroup over a group G.

Then ωℓ
T is finitely generated if and only if I , � are finite, and G is finitely generated.

Proof Suppose that ωℓ
T is finitely generated so that (1) and (2) of Theorem 6.1 hold.

With the notation of that result, for any g ∈ G we have an H -sequence connecting

g to some element v ∈ V , so that by a standard argument, v−1g ∈ 〈K 〉 and hence

g ∈ 〈K ∪ V 〉 where K = {u−1v : (u, v) ∈ H}. Hence G is finitely generated.

Conversely, if I ,� are finite and G is finitely generated by L , say, then with

L = {(1, l) : l ∈ L} we have that L generates ωℓ
G . Since L = {(pp−1, pp−1l) : p ∈

P, l ∈ L} we have L ′ = {(pνi a, pν j b) : ν ∈ �, i ∈ I , a, b ∈ Q} generates ωl
G where

Q = {p−1, p−1l : p ∈ P, l ∈ L}. The result now follows from Theorem 6.1. ⊓⊔

Since a rectangular band is isomorphic to a Rees matrix semigroup over the trivial

group it follows that:

Corollary 6.4 Let B be a rectangular band. Then ωℓ
B is finitely generated if and only

if B is pseudo-finite if and only if B is finite.

Theorem 6.5 Let T = M[S; I ,�; P]1 be a Rees matrix semigroup over a semigroup

S, with identity adjoined. Then ωℓ
T is finitely generated if and only if the following

conditions hold:

(1) I is finite;

(2) there is a finite set V ⊆ S and a finite subset Q of entries of P = (pλ,i ) such that

any element a of S is ρU -related to an element of V via the left congruence ρU

defined on S1, where

U = {(pνi a, pν j b) : ν ∈ �, i, j ∈ I , a, b ∈ V } ∪ {(1, pv), (pv, 1) : p ∈ Q, v ∈ V },

via a U-sequence of the form

a = t1c1, t1d1 = t2c2, . . . , tkdk = v,

where ti ∈ S and (d j , c j+1) �= (1, 1) for any 1 ≤ j < k.

Proof Suppose that ωℓ
T = 〈X2〉 for some finite set X = (I ′ × V × �′) ∪ {1}.
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If I is infinite, then we can pick i ∈ I\I ′ and choosing (i, a, λ) ∈ T we have

(i, a, λ) ρX2 1, so that there exists an X2-sequence

(i, a, λ) = z1r1, z1s1 = z2r2, . . . , znsn = 1

where zm ∈ T and (rm, sm) ∈ X2 for all 1 ≤ m ≤ n. As i ∈ I\I ′, we have

z1 ∈ {i} × S × �, implying z2, . . . , zn ∈ {i} × S × �, but znsn = 1 forces zn = 1, a

contradiction.

Fix (i, a, μ) ∈ T where μ ∈ �′. We have an X2-sequence, which we may assume

to be of minimum length (hence (d j , c j+1) �= (1, 1) for any 1 ≤ j < n)

(i, a, μ) = t1c1, t1d1 = t2c2, . . . , tndn = 1,

so that ti ci �= 1 for 1 ≤ i ≤ n. Notice that tn = 1. Suppose that t1, . . . , tk �= 1 and

tk+1 = 1 for some k ∈ {1, . . . , n − 1}. We therefore have a sequence

a = t ′1c′
1, t ′1d ′

1 = t ′2c′
2, . . . , t ′kd ′

k = a′
k+1

where if tl = (gl , wl , ηl) we have t ′l = wl , and

c′
l =

{

1 if cl = 1

pηl hl
al if cl = (hl , al , λl)

and

d ′
l =

{

1 if dl = 1

pηl kl
bl if dl = (kl , bl , μl).

Let Q = {pν j : ν ∈ �′, j ∈ I }. We show by induction on the length of the sequence

that for 1 ≤ l ≤ k if cl = 1 (respectively, dl = 1), then tl ∈ I × S × �′ and d ′
l ∈ QV

(respectively, c′
l ∈ QV ).

Starting with l = 1, if c1 = 1 (so d1 �= 1) then t1 = (i, a, μ) = (g1, w1, η1) and

d ′
1 = pη1k1 b1 = pμk1 b ∈ QV . On the other hand, if d1 = 1 (so c1 �= 1) then, noticing

that c2 �= 1 (else our sequence could be replaced by a shorter one) we have t1 = t2c2

so that η1 ∈ �′ and c1 = pη1h1a1 ∈ QV . Suppose for induction that 2 ≤ m ≤ k and

the result holds for all sequences of length strictly less than m, and let our sequence be

of length m. Consider tm−1dm−1 = tmcm which, by our inductive assumption, must

lie in I × S × �′. If cm = 1 (so dm �= 1) then tm = tm−1dm−1 ∈ I × S × �′ and

d ′
m = pηm km bm ∈ QV . On the other hand, if dm = 1 (so cm �= 1), then cm+1 �= 1, so

that tm = tm+1cm+1 ∈ I × S × �′ and c′
m = pηm hm am ∈ QV . Thus (2) holds, with

U as defined.

