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Abstract

Interleukin-7 (IL7) plays a non-redundant role in T cell survival and homeostasis, which is illustrated in the severe
T cell lymphopenia of IL7-deficient mice, or demonstrated in animals or humans that lack expression of either the
IL7Ra or 7. chain, the two subunits that constitute the functional IL7 receptor. Remarkably, IL7 is not expressed by
T cells themselves, but produced in limited amounts by radio-resistant stromal cells. Thus, T cells need to constantly
compete for IL7 to survive. How T cells maintain homeostasis and further maximise the size of the peripheral T cell
pool in face of such competition are important questions that have fascinated both immunologists and mathemati-
cians for a long time. Exceptionally, IL7 down-regulates expression of its own receptor, so that IL7-signalled T cells
do not consume extra-cellular IL7, and thus, the remaining extra-cellular IL; can be shared among unsignalled T cells.
Such an altruistic behaviour of the IL7Rc chain is quite unique between members of the 7. cytokine receptor family.
However, the consequences of this altruistic signalling behaviour at the molecular, single cell and population levels
are less well understood and require further investigation. In this regard, mathematical modelling of how a limited
resource can be shared, while maintaining the clonal diversity of the T cell pool, can help decipher the molecular
or cellular mechanisms that regulate T cell homeostasis. Thus, the current review aims to provide a mathematical
modelling perspective of IL7-dependent T cell homeostasis at the molecular, cellular and population levels, in the
context of recent advances in our understanding of the IL7 biology.

1 Introduction

The IL7 receptor (IL7R) and its ligand, IL7, are essential and non-redundant drivers of T cell development and
homeostasis {1, 2, 3, 4, 5, 61. While T cells critically depend on IL7R signalling, IL7 itself is not expressed by T cells.
Instead, IL7 is mostly expressed by stromal cells and non-T lineage lymphoid and myeloid cells {71, and the amount
of IL7 production is considered to be developmentally set {8, 91. Consequently, IL7 signalling at the single cell level
is primarily controlled by IL7 receptor expression, and secondarily by IL7 availability in vivo. Thus, interrogating
the molecular basis of IL7 receptor expression and regulation is important to understand the role of IL7 receptor
signalling in T cell immunity.

The functional IL7 receptor is composed of the IL7-specific IL7Ra chain (CD127) and the common 7-chain (v, or
CD132), which is shared with a series of other cytokines that include IL-2, IL-4, IL-9, IL15, and IL-21 {x0}. Since
7. expression is presumed to be constitutive and also found in significant amounts on all T cells {11}, much of the
past and current studies of IL7 signalling have been focused on the regulatory mechanisms of the IL7Ra chain.
Notably, the IL7 receptor harbours many unique features that complicate the assessment of IL7R signalling and its
downstream effects. Among others, IL7 receptor signalling down-regulates expression of its own receptor, so that IL7
signalling leads to suppression of further IL7R signalling {12}. Initiating such a negative regulatory feedback is quite
unusual, because expression of most other members of the . receptor family is up-regulated by their cognate cytokine
signals {13}. Recent studies have shown that such unique behaviour profoundly affects the kinetics and magnitude of
IL7 receptor signalling, and that this regulatory mechanism is essential to maintain normal T cell development and
homeostasis {14, 12, 15]. In fact, IL7-induced down-regulation of IL7R prevents IL7 signalled T cells from further
consumption of extra-cellular IL7, so that the limited amount of free IL7 can be shared among unsignalled T cells.



Such altruistic behaviour of the IL7R seems required to maximise the size and diversity of the peripheral T cell
pool {12}. However, a greater understanding of the quantitative and qualitative immunological signalling effects,
under continuous de-sensitisation and re-sensitisation of the IL7 receptor, requires stratification of the IL7 signalling
components. We consider that assessing these issues at the molecular, single cell and population levels will benefit
from mathematical modelling of this complex immune signalling pathway. Additionally, IL7R« not only interacts
with its ligand but also binds directly to -y, proteins in the absence of IL7 {16, 17}. As a result, IL7R« and . can
exist as a pre-associated, inactive receptor complex on the cell membrane, even prior to ligand engagement {16, 171.
Receptor pre-association brings in a couple of new variables into the circuitry of IL7R signalling. Since the ~. chain
is a shared component of multiple cytokines, pre-association of -, with IL7Ra would sequester the 7. chain from
association with other cytokine receptors, such as IL1sRf, and could interfere with their signalling capability in
trans. Moreover, IL7Ra/y. pre-association would change the IL7 binding affinity of IL7R«, so that free IL7R«
proteins would have lower IL7 affinities than IL7Ra complexed with 7.. Because on the cell surface the number of
IL7Ra molecules is thought to vastly outnumber that of . proteins {18}, under such a scenario, there would be two
different species of IL7R« chains, ze., free and y.-complexed, on the cell surface. Significantly, the free form would
be signalling-incompetent and could act as an IL7 scavenger. On the other hand, the 7. pre-associated form would
be signalling-competent, but outnumbered by un-associated IL7R proteins. How cellular exposure to IL7 would
initiate signalling in cells that express a mixture of two distinct receptor species is an important question that could
be addressed making use of the mathematical modelling methods presented in this review at the molecular, cellular
and population scales (see Section 5.1).

Finally, enforced IL7 receptor expression does not promote, but paradoxically, inhibits both development and home-
ostasis of T cells {14, 151. Whether this is due to excessive IL7 signalling on a per cell basis that would be detrimental
for cell survival {15], or because of excessive IL;7 consumption on a population basis, that would further limit IL7;
availability {12}, still needs to be clarified {19}. In addition, the IL7R« chain has no intrinsic signalling capability and
requires association with the tyrosine kinase JAK1, through its cytosolic tail, to trigger downstream signalling. But
JAKI proteins are unstable due to microRNA controlled post-transcriptional mechanisms, and this could potentially
limit their availability for IL7Ra [20}. Thus, in addition to the extra-cellular events that control IL7 signalling at the
level of receptor and ligand association, the roles of intra-cellular components in the IL7R signalling machinery must
also be considered (see Section 5.1).

Collectively, interrogating how these unique aspects of IL7 receptor signalling are interweaved in the control of T cell
development and homeostasis is essential to unravel the basic mechanisms that regulate T cell-mediated immune
responses at both the single cell and population levels. Computational and mathematical models of the dynamical
interactions between these many elements (immune molecules and cells)) have tremendously contributed to our
understanding of cytokine receptor signalling {21, 22, 23, 18, 24, 25}, and quantitative approaches and tools are also
essential and required to dissect the contribution of individual nodes in the IL7 signalling pathway:.

