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Abstract: Fault diagnosis of high-speed train bogie is of great importance in ensuring the safety of train operation. The multi-
channel vibration signals measured at different positions on the bogies characterize the dynamics of the vehicle and contain
key information describing the performance of the bogie components. However, due to the complexity and uncertainty of the
signals, it is hard to extract stable features that represent the characteristics of the signals. Besides, manual selection of reliable
channels is indispensable in existing works. This paper presents an ensemble of methods for fault type recognition of high-speed
train bogie based on spectrogram images and voting method. First, vibration signals of bogies are transformed to spectrogram
images that are then taken as the input of Random Forests (RFs). In the next, four voting methods including Plurality Voting
(PV), Classification Entropy (CE), Winner Takes All (WTA), as well as a novel method we proposed using neural network (NN)
is applied for combining all the channels’ classification results to give a final decision on fault type. The proposed method not
only avoid complicated feature extraction procedures by using a simple transform, but also make the best of multiple channels
by automatic combination. Experiments conducted on the dataset based on SIMPACK simulations have verified the efficacy of
the presented method in classifying key component(s) failures, with accuracy near 100%. Further, a more complex fault state in
which the components of bogies only lose their effectiveness partially, instead of fully, has been tested and analyzed, where near
90% of accuracy is achieved. These results demonstrate the high robustness of the new method.
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1 Introduction

With the development of high-speed railway, the achieve-

ment of speed increase benefits increasing transportation de-

mands. Meanwhile, the security issues related to the high

speed become more vital, more and more people focus on

fault diagnosis of high-speed train. Bogie is the only con-

nect unit between the train body and rails, and degenerations

of its key elements will seriously threaten train safety [1].

Therefore, the study of fault diagnosis on bogies is of great

significance.

In recent decades, many works have been done on the clas-

sification of faults based on vibration signals acquired from

the sensors mounted on the train bogies. In these works, the

features of the vibration signals mainly fall into two cate-

gories: those extracted by traditional signal analysis methods

and those learned automatically by networks. For the former

case, a feature extraction and analysis frame, which com-

bines the information measurement entropy theory with a

time-frequency analysis method based on the physical mean-

ing of the main indicatives of information measurement the-

ory was proposed by N. Qin [1]. J. Zhao et al. applied

Empirical Mode Decomposition (EMD) and fuzzy entropy

theory in representing the features of fault signals, then used

a back-propagation neural network to classify the faults [2].

For the latter case, C Guo et al. employed a DBN hierar-

chical ensemble to feature extraction, then applied a Sup-

port Vector Machine (SVM) a K-nearest Neighbors (KNN)

algorithm and a Radial Basis Function neural network for

classification, and used a series of voting strategies to get

the final result [3]. H Hu et al. used a Deep Neural Net-

work for the fault diagnosis [4]. All these works above take
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the vibration data as signals in the procedure of feature ex-

traction. However, it is difficult to guarantee that the fault

features extracted by EMD and other traditional feature ex-

traction methods are stable [3].

In this work, we present a multi-channel signal classi-

fication method based on spectrogram images and voting

methods. Spectrogram images have been applied in many

other domains of signals classification, e.g. acoustics and

medicine, along with image processing methods. M Saad et

al. used Scale-invariant Feature Transform of spectrogram

and back-propagation artificial neural network to classify

heart abnormalities from electrocardiogram [5]. D.C.Costa

et al. combined image analysis like morphology, connected

components, projection profile and threshold to the speech

segmentation [6]. M Mustafa et al. extracted Gray Level Co-

occurence Matrix texture features from Electroencephalo-

gram spectrograms and used KNN for classification [7].

J Dembski et al. used histograms of Oriented Gradients

(HOG) and SVM to playback detection in automatic speaker

verification systems [8]. In this paper, the data used was

acquired from a software named SIMPACK with a certain

train model and the track spectrum of Wuhan-Guangzhou

line. The results have empirically demonstrated the stability

of spectrogram features, and have shown high-effectiveness

of our proposed voting method. Meanwhile, the signal-

spectrogram transform largely compress the amount of orig-

inal data, which accelerates the training and testing process.

The rest of this paper is structured as follows. Section

2 presents the procedure of the experiments and the meth-

ods involved. Section 3 presents the results of experiments,

including RF classification results and final results on two

datasets. The cause of different accuracies related to differ-

ent channels will be analyzed, then the effectiveness of our

proposed voting method will be demonstrated by comparing



with results of other voting methods. Finally, conclusions

are drawn in the last section along with anticipated future

work.

2 Overview of the experiments

Figure 1 shows the flow chart of experiments in this work.