Suppose for the converse that (1) and (2) hold. Let �′ be a finite subset of � chosen

such that Q ⊆ V = {pλi : λ ∈ �′, i ∈ I }. Let

W = (I × V × �′) ∪ {1}.
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We show that ωℓ
T = 〈W 2〉.

Let (i, a, λ) ∈ T and pick any b ∈ V , μ ∈ �′. Let s = apλi b. Notice that

(i, a, λ) = (i, a, λ)1 ρW 2(i, a, λ)(i, b, μ) = (i, s, μ).

By assumption, there is a U -sequence in S1

s = t ′1c′
1, t ′1d ′

1 = t ′2c′
2, . . . , t ′nd ′

n = v

for some v ∈ V , where no t ′l = 1 and no pair (c′
l , d ′

l+1) = (1, 1). We aim to ‘lift’ this

sequence to a W 2-sequence

(i, s, κ) = t1c1, t1d1 = t2c2, . . . , tndn = (i, v, τ )

in T 1, for some κ, τ ∈ �′. For each 1 ≤ l ≤ n we have (c′
l , d ′

l ) = (pηl hl
al , pηl kl

bl),

or (c′
l , d ′

l ) = (1, pηl kl
bl) or (c′

l , d ′
l ) = (pηl hl

al , 1). Fix μ ∈ �′, put tl = (i, t ′l , ηl) for

1 ≤ l ≤ n and define

c j =

⎧

⎨

⎩

1 if c′
j = 1

(h j , a j , η j−1) if d j−1 = 1

(h j , a j , μ) otherwise

and

d j =

⎧

⎨

⎩

1 if d ′
j = 1

(k j , b j , η j+1) if c j+1 = 1

(k j , b j , μ) otherwise.

It is then clear that with κ = η1 if c′
1 = 1, and κ = μ else, and τ = ηn if

dn = 1 and τ = μ else, we have a W 2-sequence connecting (i, s, κ) to (i, v, τ ). Since

(i, a, λ) ρW 2 (i, s, κ) and (i, v, τ ) ∈ W , we are done. ⊓⊔

Corollary 6.6 Let B be a rectangular band. Then ωℓ
B1 is finitely generated if and only

if B1 is pseudo-finite if and only if B has finitely many R-classes.

Proof We need only consider the issue of pseudo-finiteness. If B has finitely many R-

classes {Rai
: 1 ≤ i ≤ n}, then letting X = {1, ai : 1 ≤ i ≤ n}, for any b ∈ B we have

b ∈ Rai
for some i and then b = b1 ρX2 bai = ai ρX2 1, so that B is pseudo-finite. ⊓⊔

In the case where S is a monoid in the hypothesis of Theorem 6.5 we obtain little

simplification beyond the obvious ability to drop the condition that ti ∈ S; the condition

on the pair (d j , c j+1) is redundant, as it merely says the sequence cannot be reduced

by setting t j c j = t j+1d j+1. Where S is a group we may simplify considerably.

Suppose S has been normalised in row 1 and column 1, that is, there exists 1 ∈ I ∩�

such that p1i = pλ1 = 1 for all i ∈ I and λ ∈ �. Let G P = {pλi : i ∈ I , λ ∈ �}. By

[12],

〈E(S)〉 = M[〈G P 〉; I ,�; P]. (6.1)

123



Semigroups with finitely generated universal left…

Corollary 6.7 Let T = M[G; I ,�; P]1 be a normalised Rees matrix semigroup over

a group G. Then ωℓ
T is finitely generated if and only if the following conditions hold:

(1) I is finite;

(2) G = 〈G P ∪ V 〉 where V is a finite set.

Proof Suppose that ωℓ
T is finitely generated. Thus Theorem 6.5 holds and there are

finite sets V ⊆ G, Q ⊆ G P , and U ⊆ G × G as in (2) of that result. Augment V by

{q−1 : q ∈ Q} and, noticing that (1, qv) = (qq−1, qv) and (qv, 1) = (qv, qq−1) we

have that

U = {(pνi a, pν j b) : ν ∈ �, i, j ∈ I , a, b ∈ V }.

Hence by previous remarks we have that

G = 〈{pνi ab−1 p−1
ν j : a, b ∈ V , ν ∈ �, i, j ∈ I }〉 = 〈G P ∪ V 〉,

noting that 1 ∈ I , and so (2) holds.

Conversely, if (1) and (2) hold then it is easy to see that ωl
G has a set of generators

of the form

{(pνi , pν j ) : ν ∈ �, i, j ∈ I } ∪ {(1, v), (1, v−1) : v ∈ V }

and hence of the form

{(pνi , pν j ) :ν ∈ �, i, j ∈ I } ∪ {(pτk p−1
τk , pτk p−1

τk v), (pτk p−1
τk , pτk p−1

τk v−1) :v ∈ V },

where pτk is chosen and fixed, and hence (by suitably augmenting V to give a finite

set W ) a set of generators of the form

{(pνi a, pν j b) : ν ∈ �, i, j ∈ I , a, b ∈ W }.