In this review, we highlight the current state of our knowledge of the basic IL7 receptor biology and focus on the
role IL7 and IL7R have on mature CD8" T cells as drivers of survival and homeostasis. Furthermore, we document
recent advances in the mathematical and computational modelling of IL7 receptor signalling and its application in
furthering our understanding of the dynamics of immune receptor signalling at the molecular (see Section 5.1), cellular
(see Section 5.2) and population levels (see Section 5.3).

2 IL7 receptor expression and function in T cell development and home-
ostasis

The signalling-competent IL7 receptor is a hetero-dimeric protein complex, composed of the specific IL7R«a chain
and the . receptor. In contrast to . expression, IL7R« expression is dynamically regulated during T cell develop-
ment and differentiation, so that IL7R« expression is the primary determinant of IL7 responsiveness [19}. During
thymocyte development, IL7R« is highly expressed on the most immature CD4, CD8™ double-negative (DN) cells,
but then terminated upon differentiation into CD4, CD8" double-positive (DP) cells {26, 27, 28}. IL7R« signalling
is required in immature DN cells to provide critical pro-survival and proliferative cues {1, 29}. However, continued
IL7R o expression on DP thymocytes is detrimental to T cell development, since it would interfere with selection
of a T cell receptor (TCR)-dependent immunocompetent repertoire {14, 30}. The molecular mechanism that termi-
nates IL7R« protein expression and transcription on DP thymocytes is not known {31}. Interestingly, this feature
is not evolutionary conserved, because DP thymocytes in humans express robust amounts of IL7R« proteins {321.
Nonetheless, immature DP thymocytes in humans show dramatic down-regulation of -y, protein expression, which



renders these cells IL7 unresponsive {32]. Thus, suppression of IL7R signalling in DP thymocytes is a common char-
acteristic in both mice and humans, but that is achieved through different means.

TCR-induced positive selection results in re-expression of IL7R« on both CD4" and CD8™ lineage T cells {26].
Concomitant to IL7R« upregulation, CD8™ lineage committed thymocytes become IL7-responsive. CD4* lineage
committed cells, on the other hand, remain IL7 unresponsive despite expressing large amounts of IL7Ra. In fact, it is
the selective de-sensitisation of cytokine receptors in CD4 ™" lineage cells that determines CD4/CD8™ lineage choice
in the thymus and imposes CD4 ™ lineage choice {331. Mechanistically, it was recently demonstrated that expression
of the CD4* lineage-specific transcription factor ThPOK induces expression of Suppressor Of Cytokine Signalling
(SOCS) genes, which in turn suppresses IL7R signalling to prevent up-regulation of the CD8-specifying transcription
factor Runx3 {34]. Thus, surface IL7R« expression does not necessarily guarantee productive IL7R signalling. Along
this line, cytokine receptor de-sensitisation is another mechanism that needs to be considered to understand IL7
receptor signalling.

Multiple mechanisms have been proposed to induce de-sensitisation of IL7R« signalling. Persistent TCR signalling
that leads to destabilisation of IL7Ra-associated JAK1 expression, or up-regulation of SOCSI expression to inhibit
JAK kinase activity, and proteolytic cleavage of the . chain cytosolic tail by the cysteine protease, calpain, are some
of the proposed, and not necessarily mutually exclusive, mechanisms {35, 36, 20}. During thymocyte differentiation,
regaining 117 responsiveness is critical for CD8™ single positive (SP) thymocyte generation because impaired IL7
signalling, either by enforced expression by SOCS1 or by conditional deletion of IL7Rc in pre-selection thymocytes,
resulted in profoundly impaired generation of CD8™ lineage cells {5, 27, 341. The prerequisite for IL7 signalling in
CD8™ cells is mostly due to a STATS requirement, which up-regulates expression of Runx3 and induces expression of
a series of pro-survival molecules, including Bcl-2 and Mcl-1 {37, 381. However, IL7 also activates other downstream
signalling pathways, such as PI-3K and NFATc1, which contribute to cell survival by up-regulation of anti-apoptotic
molecules and trophic factors, including expression of the glucose transporter-1 {39, 40, 41}

Upon their generation in the thymus, T cells move out to peripheral tissues but they remain addicted to IL7 through-
out their life. Thus, maintaining high levels of IL7Ra expression on mature T cells is critical for T cell survival. How-
ever, the regulatory mechanism of IL7R« transcription is quite distinct between thymocytes and peripheral T cells.
Previously, an evolutionary conserved enhancer element, CNSr, had been identified that sits 3.6 kb upstream of the
IL7R« promoter {42}, and which was found to be controlled by multiple factors, including FoxO1 and Foxpi, as well
as glucocorticoids {42, 43, 441. Remarkably, deletion of CNSI resulted in dramatic loss of IL7R« expression and
significantly reduced T cell numbers in the periphery, but did not affect IL7Ra expression on thymocytes or de-
creased thymic cellularity {45]. These results suggested the use of distinct molecular mechanisms to control IL7R«
chain expression on immature and mature T cells, and also echo previous observations of different IL7R« regulatory
mechanisms between CD4 " and CD8™ T cells {12, 31} and also B and T lineage cells {46, 47}. Thus, IL7R« expression
is regulated in a highly specific manner, depending on the developmental stage and possibly also on the activation
status of T cells.

3 Regulation of IL7 receptor expression

A distinguishing feature of IL7R« from other cytokine receptors of the 7. family is the down-regulation of its own
expression by cognate cytokine signalling {12}. In fact, not only IL7, but other 7. cytokines also transcriptionally sup-
press IL7Ra {47, 12}. IL7-induced down-regulation of IL7R« expression is further accelerated by rapid endocytosis
and degradation of IL7-associated IL7R« proteins, so that IL7 induces a negative regulatory feedback loop for IL7
receptor signalling {48, 491. Considering the critical role of IL7 in T cell survival and the limited availability of IL;
in vivo, it seems paradoxical that IL7 signalling would terminate further IL7 signalling.

Two distinct but not mutually exclusive hypotheses have been put forward to explain the self-limiting nature of
IL7 receptor signalling on T cells. The first model proposes that T cells constrain IL7 signalling and consumption
to maximise the use of limited extra-cellular IL7 and to maintain clonal diversity of the mature peripheral T cell
pool {12}. By preventing excess consumption of IL7 and clonal outgrowth of T cells that have better access to 117, on
a population basis, IL7-induced IL7Ra down-regulation would maximise the size of the T cell pool, while maintaining
a high degree of TCR clonal diversity. Thus, IL7Ra down-regulation would be beneficial for a population, but not
for individual T cells per se. Contrary to this idea, the second model proposes that sustained IL7 signalling would
be detrimental for individual T cells, and that termination of prolonged IL7 signalling is necessary for survival. In
fact, in vivo transfer experiments and in vitro proliferation assays with IL7R« transgenic T cells demonstrated that
the inability to down-regulate IL7R« expression resulted in cytokine-induced cell death of T cells [15}. Specifically,
continuous IL7R signalling in CD8" T cells resulted in their uncontrolled proliferation and rapid differentiation



into effector cytolytic T cells that produced large amounts of interferons and induced cell death. In agreement,
IL7Ra-transgenic mice also contain a significantly reduced size of T cell pool in the periphery {12, 151.