The original signals were firstly separated by different chan-

nels, corresponding to the data acquired from sensors in-

stalled in different positions on the bogie. Secondly, for

the signal of each channel, spectrogram samples were ob-

tained by slicing signals according to certain time duration.

The input of RF classifiers were spectrogram images them-

selves, which would be proved to be more effective than the

HOG features. Finally, four voting methods including PV,

CE, WTA and NN were applied to combine the results of all

the channels and each gives a final decision of the fault type.

multi-channel signals

spectrogram images

of different channels

RF classifications

several voting methods

fault type

Fig. 1: Experiment flow chart

2.1 Spectrogram and HOG features

The spectrogram is an efficient visual representation of

time-varying signals which combines time and frequency

domain information. The spectrogram generation procedure

is as follows. Consider a discrete signal gk (k = 1, ...,K)

sampled at a certain frequency. xm (m = 1, ...,M ) is a seg-

ment extracted from gk, and its Discrete Fourier Transform

(DFT) can be expressed by:

X = F(w ⊙ xm), (1)

where F denotes the DFT matrix, and xm is applied with

a segmented window before DFT. If a signal is sliced into

multiple segments, its spectrogram can thus be expressed by

stacking all these segments,

X = [X1,X2, ...,Xn]. (2)

Figure 2 shows typical spectrograms of the 1st and the last

(the 58th) channel for different train speeds with the same

fault type, where the horizontal and vertical axis represent

time and frequency respectively.

HOG feature is a image feature descriptor proposed by

Dalal and Triggs [9] for object detection. Its excellent per-

formance has been empirically demonstrated in pedestrian

detection, traffic sign recognition and vehicle classification.

The basic idea is that local appearance and shape within an

image can often be well described by the distribution of lo-

cal intensity gradients or edge directions [9]. The procedure

of feature extraction begins by dividing an image into spatial

regions called ”cells”. In each cell, a histogram of gradi-

ent directions is accumulated. Then, larger spatial regions

called ”blocks” are used for the normalization of all the cells

blocks. The HOG descriptor is a concatenation of feature

vectors of all the blocks within an image.

Fig. 2: Spectrogram images of the same fault type (a) channel-

1, 220km/s; (b) channel-58, 220km/s; (c) channel-1, 140km/s; (d)

channel-58, 140km/s

2.2 Random Forest

The random forest is a combination of decision trees, each

of which casts a vote for the classification of a given in-

stance. The decision tree is featured with simplicity, ease of

use and interpretability [10], but it lacks robustness. How-

ever, random forests always converge, which can be demon-

strated by the strong Law of Large Numbers, therefore they

do not overfit [11]. The principle of RF is bagging (boot-

strap aggregation), which refers to random selections of fea-

tures and training subsets while growing a tree. The bagging

method decreases the correlation among trees thus guaran-

teeing the immunity of RF to noise. Two main parameters in

constructing a RF are the number of trees and the number of

features. Once the number of trees are sufficient, the results

turn out to be insensitive to the number of features selected

to split each node [11], hence usually default values can pro-

vide good results. The main procedure of the RF algorithm

can be summarized as [12]:

i) Draw a bootstrap sample from the training set.

ii) Grow a tree by samples with certain amount of features

randomly selected. For each split node, select the best

split value according to a certain criterion such as Gini

impurity and information gain. The tree is fully grown

until no further splits are possible and it is not pruned.

iii) Repeat above steps until a certain amount of trees are

grown.

The final decision of classification for an instance will be

given by all the trees in the RF using the majority voting

method.

2.3 Voting methods

2.3.1 Plurality Voting

PV is the most classical voting method which makes the

option with the most votes the winner. Given M classi-

fiers and each has a decision within {0, 1, 2, ..., L}. Let

{m0,m1, ...,mL} be the total number of each decision, then



the final decision of PV can be written as:

y = arg max
i=1,2,..,L

{mi} (3)

2.3.2 Classification Entropy

CE is a weighted voting method proposed by J Zhang et

al., considering not only the total performance but also the

local performance [13]. Based on the posterior probabilities

provided by the training set, the algorithm involves calcu-

lations of a total accuracy matrix and a local accuracy ma-

trix of all classifiers. The weight matrix W is then calcu-

lated by combining these two matrices. Each of its elements

wij stands for the weight of the ith classifier related to the

jth class. Meanwhile, wi,j is effected by a threshold value

named ”controlling constant”. It will be enhanced if the local

performance is above that value, otherwise it will be penal-

ized.