In view of earlier comments, the result now follows from Theorem 6.5. ⊓⊔

Recall that in [9], a semigroup is said to be of type left-FP1 if the monoid S1 has

this property. In light of (6.1) we may now recover Theorems 4 and 7 of [9].

Corollary 6.8 Let T = U 1 be a completely simple semigroup with an identity adjoined

and let G be a maximal subgroup of U. Then ωℓ
T is finitely generated if and only if U

has finitely many R-classes and G is generated by a set 〈(〈E(S)〉 ∩ G) ∪ V 〉 where V

is finite. If in addition U has finitely many L-classes, then ωℓ
T is finitely generated if

and only if U has finitely many R-classes and G is finitely generated.

Finally we consider the case when T = M0[S; I ,�; P].
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Proposition 6.9 Let T = M0[S; I ,�; P] be a Rees matrix semigroup with zero over

a semigroup S. Then ωℓ
T is finitely generated if and only if:

(1) � is finite; and

(2) (a) I is finite and there is a finite set V ⊆ S such that for every a ∈ S\V , we have

S1a ⊆ Spνiv for some ν ∈ �, i ∈ I and v ∈ V , or

(b) I is infinite and there is a finite set V ⊆ S and a finite set I ′ ⊆ I such that for

every a ∈ S, we have S1a ⊆ Spνiv for some ν ∈ �, i ∈ I ′ and v ∈ V .

Proof Suppose that ωℓ
T = 〈U 2〉 for some finite set U = (I ′×V ×�′)∪{0}. If T is finite

then (1) and (2)(a) trivially hold. Otherwise, we can find distinct (i, a, λ), ( j, b, μ) /∈

U . By assumption, there exists a U 2-sequence

(i, a, λ) = t1w1, t1q1 = t2w2, . . . , tnqn = ( j, b, μ)

where tm ∈ T 1 and (wm, qm) ∈ U 2 for all 1 ≤ m ≤ n. Notice that w1 must be some

(i1, a1, λ1) ∈ U\{0}, implying λ = λ1 ∈ �′, so that � = �′ is finite and (1) holds.

Suppose that I is finite. For any a /∈ V we have (i, a, λ) /∈ U and then (since T

is not finite) we can begin a sequence as above, yielding t1 = (i, c, ν) ∈ T . We then

have that a = cpνi1a1, giving S1a ⊆ Spνi1v as required, and so (2)(a) holds. On the

other hand, if I is infinite then for any a ∈ S we can find an element (i, a, λ) /∈ U and

a similar argument shows that (2)(b) holds.

Conversely, suppose that (1), and (2)(a) or (2)(b) hold. If T is finite we are done.

Otherwise, let U = {0} ∪ {(i, v, λ) : i ∈ I ′, v ∈ V , λ ∈ �}, where in case (2)(a) we

take I ′ = I . We show that ωℓ
T = 〈U 2〉. To see this, let (i, a, λ) ∈ T . If (i, a, λ) ∈ U

we are done. Otherwise, in case (2)(a), since a /∈ V we have a = xpν jv for some

ν ∈ �, j ∈ I ′, v ∈ V and x ∈ S, giving

(i, a, λ) = (i, x, ν)( j, v, λ) ρU 2 (i, x, ν)0 = 0.

In case (2)(b) we can write any a ∈ S as a = xpν jv for some ν ∈ �, j ∈ I ′, v ∈ V

and x ∈ S, and achieve our aim. ⊓⊔

Again we may simplify the proposition above for groups.

Corollary 6.10 Let T = M0[G; I ,�; P] be a Rees matrix semigroup with zero over

a group G. Then ωℓ
T is finitely generated if and only if either T is finite, or � is finite

and T is non-null.

Proof Recall that T is non-null if and only if the sandwich matrix has a non-zero

element. ⊓⊔

Remark 6.11 We end by considering again our four cases of whether or not our Rees

matrix semigroup has a zero or 1 in the context of being pseudo-finite. In cases (1) and

(3) we have a semigroup with zero, hence by Corollary 2.14, the universal relation of

our semigroup is finitely generated if and only if it is pseudo-finite. In Theorems 6.1

and 6.5 and their corollaries we merely need to impose a bound on the length of the

sequences to achieve the criterion for being pseudo-finite (so that in Corollaries 6.3

and 6.8, the group G is required to be finite).
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Open Question 6.12 Let T = M[S; I ,�; P]. Fixing (i, λ) ∈ I × � we have that

Kiλ = {(i, s, λ) : s ∈ S} becomes a variant of S with sandwich element pλi . In view

of the results of this section we ask, what is the connection between ωℓ
S being finitely

generated and ωℓ
Sa being finitely generated, for a variant Sa of S?