The molecular mechanisms that lead to suppression of IL7R« expression have been assessed, and at least for CD8™
T cells, it was found to be dependent on the zinc finger transcription factor Gfir {12}. CD8™ T cells in Gfir-deficient
mice expressed high levels of IL7Ra, while CD8" T cells in Gfir-transgenic mice showed reduced IL7R« tran-
scription and expression [38, 311. The cellular factors that control IL7R« suppression in CD4" T cells are less well
known. But reportedly, the forkhead box family transcription factor Foxp3 down-regulates IL7Ra expression on
Foxp3t T regulatory CD4*" T cells {50l, and Foxpi can suppress IL7R« by antagonising Foxor {44}. The precise
transcriptional pathway that controls IL7Ra downstream of IL7 and other cytokine signals remains to be mapped.

4 IL7receptor signalling

Both IL7R o and . chains lack intrinsic kinase activities. Rather, they require activation of the tyrosine kinases JAK1
and JAK3, which are constitutively associated with the cytosolic tails of IL7Ra and ., respectively, to transduce IL7
signalling {1o}. Upon ligand-induced IL7R /7. hetero-dimerisation, JAK1 and JAK3 trans-activate each other, and
subsequently phosphorylate the intracellular tail of IL7Ra. There are three conserved tyrosine residues in the IL7R«
cytosolic domain, but tyrosine 449 is the major substrate of IL7R« phosphorylation {511. Phosphorylation of IL7R«
Tyr449 leads to the creation of STATS and PI-3-kinase binding sites, resulting in the recruitment and subsequent
phosphorylation and activation of these factors {52, 51l.

Due to their distinct ligand binding affinities and association with different JAK molecules, the individual contribu-
tion of each IL7R subunit to IL7 signalling also differs. The ~, chain contributes to IL7 receptor signalling through
two major activities. Firstly, it serves to bring JAK3 into the receptor signalling complex, which trans-activates
IL7Ra-bound JAK1 {10}. Secondly, 7. dramatically increases the affinity of the IL7 receptor complex for IL7. In
the absence of 7., IL7Ra binds IL7 with a low affinity [531 (K; = 2.4 x 107 M). However, inclusion of 7. sig-
nificantly increases the affinity for IL7 (K; = 4 x 10~!' M), which results in the preferential capture of 1L7 by
signalling-competent IL7 receptors compared to signalling-incompetent 7.-free IL7R« chain proteins. Whether
the high affinity IL7R /7. complex is only formed upon ligand binding, or whether such high affinity IL7 receptor
could be already assembled and expressed on the cell surface is currently a much-debated issue in cytokine biology.
The conventional view posits that the IL7Ra/v. complex is formed by stepwise assembly that is triggered by IL7
binding to the IL7R« chain {54}. In this model, the IL7R« and ~, proteins are diffusely distributed in the plasma
membrane prior to ligand engagement. Upon IL7 stimulation, IL7R« binds IL7 with low affinity and undergoes a
conformational change that attracts the 7. chain, which in turn stabilises IL7 binding, to initiate IL7R signalling.
The formation of a hetero-trimeric complex of IL7/IL7Ra/v. brings the intra-cellular tails of IL7R« and +. into
proximity, which juxtapositions and activates JAKr and JAK3 to initiate downstream signalling.

In an alternative view, it has been proposed that IL7Ra and 7, can bind even in the absence of IL7, so that 7,
proteins are already sequestered and associated with IL7Ra {16, 551. In fact, crystallographic studies of the IL7Ra/7.
receptor complex postulated that IL7R« and . proteins exist as pre-formed, inactive receptor complexes prior to
ligand engagement [16]. In this model, ligand-free IL7R« and ~. associate in a “head-to-head” configuration that
pushes away the trans-membrane domains and intra-cellular tails of ILyR« and ~,, and thus, prevents spontaneous
ligand-independent activation of JAKr and JAK3. Upon IL7 binding, however, the pre-associated IL7R /v, complex
undergoes a conformational change that erects the receptor complex and brings the intra-cellular tails of IL7R /v,
into close proximity and initiates downstream signalling {16}.

Currently; it is not clear which one of these strategies is employed by T cells for IL7 receptor signalling. Direct binding
of IL7Ra to . proteins on the cell surface could be potentially visualised and quantified by FRET (Fluorescence
Resonance Energy Transfer) microscopy. Alternatively, methods such as PLA (Proximity Ligation Assays) could be
also employed to demonstrate pre-assembly of 7. with IL7Ra {56]. At least in human CD4™" T cells, IL7R« could be
co-immunoprecipitated with 7. in the absence of IL7, which is in support of the IL7R«/v,. pre-association model {571.
Whether a stepwise assembly model, where initially all surface IL7 receptors have the same affinity to IL7, or the
pre-assembly model, where two classes of IL7 receptor exist and the functionally competent IL7Ra/v. complexes
would out-compete low affinity IL7Ra receptors, would be more biologically meaningful is not clear. However,
we consider this question precisely an area where mathematical modelling can be employed in the near future to
compare and test these different hypotheses (or mechanisms) together with empirical data. Thus, in the following
section, we illustrate the power of a quantitative mathematical approach by modelling the molecular regulation of
IL7R signalling under the scenario where two homeostatic -y, family cytokines, namely IL7 and IL15, compete for the
7. chain (see Section 5.1). At the single cell level, we quantify the effect of the altruistic hypothesis on the number of



IL7R molecules expressed on the membrane of T cells (see Section 5.2). Finally, at the population scale, we model the
heterogeneity of T cell responses to IL7 stimulation observed in Ref. {58}, where IL7 availability and the existence of
survival and proliferation thresholds can influence the population dynamics of IL7 dependent T cells (see Section 5.3).

5 Mathematical models at the molecular, cellular and population lev-
els

5.1 Mathematical model at the molecular level

At the molecular level, we are interested in understanding the role of shared components in immune signalling {22].
In the case of IL7R signalling, a first shared component is the 7, chain, which is part of the hetero-dimeric receptors
IL7R and IL15R (see Fig. 1). The . chain is also part of the hetero-trimeric receptor IL2R {59}. In this review, we
have chosen to consider the IL15R as a shared component of the IL7 signalling pathway, since there already exists a
significant mathematical effort to describe the IL2R one {60, 23, 61, 62, 25}.

Let us now describe the shared elements of IL7R and IL15R. In principle, the . receptor subunit can bind to either
the IL7Ra or IL1sR 3 chains, forming two different hetero-dimeric receptors for IL7 and ILi5, respectively.