2.3.3 Winner Takes All

WTA is a simple and extreme voting method. It selects

the classifier with the best performance in the training proce-

dure, on which the final decision will totally depend. When

the performances of all classifiers vary widely, WTA can

avoid the decisions of the worst classifiers.

2.3.4 Neural Network voting method

This method is an adapted method of weighted voting pro-

posed by this paper. Let L be the number of classes and M

be the number of classifiers. Then, for instance, the output

of all the classifiers can be combined by a L×M matrix X ,

of which each element xij satisfies

xij =

{

1 if sj = i

0 others
. (4)

sj denotes the decision of the jth classifier. The matrices

are the input of the voting NN, which connects to L × M

neural nodes. The NN has only one hidden layer, with the

weight matrix of each neural node related to every classifier

and every class, just as the matrix W in CE; and the bias act

as a correction vector. The cross entropy is used as the loss

function. SGD (stochastic gradient descent) and BP (back

propagation) methods are applied for updating weights and

bias for obtaining an optimal network.

3 Experiments and discussion of results

3.1 Data introduction and preprocessing

Two datasets acquired from SIMPACK simulations con-

sist of 58 channels. They correspond to data in different

directions collected from sensors installed on different po-

sitions of the bogie, e.g. train body accelerations, train struc-

ture accelerations, etc. The data is recorded at a sampling

frequency of 243Hz, and the total sampling time is around

3.5 mins. The two datasets differ in bogies’ health condi-

tions: dataset 1 consists of one normal state and six fault

types each at six running speeds. The fault types involves

where one or two key components totally lose effectiveness.

Dataset 2 comprises three fault types at 11 running speeds.

For each fault type, the data comprises nine different fault

severities (10%, 20%, ..., 90%). More detailed descriptions

of the datasets are listed in Table 1 and Table 2.

Table 1: Dataset 1 description

Fault Type

#1 normal state

#2 failure of the air springs

#3 failure of the lateral damper

#4 failure of the anti-yaw damper

#5 failure of the air springs and the lateral damper

#6 failure of the air springs and the anti-yaw damper

#7 failure of the lateral damper and the anti-yaw damper

speeds 40, 80, 120, 140, 160, 200 km/s

Table 2: Dataset 2 description

Fault Type

#1 degeneration of air spring stiffness

#2 degeneration of secondary horizontal damping

#3 degeneration of anti-yaw damping

speeds 40, 80, 120, 140, 160, 200, 220, 250, 280, 300, 350 km/s

In the preprocessing, the data was successively sliced with

the duration of 3 s and an overlap of 2 s and then transformed

into spectrogram images. The experiments on dataset 1 are

divided into 2 parts: the faults classifications at a certain

speed and with all speeds mixed, consisting of 7× 200 sam-

ples at each speed and 6×7×200 samples respectively. 30%
and 70% of the dataset was divided into the training and test-

ing set for the classification stage by RF. In the voting stage,

the ratio of training set, validation set and testing is 2 : 1 : 2.

The experiments on dataset 2 were conducted at different

running speed, with each type of fault containing 9 × 200
samples of varying degrees of degeneration of correspond-

ing faulty component. Then the same division methodology

with the dataset 1 was adopted for the classification and vot-

ing stage.

3.2 Fault classifications with Random Forests

On dataset 1, two sets of experiments were conducted in

this stage of studying the effectiveness of HOG features. The

original dimension of each spectrogram sample is 129 × 4.

For the experiment using HOG features, the spectrogram im-

ages were resized to 64 × 64 (resized to 64, then we simply

replicated each column 16 times) and normalized accord-

ing to the maximum value of the training dataset. In order

to maintain the same data precision, for another set of ex-

periments, the spectrogram images were resized to 64 × 4.

The parameters for HOG (fHOG) feature extractions [14] are

listed in Table 3. The results are illustrated in Figure 3.

Table 3: Parameters of HOG feature extraction algorithm

Value Description

binSize 8 spatial bin size

nOrients 9 number of orientation bins

clip 0.2 value at which to clip histogram bins



Fig. 3: Results of RF classifications at different running speeds

(dataset 1) (a) the difference of accuracies without and with HOG

feature; (b) accuracies of results without HOG features

Higher classification accuracies are achieved directly us-

ing spectrogram, while useful information is lost using HOG

features. The difference between the results could be ex-

plained by the characteristics of the spectrograms. Compar-

ing to other signals such as electrocardiogram and electroen-

cephalography, the spectrogram of the vibration signals for

the high-speed train bogie is quite uniform along the axis

of time, which means its statistical characteristics are more

prominent than its spatial characteristics. It is also noticed

that the accuracy of different channels varies widely. More

specifically, the channels corresponding to the Y-direction

signals have higher accuracies while those corresponding Z-

direction signals have lower accuracies, where the Y direc-

tion is perpendicular to the railway and Z is in vertical direc-

tion (and X is along the railway longitudinal direction) [15].