7 Strong semilattices of semigroups and Bruck–Reilly extensions

Strong semilattices of monoids which are of type left-FPn , and hence of type left-FP1,

have been classified in [9, Theorem 9]. Our aim in this section is to generalise their

result, by studying strong semilattices of semigroups, with and without an identity

adjoined, and to examine the property of being pseudo-finite in this context. Using a

strong semilattice of groups we are able to give a counterexample to the conjecture

of Dales and White, mentioned in the introduction. We also examine Bruck–Reilly

extensions BR = BR(S, θ) of a monoid S to determine when ωℓ
BR is finitely gen-

erated. For details concerning strong semilattices of semigroups, and Bruck–Reilly

extensions, we refer the reader to [13]. Note that in the result below, even if our com-

ponent semigroups are monoids, we are not assuming that the connecting morphisms

ϕα,β are monoid morphisms.

Proposition 7.1 Let S = [Y; Sα;ϕα,β ] be a strong semilattice of semigroups. Then

ωℓ
S is finitely generated (S is pseudo-finite) if and only if

(1) there exists a finite subset X of S such that for every a ∈ S we have some x ∈ X

with a ≤L x;

(2) Y has a least element 0;

(3) ωℓ
S0

is finitely generated (S0 is pseudo-finite).

Proof Suppose that ωℓ
S = 〈X2〉 for some finite set X ⊆ S. Then (1) holds by Lemma

2.9. Since there is a natural epimorphism from S to Y , we deduce that ωℓ
Y

is finitely

generated by Proposition 4.1, so that Y has a least element by Corollary 5.7. Further,

S0 is a morphic image of S under ψ : S → S0 defined by sψ = sϕα,0 for s ∈ Sα .

Thus ωℓ
S0

is finitely generated; if S is pseudo-finite, then S0 is also pseudo-finite.

Conversely, suppose (1)-(3) hold. Then S0 forms an ideal of S, and so the result

follows from Corollary 2.13. ⊓⊔

Proposition 7.2 Let S = [Y; Sα;ϕα,β ] be a strong semilattice of semigroups that is

not a monoid. Then ωℓ
S1 is finitely generated (S1 is pseudo-finite) if and only if Y has

a least element 0 and ωℓ

S1
0

is finitely generated (S1
0 is pseudo-finite).

Proof Suppose that ωℓ
S1 is finitely generated (S1 is pseudo-finite). Since there is a

natural epimorphism from S1 to Y1, we deduce that ωℓ
Y1 is finitely generated, so that

Y1 (and so Y) has a least element 0 by Corollary 5.8. For convenience denote the

identity of S1 by 1S and the identity of S1
0 by 1S0 . Also, S1

0 is a morphic image of S1

under ψ : S1 → S1
0 defined by sψ = sϕα,0 for s ∈ Sα and 1Sψ = 1S0 . Thus ωℓ

S1
0

is

finitely generated (S1
0 is pseudo-finite) by Proposition 4.1.
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Conversely, suppose that Y has a least element 0 and ωℓ

S1
0

= 〈X2〉 for a finite set

X ⊆ S1
0 . Fix u ∈ X ∩ S0 and let Y = (X ∩ S0)∪{1S}. If t ∈ S0 then as t ρX2 u in S1

0 , it

is easy to see, replacing 1S0 by 1S if necessary, that t ρY 2 u in S1 via a Y 2-sequence of

the same length as the original X2-sequence. For any s ∈ S we have su ∈ S0, giving

s = s1S ρY 2 su ρY 2 u ρY 2 1S, so that ρY 2 = ωℓ
S1 . The statement on pseudo-finiteness

follows. ⊓⊔

Corollary 7.3 cf. [9, Corollary 3] Let S = [Y; Gα;ϕα,β ] be a Clifford monoid. Then

ωℓ
S is finitely generated (S is pseudo-finite) if and only if Y has a least element 0 and

G0 is finitely generated (finite).

Remark 7.4 We recall that a normal band is a strong semilattice of rectangular bands.

We may immediately apply Propositions 7.1 and 7.2 to this case, calling upon Corol-

laries 6.4 and 6.6. We examine bands in greater detail in Sect. 8.

Our aim now is to extend Example 5.5 by considering arbitrary Bruck–Reilly exten-

sions of monoids:

Proposition 7.5 Let S be a monoid with ωℓ
S being finitely generated and let T =

B R(S, θ) be the Bruck–Reilly extension of S determined by θ . Then ωℓ
T is finitely

generated, but T is not pseudo-finite.

Proof Let e be the identity of S and ωℓ
S = 〈X2〉 for a finite set X ⊆ S. Let Y =

{(1, e, 0), (0, e, 0), (0, x, 0) : x ∈ X}. Notice that, for any (u, a, 0) ∈ T ,

(u, a, 0) = (1, e, 0) · · · (1, e, 0)
︸ ︷︷ ︸

u−1 times

(1, a, 0).