IL7.15

Figure 1: An example of shared molecular components in immune signalling: competition for the 7. chain by the
IL7R« and IL15R 3 chains (adapted from Ref. {22.

Although 7. contributes with the same stoichiometry to each hetero-dimeric receptor (IL7R and IL15R), only when
the trimeric complex IL7/IL7Ra/v, is internalised, downstream signalling is initiated, as discussed in Section 4 (in
Section 5.2 we discuss receptor internalisation in greater detail from a mathematical modelling perspective). Thus,
the presence of IL15 can, indirectly, sequester 7, and, reduce IL7R signalling. Note that we denote by IL7R, the
hetero-dimeric receptor composed of one molecular unit of 7. and one molecular unit of IL7R¢, and by IL15R, the
hetero-dimeric receptor composed of one molecular unit of . and one molecular unit of IL1sR5. In this context, it
is important to refer to the recent work by the groups of K. C. Garcia and 1. Moraga, who have been able to engineer
synthekines, namely, engineered ligands, that produce “unnatural” receptor pairings, yet activate distinct signalling
programmes {63}. In Fig. 1 we show one such potential synthekine, formed by IL7 and IL15, and denoted IL7.15.
In this paper, we do not consider ligand-induced receptor dimerisation (for simplicity, and assume both receptor
chains have already formed the hetero-dimeric receptor before ligand binding), although, it may be relevant for some
combinations of 7. and cytokine receptors {18].



5.1.1 Mathematical model

Following Ref. {22], we model the dynamics of free IL7 and IL15 cytokines (or ligands), the receptor subunits 7.,
IL7R« and IL15R S and the (complex) hetero-dimeric receptors IL7R and IL15R, either bound or unbound to their
respective ligands. We note that in this review;, we do not consider the presence of synthetic ligand 1L7.15. We con-
sider the molecular reactions described in Fig. 1, which include the association and dissociation of different receptor
chains, as well as the association and dissociation of ligand (IL7 or IL15) to the hetero-dimeric receptors IL7R and
IL15R, respectively. We are interested in understanding how the concentrations of these molecular species evolve in
time. This is described in Ref. {22} by the following system of ordinary differential equations (ODEs)

% = —kpalIL7Rald + ko [IL7R],,
w = —kyolILisRANY] + k, »[IL1sR],,
d{thc} = —kpalll7Relyel + ko {TL7RY, — kp ol TLISR SHAcl + Ky o[TL1sRY,

% = kpalIL7Ralne — &1 {IL7RY, — kg a{IL7HIL7RY, + k; s[IL7RY, |
% = kpolILisRAHYeY = ol TL1sRY, — ki o[ TLSHILISRY, + Ky alTL1sRY,
% = kyslIL7HIL7R}, — k, s{IL7R1, ,
% = ky4lIL1sHILIsSRY, — k. 4{IL15RY, .

d{ggﬂ = —kyslIL7HIL7RY, + k. 5{IL7RY, ,

d[I;;IS] = —ky[IL1sHIL1sRY, + k. 4[IL15R], .

These equations can be solved for different initial conditions of ligand concentration of IL7 and ILi5, as well as
different number of receptor chains (7., IL7R« and IL15R3) {22} (see Table 1. The table below provides the values
of the association and dissociation rates considered in the model [22], and the different initial conditions that have
been considered.

Table 1: Summary of parameters used in the molecular model of Section 5.1. Parameter values have been taken from

Ref. {58}.

In Fig. 2 (left plot) we show the effect of the initial concentration of IL7, {IL7H¢ = 0), on the steady state value of

| parameter ||  value || units ‘
’ p (cell density) H 10° H cells/uL ‘
OL7I(t=0) | 10 ' —10° nM
[ILisl(t =0) || 10-1 —10? nM
[IL7Ra}(t = 0) 103 cell ™!
[IL1sRAH¢ = 0) 103 cell™!
[Vl =0) 10 — 10° cell 7!
kg1 I nM~!min~!
kra1 0.1 min~?!
kfo I oM~ 'min!
kro 0.1 min~!
kfa I nM~'min~!
ks 0.1 min~!
kpa 0.1 oM~ 'min~!
Ky 4 o.1 min~!




the relative fraction of bound IL7 receptors, {IL7R},, defined as follows:

t—+oo [IL7R], (t) + {IL15RY, (¢) -

fr ®

Fig. 2 (middle plot) shows the effect of the initial concentration of ILis, {IL15}(t = 0), on f7. We note that f7
decreases as the initial concentration of {IL15}(¢t = 0) increases, as expected. The green curve in Fig. 2 can be
reproduced using the language BioNetGen {64, 65, 66} and the listing in Appendix A. Minimal modifications of
the code will allow the reader to obtain the rest of the plots in Fig. 2. Finally, the right plot, shows for an initial
concentration of {IL15} = 9.5nM (the IL15 concentration that yields {IL7R}, = [IL15R1], at steady state), the effect
of the initial value of 7. chain expression on the steady state values of [IL7R}, and {IL15R1],.

< o |
- // - — [IL7)(t=0)=0.1 nM
— [IL7](t=0)=1 nM o — [IL7R]p
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o
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Figure 2: Left plot: fraction of bound {IL7R1,, f7, as defined by Eq. (1), for different values of the initial concentration
of {IL7}(¢ = 0). Different colours correspond to different values of the initial concentration of [IL15s}(¢ = 0), as
shown in the legend. Middle plot: fraction of bound {IL7R1,, f7, as in the left panel, but as a function of the initial
concentration of [IL15}(¢ = 0). Right plot: steady state values for the bound complexes, {IL7R}, and [IL15R1,, as a
function of the initial . chain expression, 7. (¢ = 0). The parameters have been taken from Ref. {58} and have been
summarised in Table 1.

5.2 Mathematical model at the cellular level

The role of the IL7 receptor in T cell development, homeostasis and differentiation has been widely studied and
recognised {19, 671. IL7R« cell surface expression on T cells is down-regulated once a T cell has received enough
survival signals mediated by IL7R {19, 12}. To model this so-called a@/truistic down-regulation of membrane IL7R, we
note that, upon IL7 stimulation, there is rapid IL7R« internalisation (mediated by endocytosis), that is accompanied
with a reduced rate of receptor recycling and increased receptor degradation {48]. Thus, we first formulate a simple
mathematical model (for further details, see Ref. {24]), which describes the dynamics of the number of /igand molecules
(IL7, in this case), m1(t), and per cell free-receptor (IL7R), m4(t), binding/unbinding to form a receptor-ligand bound
complex, m3(t), internalisation, degradation and recycling. We also assume that cell signalling is elicited (and encoded
in the dynamics of the variable, my(t), which represents a potential unidentified transcription factor), after bound
receptors are internalised, as reported in Ref. {48]. Finally, the altruistic effect {12} is included as a signal-dependent
synthesis rate {24]. We note that recent experimental evidence suggests that IL7 availability is regulated by innate
lymphoid cells ILCs), which act as a “cytokine sink” by competing for and consuming IL7 and thus, restricting T cell
homeostasis in lymphoid organs. In fact, ILCs seem to outcompete T cells for IL7 by resisting IL7-mediated IL7R
down-regulation {681, which would support the idea that ILCs do not behave in an altruistic manner.