Hence, the faults of the key components of bogie are mainly

reflected by the lateral vibration, which is also a main cause

of hunting movement. The results also show that when the

running speed is low (40 km/s in the experiments), the faults

are more difficult to classify. The performances of different

channels are similar at different running speeds, which con-

firms the possibility of classifying faults without specified

speed. In addition, the signal-spectrogram transform largely

compresses the amount of data. For a single original sample

of dimension 243×58, its corresponding spectrogram image

has only 1.84% of its original dimension. This compression

filters out redundant information and preserves stable fault

features, which also facilitates the acceleration of the train-

ing and testing process.

Experiments were repeated on the dataset with all speeds

mixed. As shown in Figure 4, the raw images still show

superior performance than the HOG features.

3.3 Channel combination

For the purpose of making the best of multi-channel data,

four voting methods including NN, PV, CE and WTA were

adopted for combining results of all the channels. Since CE

and WTA don’t need a validation set and PV requires only a

testing set, to ensure fairness of comparison, those unwanted

sets are discarded directly in the experiments. Experiments

have been conducted 20 times with the same set of random

seeds for each method to ensure the objectivity of the re-

sults. In CE, the control value was set to 0.8. In NN, the net-

Fig. 4: Comparison of the RF results with/without HOG features

with mixed running speeds (dataset 1)

work was set to stop training when the validation accuracy

reached 100% or the number of training epochs attained 50.

The batch size was 100 and the learning rate was 0.1. Re-

sults are shown in Figure 5 and Table 4. Among these meth-

ods, NN performs the best and is the most robust with an

accuracy close to 100% even in the most complicated case

where all the running speeds are mixed. The results of CE

and WTA are close and acceptable, fluctuating in the range

of 93% ∼ 100%. It is noticed that the results of CE are not

always better than those of WTA, which indicates that CE is

inferior to NN in balancing local performance and the over-

all performance of classifiers. Because PV ignores the huge

differences in the ability of different channels to classify, it

has the lowest accuracies ranging from 79% to 96%.

Fig. 5: Final results of dataset 1

3.4 Classification with mixed fault severities

Figure 6 shows part of the results of fault type classifi-

cation by RF on dataset 2. Due to the mix of fault severi-

ties, even with fewer fault types, the classification accuracies

are generally lower than those of dataset 1. But the high-

accuracy channels stay the same, and lower speed results are

still worse than higher speed.

Fig. 6: Comparison of RF results at some running speeds (dataset

2)

In the combination stage, results of three voting methods

including NN, CE and WTA were compared. The control

value was set to 0.6 in CE . In NN, the network was set

to stop training after 70 epochs, and other parameters were

the same as before. According to the results shown in Fig-

ure 7, the performance of NN voting method is still proved



Table 4: Final results of dataset 1

speed (km/s) 40 80 120 140 160 200 all speeds mixed

PV (%) 79.25 85.14 95.79 94.63 88.33 93.23 85.91

CE (%) 93.16 95.85 98.71 98.47 96.39 96.76 92.71

NN (%) 99.63 99.54 99.86 99.83 99.40 99.72 99.57

WTA (%) 94.86 95.56 99.08 96.57 96.85 96.26 94.11

to be superior to that of other methods, with an accuracy

around 90%. Figure 8 illustrates the error rate of different

fault severities. On the whole, with the increase of degener-

ation, the classification errors decrease, since higher ratio of

degeneration implies more stable fault features.

Fig. 7: Final results of dataset 2

Fig. 8: Error rate of different fault severities (dataset 2)

4 Conclusions

In this paper, an ensemble of methods of fault diagnosis

of a high-speed train bogie using spectrogram images is pre-

sented. It utilizes a single-layer NN voting method to com-

bine multiple channels and give the final result. This method

was tested on two different datasets and has been proven

to have a high classification accuracy. In classifying key

component(s) failure (seven fault types including one nor-

mal state, three single failures and three combined failures)

and faults with mixed fault severities (from 10% to 90%),

high classification accuracies are achieved. However, the ac-

curacy of the latter case (∼ 90%) is less satisfying than that

of the former case (∼ 100%).

In future work, methods to improve the performance of the

classification of mixed fault severities with more fault types

will be explored. Regression models for the prediction of the

degree of degeneration will be researched, to further improve

the whole system of fault diagnosis of the high-speed train

bogie.
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