As ωℓ
S = 〈X2〉, we have that a = t1c1, t1d1 = t2c2, . . . , tndn = e where ti ∈

S, (ci , di ) ∈ X2 for all 1 ≤ i ≤ n. This gives

(1, a, 0) = (1, t1, 0)(0, c1, 0), (1, t1, 0)(0, d1, 0) = (1, t2, 0)(0, c2, 0), . . .

· · · (1, tn, 0)(0, dn, 0) = (1, e, 0)

and hence (1, a, 0) ρY 2 (1, e, 0) ρY 2 (0, e, 0). Notice that (1, a, 0) ρY 2 (0, e, 0) gives

(2, a, 0) = (1, e, 0)(1, a, 0) ρY 2 (1, e, 0)(0, e, 0) = (1, e, 0) ρY 2 (0, e, 0).

By induction we derive

(u, a, 0) = (1, e, 0) · · · (1, e, 0)
︸ ︷︷ ︸

u−1 times

(1, a, 0) ρY 2 (0, e, 0).

For any (u, a, v) ∈ T where v �= 0,

(u, a, v − 1) = (u, a, v)(1, e, 0) ρY 2 (u, a, v)(0, e, 0) = (u, a, v).
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Again, a simple inductive argument yields (u, a, 0) ρY 2 (u, a, v), so (u, a, v) ρY 2

(0, e, 0), and hence ρY 2 = ωℓ
T .

There exists an epimorphism from T onto the Bicyclic monoid given by

(m, g, n)ψ = (m, n), and so the final statement is immediate from Proposition 4.1

and Example 5.5. ⊓⊔

In the opposite direction to that in Proposition 7.5, we see that the property of ωℓ

being finitely generated for BR(S, θ) does not necessarily transfer to S.

Example 7.6 Let G be the free group on {ai : i ∈ N0} and let θ : G → G be given by

aiθ = ai+1. Let T = B R(G, θ) be the Bruck–Reilly extension of G determined by

θ . Clearly G is not finitely generated. We claim that ωℓ
T = 〈X2〉 for the finite set

X = {(0, e, 0), (0, e, 1), (1, a0, 0), (1, e, 0)}.

Proof By the usual arguments, we have (i, e, j) ρX2 (0, e, 0), for any i, j ∈ N0. Noting

that (1, a0, 0) ∈ X , we assume that (0, ai , 0) ρX2 (0, e, 0) for all i ≤ n. Then

(0, an, 0)(1, e, 0) ρX2 (0, an, 0)(0, e, 0) = (0, an, 0) ρX2 (0, e, 0).

Now

(0, an, 0)(1, e, 0) = (1, anθ, 0) = (1, an+1, 0).

From the above we have

(0, an+1, 0) = (0, e, 1)(1, an+1, 0) ρX2 (0, e, 1)(0, e, 0) = (0, e, 1) ρX2 (0, e, 0),

completing our inductive step. We then have

(0, e, 0) = (0, a−1
n , 0)(0, an, 0) ρX2 (0, a−1

n , 0)

for any n ∈ N0, and since the ρX2 -class of (0, e, 0) is a submonoid we obtain that

(0, g, 0) ρX2 (0, e, 0) for all g ∈ G.

For any u ∈ N0, g ∈ G we have

(u, g, 0) = (1, e, 0)u(0, g, 0),

so that (u, g, 0) ρX2 (0, e, 0) and then similarly to the proof of Proposition 7.5, we

show via induction that (u, g, v) ρX2 (0, e, 0), for any v ∈ N0. ⊓⊔

Every monoid with zero is pseudo-finite, as is every finite monoid and hence from

Proposition 4.2, every direct product of such. Dales and White [6], see also [24], posed

the question of whether the converse is true, namely, that every pseudo-finite monoid

is isomorphic to a direct product of a monoid with zero by a finite monoid. We answer

this question negatively by the following example.
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Example 7.7 Let Y = {α, β} be a semilattice with β < α and let M = [Y; Gα;ϕα,β ]

be a strong semilattice of groups, where Gα = G is an infinite group with identity 1 and

no elements of order 2, Gβ = {a, e} is a group with identity e, and ϕα,β : Gα → Gβ

is defined by gϕα,β = e for all g ∈ G. Then M is a pseudo-finite monoid that is not

isomorphic to a direct product of a monoid with zero by a finite monoid.

Proof Clearly, M does not have zero, but as β is the least element of Y , it follows from

Corollary 7.3 that M is pseudo-finite. Suppose that U and V are monoids and ψ : M →

U×V is an isomorphism. As |E(M)| = 2 and |E(U×V )| = |E(U )|×|E(V )|, without

loss of generality, we assume |E(U )| = 2 and |E(V )| = 1. Let E(U ) = {1U , f }

and E(V ) = {1V } where 1U and 1V are the identities of U and V , respectively.