5.2.1 A simple model of altruistic IL7R« dynamics

Mathematically, we describe the time evolution of the IL7 and IL7R in a cellular model (see Ref. {24} making use of
a system of ordinary differential equations (ODEs), as follows

dm

dt1 = ¢+ Ne(koff m3 — kon m1 m2) , ©
dm Ks
WQ = —kon m1 Mo + kogg M3 — 0y Mo + mf ) €)
d
% = kon mi1 Mo — koff m3 — op M3, (4)
dm
# = ’lp m3 — X My, (5)

where
* ¢ is the rate at which free IL7 is replenished in the extra-cellular volume (source term),
* N, is the total number of cells (in the experiment),
* kon and ko are, respectively, the binding and unbinding rates of IL7 and IL7R,

* 0, and oy, are the internalisation rates of the unbound and bound receptors (following Ref. {48} and Ref. {241,
we assume o, > 0,,),

* ¢ is the rate at which IL7R receptor is synthesised and transported to the cell membrane,

* K, is the carrying capacity of my4, which accounts for the altruistic effect. Note that in the limit k, — 01 we
have perfect altruism (as IL7R synthesis after receptor internalisation is fully inhibited). On the other hand, in
the limit kK, — 400, the rate of synthesis is independent of signalling, and thus, there is no altruistic feedback
(as might be the case for ILCs {68D *,

* 1 is the rate at which internalised bound receptors elicit a signal (encoded by the potential unidentified tran-
scription factor, my), and

* Y is the characteristic degradation rate of the signal (encoded by the potential unidentified transcription factor,
m4).
5.2.2 Steady state analysis of the cellular model

In steady state, the system of equations, Eq. (2) to Eq. (5), can be solved analytically. The solution is given by

mys = O+ 0)ou(s Neowx +69) - ©)
kono [nchob>2<(Nc§ —¢) — ¢*Y]

"= N e Y 0

my® = szab7 ®)

m= N(fix' v

These steady state solutions are positive as long as

VEsN2owx (ksopx + 40E) — K Neoyx
2 '

Note that the limit, k; — 400, in the steady state solutions given above, corresponds to a receptor-ligand system in
which no cellular altruistic behaviour is present. Let us now assess the effect of altruism in the different observables

(b < ¢threshold =

'If the intra-cellular levels of the potential transcription factor, m4, are such that my4 >> ks, the synthesis rate is considerably reduced.



’Parameter H Value H Units

b 10t — 108 receptor hour !
I3 1.2 x 103 receptor hour ™!
Ks 103 signal
ou 0.14 hour™!
oB 1.4 hour!
koff/kon 1.7 ng ml ™!
P 0.61 signal receptor—! hour™!
X 0.19 hour~!

Table 2: Parameters of the cellular model taken from Ref. [24] and Ref. [48].

of the cellular system. For instance, in Fig. 3 we plot %wiw
(ke

cells) IL7 in the non-altruistic (ks — +00) and altruistic (k5 # 0) cases, for different values of ¢ (left plot) and for
different values of k, (right plot). Similarly, in Fig. 4 we plot %n&%, the steady state ratio of free receptors
(IL7R) in the non-altruistic (ks — 400) and altruistic (ks # 0) cases, for different values of ¢ (left plot) and for
different values of x (right plot). Note the symmetry between Fig. 3 and Fig. 4. This is due to the fact that in steady

state, one can show
B (ko + )

f—I:Illoo {IL7}(t)[IL7R]u(t) = W , (IO)

which does not depend on the value of x,, the parameter which encodes the level of altruism in the IL7 signalling
system.

, the steady state ratio of free (available for other
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Figure 3: Effect of signalling altruism on the amount of available extra-cellular (free) IL7. Left plot: effect of ¢ for
ks = 10 on W for different values of N.. Right plot: effect of 5 for ¢ = Pinreshold/2 On % for
different values of N.. Model parameters are summarised in Table 2. Different colours correspond to different values

of the number of cells, N, in the experiment.

5.3 Mathematical model at the population level

Naive CD8* T cells require signalling-mediated by the cytokine interleukin-7 (IL7) for survival and proliferation {67].
As discussed in Palmer ez /. {581, CD8" T cells have distinct thresholds for survival and proliferation; that is, a
stronger IL7R-mediated signal is required for proliferation as compared to the strength of signal required for cel-
lular survival. Recent experiments also support the idea that higher CDs5 expression correlates with higher IL7R
expression in CD8T T cells, and indeed CDs" T cells were found to have more robust responses to IL7 than CD5"
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Figure 4: Effect of altruism on the amount of free IL7R. Left plot: effect of ¢ for ks = 10 on for

T cells [58]. On the other hand CD5' T cells were found to have prolonged survival when compared to CDs" T cells
in an IL7 independent environment {58].

In this section, we develop a mathematical model at the population level of immune IL7R-mediated signalling that
considers the heterogeneity of the expression levels observed for CDs and IL7R. We introduce, thus, four different
CD8™" T cell populations (see Fig. 5), characterised by their relative expression of these two proteins. We also assume
the total pool of CD8™ T cells exists within a well-mixed system, such that there exists a global concentration of IL7.
Thus, we neglect any spatial heterogeneities. T cells may receive signals for survival or proliferation depending on
the amount of available extra-cellular IL7 and their relative IL7R surface expression. Since we are considering the
dynamics of T cells at the population scale, we assume the effects of localised IL7 production and consumption at
the single cell scale, are effectively “averaged out” allowing the modelling effort to give a reasonable description of
the population dynamics {22, 24}.

The physical size of the IL7 protein is much smaller than the size of a T cell and typically there are many more
of these molecules than T cells in the experimental system. Our measurement of IL7 will therefore not be based
on the number of IL7 molecules, but rather the concentration of IL7 in the extra-cellular medium. Therefore, we
use a deterministic characterisation for the IL7 concentration, instead of a stochastic description, which shall be
introduced to describe the number of T cells in the system. We assume the rate of production of IL7 is independent
of the number of T cells {691, and for the purposes of this model, we will assume the rate of IL7 production to be
constant. We also assume the rate of consumption of IL7 is proportional to the product of the concentration of
IL7 and the number of T cells expressing IL7R, due to the internalisation of ligand-receptor bound complexes (see
Section 5.1). The constants of proportionality are greater/lower for IL7RM/IL7R! T cells, respectively. We further
assume that the four different T cell populations have a basal IL7-independent death rate. This death rate is greater
for CD5M T cells than for CDs" T cells {58]. However this death rate does not depend on the level of IL7R expression
(see Fig. 5). The death rate is switched on if IL7 availability is below a given survival threshold and equivalently, it is
switched off if the concentration of IL7 is above this threshold {58}. Similarly, if the concentration of IL7 is above a
given proliferation threshold, we turn on a proliferation term for IL7R" T cells. Following a division event IL7R"
T cells produce two daughter cells, in the corresponding IL7R! pool, in consonance with the altruistic hypothesis.
We assume IL7R! T cells may not receive sufficient IL7 stimulus to undergo a division event. IL7R T cells are
assumed to up-regulate their expression levels of IL7R and become IL7R" (see Fig. 5). Lastly, we assume the level
of CDs expression is invariant; that is, CDs™ cells can only increase or decrease their levels of IL7R expression, but
maintain their high level of CDs expression constant. The same is true for CDs!° cells (see Fig. 5). The interplay
between IL7 receptor expression and signalling on the fate (division, proliferation or IL7R up-regulation) of the four
different population of CD8" T cells can be captured mathematically and will be discussed in the following section.
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Figure 5: Immune signalling at the population level: possible transitions between the four subsets of the peripheral
CDS8* T cell pool. We impose (11 > jig; that is, CD5' T cells have prolonged survival in a cytokine independent
environment. In the mathematical model the parameter A corresponds to the per cell division rate. A; is the per cell
division rate for CDs" CD8% T cells and )\, is the per cell division rate for CDs'> CD8% T cells, with A; > )5 [58].
We assume that after a division event, there is a significant drop in the level of IL7R expressed on the surface of
a cell, since daughter cells inherit, on average, half of the IL7 receptors expressed by their mother cell. Finally,
¢ corresponds to the basal up-regulation rate of IL7R expression and is assumed to be independent of the extra-
cellular IL7 concentration. ¢; is the per cell IL7R up-regulation rate for CDs™ CD8F T cells and ¢» is the per cell
IL7R up-regulation for CDs" CD8* T cells.

5.3.1 Mathematical model

@ »
I

We denote by n; ; the number of cells in subset S; ;: an index value of “1” always refers to “high”, whereas an index
of “2” always refers to “low”. If a pair of indexes appears in a variable, the first one refers to CDs and the second to
IL7R, respectively. Specifically, we have defined

| celltype | variable |
CDs™IL7R™ | ny,
CDsMIL7R® | ny,
CDs®IL/RM | ny,
CD5°IL7R"® | 1y,

We now describe the dynamics that characterise the four different population of CD8" T cells and that are driven
by IL7 signalling.

Dynamics of IL7 'We model the concentration of IL7 in a deterministic manner, as we argued above. Let I denote
the concentration of IL7. We assume IL7 is produced at a constant rate v, independent of its extra-cellular level {9, 7}
We also consider IL7 loss, due to internalisation of IL7 once it binds IL7R expressed on the surface of T cells. We,
thus, assume that this loss term is proportional to the global concentration of IL7 and the number of T cells. These
terms then take the form

—m(nig +ne1)l —ya(ni2 +no2)l

II



where 1 > 72, since we assume IL7RM cells internalise IL7 at a faster rate than IL7R™ cells, since their IL7R surface
expression levels are higher by construction. The concentration of IL7 then obeys an ODE of the form

dl
ik y1(n11 +ne1)l —y2(n12 +noo)l . (1n)

Dynamics of T cells The populations of CD8" T cells are modelled in a stochastic fashion. Let us introduce a
threshold for survival 6, and a threshold for proliferation 6, {58, 241. We shall assume the dimensions of 0 and 6,
to be those of I, 7.e, volume concentration. We assume that the survival threshold is lower than the proliferation
one {24}; that is, 6, < 6,,. We now describe the CD8" T cell dynamics, as follows:

e If I < 0, (death event):
ni; — N4 — 1, in a small time interval, At, with probability p; n; ; At ford,j = 1,2.

* If 0, < I < 6, (survival event):
n;; — N4 j, in a small time interval, At, with probability one for 4, j =1, 2.

* If 0, < I (proliferation event):
N1 —> N1 — 1

Nis — o + 2 } in a small time interval, At, with probability A; n; 1 At fori =1,2.

* Finally, and given that the up-regulation of IL7R is independent of the concentration of IL7, this transition
takes the form:
Ni2 —> Nj2 — 1

nit = mig + 1 in a small time interval, At, with probability ¢; n; 2 At fori =1, 2.

These transitions are illustrated in Figure 5.

Threshold function We assume the probabilities of death and proliferation events to be non-zero only when the
concentration of IL7 is below or above the respective threshold functions for survival and proliferation. The exis-
tence of these survival and proliferation thresholds have been experimentally observed {58}. We, therefore, choose a
function such that when the concentration is above or below a certain threshold, it is either o or 1. One such suitable
function is the logistic function, defined as follows:

1 1

“Trea @™ AD=5m s (2)

fs(I)
We choose the dimensions of « to be inverse concentration, such that the value of f;(I) is a dimensionless quantity
bounded between o and 1. This threshold function is then included within the previously defined transition proba-
bilities for death and proliferation events. If f,(I) ~ 0, then the probability of the given event is close to zero and
the event is effectively turned off. Similarly if fo(I) ~ 1, then the probability of the event is turned on.
The parameter o modulates the severity of the threshold function. In particular, if « — o0, the threshold is ex-
tremely sharp. In fact, we have

0 if I>6,,
a—+o0 a—=+too 1 +e ( s) 1 T < 05 '

In Fig. 6 we show the threshold functions (see Eq. (12)) for different values of c. In the limit &« — 07, the thresholds
disappear and T cell proliferation and death events do not depend on the amount of free IL7 available. On the other
hand, in the limit « — 400 the

5.3.2 Numerical results

We have implemented the model discussed in Section 5.3.1, making use of a deterministic characterisation (ODE) for
the concentration of 117, I(t), and either an ODE model for the number of cells in each compartment or a stochastic
Markov description, which requires the implementation of a Gillespie algorithm (see code provided in Appendix B).
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Figure 6: Effect of the parameter v on the severity of the threshold functions (see Eq. (12)). Note that for &« = 0
(black line) the threshold functions are constant and equal to 2. On the other hand, for o > 1 the functions are
almost discontinuous and the thresholds rather sharp.