Then 1ψ = (1U , 1V ) and eψ = ( f , 1V ). For any w = (p, q) ∈ U × V , we have

wψ−1 H 1 or wψ−1 H e, so that w H (1U , 1V ) or w H ( f , 1V ), which implies

p H 1U , q H 1V or p H f , q H 1V . Hence we deduce that V = H1V
is a group and

H f × H1V
∼= Gβ = {a, e}, so that |H f | = 1 or |H1V

| = 1. If |H1V
| = |V | = 1, then

M ∼= U . If |H f | = 1 and |V | = |H1V
| = 2, then V = {1V , b} where b2 = 1V , so that

the order of (1U , b) is 2, so is the element (1U , b)ψ−1 in G, but G has no elements of

order 2, a contradiction. ⊓⊔

8 Semigroups with aminimum ideal and completely regular
semigroups

In many of our examples of a semigroup S with ωℓ
S being finitely generated, S is

required to possess a minimum ideal I such that ωℓ
I is finitely generated. Clifford

semigroups and normal bands illustrate this point. Indeed, if S = [Y; Sα;ϕα,β ] is a

strong semilattice of semigroups, and Y has a least element 0, then any minimum ideal

is contained in S0, and if S is Clifford or a normal band, S0 will be the minimum ideal

exactly. In this section we give necessary and sufficient conditions for a semigroup with

a completely simple minimum ideal to have ωℓ finitely generated. We apply our result

to completely regular semigroups and bands. We remark that we make no restriction

here on the number of right ideals of the minimum ideal, unlike [9, Theorem 8].

Theorem 8.1 Let S be a semigroup with a minimum ideal S0 that is completely simple.

Then ωℓ
S is finitely generated if and only if the following hold:

(1) there exists a finite subset X of S such that for every a ∈ S we have some x ∈ X

with a ≤L x;

(2) if G is a maximal subgroup of S0, then G = 〈F ∪ V 〉 where V is finite and

F = 〈E(C0)〉 ∩ G where C0 is the union of finitely many R-classes of S0;

(3) there exists an L-class L of S0 and a finite subset W ⊆ L such that every idempo-

tent in L is ρW 2 -related to an element of W via the left congruence ρW 2 defined

on S.

Proof We first suppose that ωℓ
S = 〈U 2〉 for a finite set U ⊆ S. Condition (1) holds by

Lemma 2.15.

123



Semigroups with finitely generated universal left…

Let H be a maximal subgroup in S0 and let e be identity of H . Let h ∈ H . As

ωℓ
S = 〈U 2〉, we have

h = t1c1, t1d1 = t2c2, . . . , tndn = e,

where ti ∈ S1 and (ci , di ) ∈ U 2. Multiplying the above sequence by e from both

sides, we have

h = et1c1e, et1d1e = et2c2e, . . . , etndne = e.

Now eti ∈ S0 and (ci e, di e) ∈ Ue × Ue ⊆ S0 × S0. It is convenient at this point to

assume that S0 is a Rees matrix semigroup M = M[G; I ,�; P] and that H = H11

for some distinguished 1 ∈ I ∩ �, where P is normalised in row 1 and column 1. We

can then write the above sequence as

h = (1, g, 1) = (1, t ′1, ν1)(i1, c′
1, 1), (1, t ′1, ν1)( j1, d ′

1, 1) = (1, t ′2, ν2)(i2, c′
2, 1),

. . . , (1, t ′n, νn)( jn, d ′
n, 1) = (1, f , 1) = e,

where f is the identity of G, (1, t ′k, νk) ∈ eM and ((ik, c′
k, 1), ( jk, d ′

k, 1)) ∈ Ue×Ue.

We now have

g = t ′1 pν1i1 c′
1, t ′1 pν1 j1d ′

1 = t ′2 pν2i2 c′
2, . . . , t ′n pνn jn d ′

n = f ,

which gives us g = d ′−1
n p−1

νn jn
pνn in c′

nd ′−1
n−1 · · · p−1

ν1 j1
pν1i1 c′

1. Let I ′ be the union of {1}

together with the rows indexed by the first co-ordinates of the elements of Ue and let

C0 = M[G; I ′,�; P ′], where P ′ = (pλi ) is the � × I ′ submatrix of P . By (6.1),

we have that H is generated by (〈E(C0)〉 ∩ H) ∪ V where V = Ue, and so (2) holds.

Note that Ue is contained in the L-class Le of S0. If f ∈ E(Le) then there exists

ci , di ∈ U and ti ∈ S1 (1 ≤ i ≤ n), such that

f = t1c1, t1d1 = t2c2, . . . , tndn = e.

Multiplying through by e on the right, and noting that f e = f we obtain (3) by

augmenting U by the finite set Ue.

Conversely, suppose (1)-(3) hold. From Corollary 6.8 we know that ωℓ

C1
0

is finitely

generated, say by a set U 2. Let G be a maximal subgroup in L with identity e and let

F = Ue. Then F is a finite subset of C0, and as any two elements of G are related via

a U 2-sequence in C1
0 , a now familiar argument shows that they are related in S by an

F2-sequence of the same length.

Let Y = X ∪ W ∪ F ∪ {e}. We claim ωℓ
S = 〈Y 2〉. Let s ∈ S be such that s L e,

and suppose s H f = f 2. Then es H e, so that es ρF2 e, and so es ρY 2 e. Hence

f es ρY 2 f e, and so f es = f s = s ρY 2 f = f e. However, f ρW 2 e, so that f ρY 2 e,

and thus s ρY 2 e. Now take any u ∈ S, and let t ∈ X be such that u = at for some

a ∈ S1. Then u = at ρY 2 ae ρY 2 e as ae L e. Hence ωℓ
S = 〈Y 2〉. ⊓⊔
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If we let the minimum ideal S0 have finitely many R-classes, then the result above

simplifies as follows. Note that this corollary can be seen as an extension of Theorem

8 of [9] from monoids to semigroups.

Corollary 8.2 Let S be a semigroup with a minimum ideal S0 that is completely simple

and has finitely many R-classes. Then ωℓ
S is finitely generated if and only if the

following hold:

(1) there exists a finite subset X of S such that for every a ∈ S we have some x ∈ X

with a ≤L x;

(2) if G is a maximal subgroup of S0, then G = 〈F ∪ V 〉 where V is finite and

F = 〈E(S0)〉 ∩ G.

To search for examples of semigroups with a minimum ideal that is completely

simple, a natural starting point is completely regular semigroups.

Corollary 8.3 Let S be a completely regular semigroup, with decomposition S =
⋃

α∈Y Sα into a semilattice of completely simple semigroups Sα , α ∈ Y . Then ωℓ
S

is finitely generated if and only if Y has a least element 0, so that S0 forms a minimum

ideal that is completely simple, and conditions (1)–(3) of Theorem 8.1 hold.

Proof As J is a congruence on S, Proposition 4.1 tells us that ωℓ
S/J

is finitely

generated, and so Y ∼= S/J has a least element by Corollary 5.7. Conditions (1)–(3)

and the converse is immediate from Theorem 8.1. ⊓⊔

For the case of bands, Conditions (1)–(3) of Theorem 8.1 reduce noticeably, since

maximal subgroups are trivial and ≤L has a simplified form:

Corollary 8.4 Let B be a band, with decomposition B =
⋃

α∈Y Bα into a semilattice

of rectangular bands Bα , α ∈ Y . Then ωℓ
B is finitely generated if and only if the

following hold:

(1) Y has a least element 0;

(2) there exists a finite subset X of B such that for every e ∈ B we have some x ∈ X

with ex = e;

(3) there exists an L-class L of B0 and a finite subset W ⊆ L such that every element

of L is ρW 2 -related to an element of W via the left congruence ρW 2 defined on B.

We may use Corollary 8.2 in partnership with Corollaries 8.3 and 8.4 to specialise

to completely regular semigroups, and to bands, with minimum ideal having finitely

many R-classes.

Corollary 8.5 Let S be a completely regular semigroup, with decomposition S =
⋃

α∈Y Sα into a semilattice of completely simple semigroups Sα , α ∈ Y . Suppose

also that S has a minimum ideal S0 with finitely many R-classes. Then ωℓ
S is finitely

generated if and only if

(1) there exists a finite subset X of E(S) such that for every a ∈ S we have some

e ∈ X with ae = a;
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(2) if G is a maximal subgroup of S0, then G = 〈F ∪ V 〉 where V is finite and

F = 〈E(S0)〉 ∩ G.

If S is a band, (2) is redundant.

Our current examples of completely regular semigroups with finitely generated

universal relation include completely simple semigroups and strong semilattices of

groups or rectangular bands (possibly with identity adjoined). In each case they possess

a minimum ideal with finitely many R-classes, although we will now construct an

example which dictates that this is not a general phenomenon.

The following construction will be used in the desired example, but, as it is quite

general, it is convenient to state it separately.

Lemma 8.6 Let S be a semigroup and U a left zero semigroup with S ∩ U = ∅.

Suppose that S acts on U on the left via (s, u) �→ s · u. Let T = S ∪ U and define a

binary operation ∗ on T , extending those on S and U, as follows:

s ∗ u = s · u, u ∗ s = u

for all s ∈ S, u ∈ U. Then T is a semigroup having U as minimum ideal. If S is a

monoid with identity 1 and acts monoidally, then T is a monoid with identity 1.

Proof It is clear that every element of U is a left zero for the multiplication. It is easy

to check that for any s, t ∈ S and u, v ∈ U we have

(s ∗ t) ∗ u = s ∗ (t ∗ u), (s ∗ u) ∗ t = s ∗ (u ∗ t) and (s ∗ u) ∗ v = s ∗ (u ∗ v)

so that the multiplication is associative. The result follows. ⊓⊔

In the next example, by T
op

U we mean the full transformation monoid on U with

composition right to left.