The deterministic model for the four T cell populations and the concentration of 117 is described in the code pro-
vided in Appendix C. The parameters used in the numerical studies have been summarised in Table 3. When other
parameter values have been used, we have provided their values explicitly. To model different extra-cellular signalling
environments, describing different values of extra-cellular IL7 concentration, we vary the value of the parameter v,
and make use of a soff threshold given by o = 5. As shown in Figs. 7-9, different values of v change the steady state
of the four T cell populations. In all cases, on the right panel we show the relative number of T cells with high
(black lines) and low (red lines) expression of CDjs. In that panel we also show two different stochastic simulations
to empbhasise the role of fluctuations when the number of cells is small (in all cases we have considered that, initially,
there is a total of 200 cells, equally distributed between the four compartments). For completeness, in Fig. 10 we
consider the case where IL7 is removed from the system not only by IL7 receptormediated internalisation but by
other mechanisms (that we denote generically, degradation), for the same parameter values as those of Fig. 9. Note
that, while the maximum level of IL7 changes significantly, the dynamics of the CD8* T cell populations does not
qualitatively change.

60
.

= = GD5 High and IL7-R High (ODE)
= == CD5 High and IL7-R Low (ODE)
- — CD5 Low and IL7-R High (ODE)
= = CD5 Low and IL7-R Low (ODE}

=== CD5 High and IL7-R High (SSA)
= CD5 High and IL7-R Low (SSA}
— CD5 Low and IL7-R High (SSA)
— D5 Low and IL7-R Low (SSA)

50
0.8

08

06

= = CD5 High (ODE)
- — CD5Low (ODE)
— CD5 High (SSA)
— CD5Low (S5A)

06

t) (ODE)
(1) (SSA)

04
Number of cells
Fraction of cells

04

0.2

0.2

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

time (hours) time (hours) time (hours)

Figure 7: Numerical study for a total time of two weeks with low IL7 production, v = 1 and a sof¢ threshold, o = 5.
On the right plot, we see the T cell population is dominated by the subset of CDs" T cells. Note the reasonable
agreement between the deterministic model (ODE) and the stochastic simulations (SSA). On the left plot, we follow
the extra-cellular IL7 concentration in time. On the middle plot, we follow the four cellular populations in time. On
the right plot, we follow the two cellular populations, as defined by their CDj5 expression in time.

From these numerical studies, two significant conclusions can be derived. First of all, different values of v (the
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| parameter || value || units I reference ‘
I(0) I [con} Note 1
n1,1(0) 50 cells This work
n1,2(0) 50 cells This work
n2,1(0) 50 cells This work
n2,2(0) 50 cells This work
v 50 [con}~'hour—! Note 2 {241
o 0.08 hour—?! [241
Yo 0.02 hour™! Chosen to be ~ 7 /4
11 0.027 hour—! [241
1o 0.018 hour™! Chosen to be = 2411 /3
A1 0.083 hour™! [24]
A2 0.055 hour—! Chosen to be= 2\ /3
d1 0.083 hour—! Chosen to be = \;
02 0.042 hour™! Chosen to be ~ ¢1/2
0, 0.8 [con] This work
0p L.§ [con] This work
« s [con}~! Note 3
T R TS | S| [24] |

Table 3: Parameters for the population model of IL7-mediated signalling. Note 1: we normalise the initial concentra-
tion of IL7 to 1. This allows us to use generic units of concentration ({con]) rather than the standard M (moles/litre).
Note 2: we have normalised v from Ref. {24} according to Note 1. Note 3: in order to guarantee a threshold-like
response, we have chosen a relatively large value of cv.
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Figure 8: Numerical study for a total time of two weeks with medium IL7 production, ¥ = 5 and a soff threshold,
a = 5. On the right plot, we see the T cell population is dominated by the subset of CD5° T cells. Note that
a deterministic (ODE) approach cannot precisely reproduce the stochastic behaviour (SSA). On the left plot, we
follow the extra-cellular IL7 concentration in time. On the middle plot, we follow the four cellular populations in
time. On the right plot, we follow the two cellular populations, as defined by their CD3 expression in time.
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Figure 9: Numerical study for a total time of two weeks with high IL7 production, v = 25 and a soft threshold, o = 5.
On the right plot, we see the T cell population is dominated by the subset of CDs™ T cells. Note that a deterministic
(ODE) approach is able to reproduce the stochastic behaviour (SSA). On the left plot, we follow the extra-cellular
IL7 concentration in time. On the middle plot, we follow the four cellular populations in time. On the right plot,
we follow the two cellular populations, as defined by their CDj5 expression in time.
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Figure 10: Numerical study for a total time of two weeks with high IL7 production, v = 25 and a soft threshold, o = 5.
This study also considers the role of IL7 degradation (with rate § = 20h™!). On the right plot, we see the T cell
population is dominated by the subset of CDs" T cells. Note that a deterministic (ODE) approach cannot precisely
reproduce the stochastic behaviour (SSA) observed. On the left plot, we follow the extra-cellular IL7 concentration
in time. On the middle plot, we follow the four cellular populations in time. On the right plot, we follow the two
cellular populations, as defined by their CDj5 expression in time.
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parameter that encodes the IL7 extra-cellular environment) lead to different relative fractions of cells with high and
low expression of CDs. These results are in agreement with the experimental evidence summarised by Palmer et
al. {58]. These authors observed population dominance in favour of CDs™ CD8* T cells in high IL7 environments.
In contrast, CDs'° CD8" T cells were observed to dominate the T cell repertoire in low IL7 environments. In
between these, at physiological levels of IL7, an equal balance in the T cell repertoire was observed {58]. Secondly,
the striking result that the deterministic approximation (ODE) cannot capture the switch between low and high IL7
extra-cellular environments occurring for intermediate values of v (see, for instance, the right panel in Fig. 8). This
discrepancy between the deterministic and the stochastic descriptions raises a potential methodological concern;
namely, how to choose the value of a. We note that these differences originate from two possible effects: the value
of v and that of . The first effect is easier to understand, since very large values of v (see, for instance, Fig. 9) drive
the cytokine concentration, I, to its deterministic value and stochastic fluctuations are damped out quickly (compare
the left plots of Fig. 7 and Fig. 8 to the left plot of Fig. 9). In order to decipher the role of «, we first note that when
o = 0, the T cell populations do not perceive any IL7 threshold behaviour and their dynamics is independent of
the amount of free extra-cellular IL7 available. Secondly, let us now evaluate the effect of different values of « (and
the severity of the thresholds) in the dynamics of the four T cell populations. Fig. 11 reproduces the simulations of
Fig. 8 for o = 0 (top) and a = 50 (bottom). As discussed above, the case o = 0 is not biologically relevant, since the
IL7 survival and proliferation thresholds have been observed in experiments {58}. Furthermore, for the death and
proliferation rates obtained in Ref. {24], and in the absence of IL7 survival and proliferation thresholds, the number
of T cells increases indefinitely (see middle panel of the top row in Fig. 11). Finally, a comparison between the cases
a = 5 (see Fig. 8) and o = 50 (see bottom row of Fig. 11) shows that sharper threshold functions decrease the size of
the stochastic fluctuations.