Example 8.7 There exists a left regular band monoid with finitely generated universal

relation such that the minimum ideal has infinitely many R-classes.

Proof Let U = {ui : i ∈ N0} be a left zero semigroup and let L = {ℓi : i ∈ N}. Define

a map L × U → U by ℓi · u0 = u0 and ℓi · u j = ui for any i, j ∈ N. This gives us

a map from L to T
op

U , which can be extended to a morphism from L∗ to T
op

U and we

therefore obtain an action of L∗ on U . Let M be the free left regular band monoid on

L . Notice that for any v,w ∈ L∗ we have

vwv · ui = vw · ui for any i ∈ N0,

so that we also have an induced action of S on U given by w · u j = w · u j , where w

denotes the natural image of w ∈ L∗ in S.

Let T = S ∪ U be made into a monoid under ∗ as in Lemma 8.6. We claim that

ωℓ
T = 〈X2〉 where X = {1, u0, u1}. To see this we use Corollary 8.4, noting that

conditions (1) and (2) are clear by construction. Let W = {u0, u1}, and take any

ui ∈ U\W . Then ui = li u1 ρW 2 li u0 = u0, and so Condition (3) holds, thus proving

the claim. ⊓⊔
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In the case where H is a congruence on a completely regular semigroup S, we

may take a different approach to Corollary 8.3. Our aim is to determine the relevant

property of the completely simple semigroup in terms of the band S/H and a maximal

subgroup of the minimum ideal of S.

Theorem 8.8 Let S be a completely regular semigroup and suppose that H is a con-

gruence on S. Let S =
⋃

α∈Y Sα be the decomposition of S into a semilattice of

completely simple semigroups Sα, α ∈ Y . Then ωℓ
S is finitely generated if and only if

the following hold:

(1) the universal relation on S/H is finitely generated;

(2) if G is a maximal subgroup of S0, where 0 is the least element of Y (the existence

of 0 follows from (1)), then G = 〈F ∪ V 〉 where V is finite and F = 〈E(C0)〉∩ G

where C0 is the union of finitely many R-classes of S0.

Proof We first suppose that ωℓ
S = 〈U 2〉 for a finite set U ⊆ S. As H is a congruences

on S, Proposition 4.1 tells us that the universal relation on the quotient S/H is also

finitely generated. Condition (2) follows from Corollary 8.3.

Conversely, suppose that (1) and (2) hold. Let E be a finite subset of E(S) such that

the universal relation on S/H is finitely generated by [E] × [E] where [E] = {H f :

f ∈ E}. As in the proof of Theorem 8.1 we may assume that G is an H-class of S0

and there exists a finite subset W in S such that for any g, h ∈ G we have g ρW 2 h.

Let X = E ∪ W ∪{e}∪ Ee, where e is the identity of G. We claim that ωℓ
S = 〈X2〉.

Let a ∈ S. Then [a] ≤L [ f ] for some f ∈ E and so a ≤L f . Now

a = a f ρX2 ae = b L e

and eb ∈ G, so that eb ρW 2 e. If g = g2 H b, then b ρW 2 ge = g and as ρW 2 ⊆ ρX2 ,

so b ρX2 g. It remains to show that g ρX2 e.

As [g] ρ[E]2 [e], there exists a sequence

[g] = [t1][c1], [t1][d1] = [t2][c2], . . . , [tn][dn] = [e],

for [ti ] ∈ (S/H)1 and ([ci ], [di ]) ∈ [E]2, 1 ≤ i ≤ n. Now

g H t1c1, t1d1 H t2c2, . . . , tndn H e.

Multiplying by e on the right we have

g H t1(c1e), t1(d1e) H t2(c2e) . . . , tn(dne) H e.

Now suppose p, q ∈ Le where p H q H r = r2. Then ep H eq H e and so ep ρW 2 eq.

This implies rep ρW 2 req and hence p ρW 2 q. Thus

g ρW 2 t1(c1e) ρX2 t1(d1e) ρW 2 t2(c2e) . . . ρW 2 e,

and so g ρX2 e and ωℓ
S = 〈X2〉, as required. ⊓⊔
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Remark 8.9 All the results in this section may be easily adapted to the pseudo-finite

case. For example, in Theorem 8.1 the pseudo-finiteness of S guarantees that the

lengths of the (F ∪V )2-sequences and of the W 2-sequences in (2) and (3) respectively

may be bounded, with the converse also clearly holding.

Open Question 8.10 Every pseudo-finite semigroup considered in this article has the

property that it contains an ideal which is completely simple. The contrast to the weaker

case where ωl is finitely generated is highlighted by Theorem 5.1 and Proposition 5.3.

In view of this we ask whether all pseudo-finite semigroups have this property? By the

work of Sect. 8, a positive answer to this question would give a complete description

of all pseudo-finite semigroups.
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