In order to further dissect our latter claim, in Fig. 12 we show the histogram of stochastic steady states for v = 5
and for « = 5 or @« = 50. Remarkably, the histogram is so wide that it contains stochastic realisations where
there is a switch between the CDs" and CDs! populations, that cannot be predicted by the deterministic model.
This behaviour suggest that, the combination of non-linearities (in our case the threshold functions) and a stochas-
tic description, leads to richer outcomes than traditional deterministic approaches. It is beyond the scope of this
manuscript to study in greater depth the interplay between stochasticity and threshold responses. Yet, we feel this
interplay deserves further analysis since it has not been comprehensively addressed in the literature.

6 Dysregulation of IL7 receptor expression and signalling in cancer
and inflammation

Direct evidence for the importance of understanding IL7R Biology comes from clinical settings where dysregulation
of IL7R expression or signalling were found to be linked with autoimmune inflammatory diseases and tumourigene-
sis {70, 711. Both gain- and loss-of-function mutations in the IL7R« gene have been reported, and there are strong
associations between dysregulation of IL7R expression and multiple inflammatory diseases, but also cancer {72, 731.
Along these lines, about 10% of pediatric T-ALL patients displayed gain-of-function mutations in IL7Ra, which
caused ligand-independent activation and signalling of IL7R {74, 75, 76}. Most of these mutations were found in
exon 6 of the IL7R« gene, at sites that corresponded to the membrane-proximal region of the extra-cellular domain
of the receptor. These mutations could cause homo-dimerisation of IL7Ra molecules as they introduced, among
others, new cysteine residues which could form disulfide linkage with other mutated IL7Ra proteins. Remark-
ably, in these tumour cells, IL7Ra homo-dimerisation was sufficient to induce ligand independent IL7R« signalling,
resulting in constitutive STATS phosphorylation and activation {74]. Interestingly, eatlier studies indicated that
homo-dimerisation of IL7R could not trigger IL7R signalling and that signalling required hetero-dimerisation with
7. receptors, presumably because JAK1 activation required the trans-phosphorylation by JAK3 {11]. Why and how
IL7Ro mutations in ALL tumour cells can induce productive signalling by IL7Rc homo-dimerisation is an intense
area of research, and insights from structural biology in conjunction with mathematical modelling are expected to
shed light on these open and challenging questions.

As a potential explanation, a recent study suggested the role for IL7R« trans-membrane domains in the spatial re-
organisation of mutant IL7Ra homo-dimeric proteins {77}. Under normal circumstances, IL7Ra homodimers would
dimerise into a configuration where the intra-cellular domains would all face the same direction and JAK1 molecules
would not be juxta-positioned and face each other for trans-phosphorylation. In some IL7Ra mutants, however,
twists in the trans-membrane domain would cause rotations of the intra-cellular region which would position JAKI1
molecules into the correct orientation for trans-phosphorylation and activation {78}
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Figure 11: Numerical study for a total time of two weeks with high IL7 production, v = 5 for two values of a: a« = 0
(top row) and « = 50 (bottom row). On the left plot, we follow the extra-cellular IL7 concentration in time. On the
middle plot, we follow the four cellular populations in time. On the right plot, we follow the two cellular populations,
as defined by their CD5 expression in time.
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Figure 12: Histogram of the steady state of CDs high subpopulation (black) and CDs low subpopulation (red) for
v =>5and a = 5 (left) or a = 50 (right). The blue dashed vertical line is a guide to the eye to show the line where
the fraction of each subpopulation is 50%.

Beyond the implications in tumour biology, these findings raise many challenging questions, such as why persistent
IL7R signalling would not suppress expression of the oncogenic IL7Ra and how mutant IL7Ro expression would
affect conventional IL7R« signalling, for example. In parallel to biochemical and cellular approaches, we suggest
exploiting the power of mathematical and computational modelling, as presented in this review, to enhance our
quantitative understanding of these complex immune signalling problems.

» Discussion

This review is based on the hypothesis that the development of suitable mathematical models of immune signalling
and receptor trafficking will allow us to provide answers to some current health-related challenges: how does the
expression level (or its copy number) of a given protein in an immune receptor signalling pathway (or network) affect
the type and timescale of cellular responses and how does ligand concentration or protein competition for binding
sites on immune receptors drive different cellular fates by turning on/off different intra-cellular mechanisms, such
as endocytosis, degradation, recycling or protein synthesis. From a mathematical perspective, the challenge is to
develop a quantitative approach to how receptorligand signalling regulates cellular fate that (i) integrates a wide
range of molecular, cellular and population data, and (ii) improves our understanding of the mechanisms that are
dysregulated in disease, so that the mathematical models are accurate predictors of response to receptor-targeted
therapies and can aid the design of novel drugs. In this regard, the ability to synthetically create ligands (referred to
as symthekines 163]), with the ability to bring together receptor chains that are not naturally paired together, opens
a door to novel ways to tune immune signalling. For instance, a dimeric compound of IL7 and IL15 (referred to as
IL7.15 in Fig. 1), with the ability to bring together IL7Ra with IL15R 3, can modulate IL7R and IL15R signalling, and
thus T cell behaviour. Our belief is that mathematical modelling can help quantify, and even predict, the extent of
this immune signalling modulation as a function of IL7 and IL15 extra-cellular concentration.

In the last decade a lot of quantitative work has supported the view that IL7 and its receptor, IL7R, are one of the
master regulators of T cell homeostasis {19, 671. Still a number of questions remain open, as discussed in this review.
One of these challenges relates to intra-cellular events that take place once IL7R has been internalised. While much
of the empbhasis is often placed at the ligand-receptor level, trafficking, degradation, recycling and receptor synthesis
are crucial to understanding how receptor-mediated signalling regulates immune cell fate. Thus, there is a need to
develop mathematical models of immune signalling that incorporate receptor trafficking events {24, 621. Recent
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experimental advances {79} together with novel mathematical models will be essential to enhance our understanding
of the mechanisms that regulate receptormediated immune signalling, and in turn will allow us to decipher how
signalling determines immune cellular fate.

Finally, in this review we have presented a number of mathematical models, each of them at a different level of
description (molecular, cellular and population, respectively). A current challenge and opportunity for applied math-
ematics is to integrate the different scales involved in the biological system under consideration. In this direction,
agent-based models {80} are good candidates, as they bring together the characteristics of single cells with the dy-
namics of the whole population. Agent-based models, in combination with traditional mathematical models (based
for instance in ODEs, as we discussed in Section 5.3), enable us to integrate different timescales.

We conclude with a reference to some recent work which has highlighted the relevance and significance of mathe-
matical modelling in Immunology {81}. This latter reference has collected a number of studies of T cell immunology
to illustrate the benefits of theoretical and experimental collaborations, not only at the receptor and signalling level,
as we have done in this review.
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A Code listing for molecular level model (see Section 5.1)

begin model

begin parameters

NA 6.02214€23 # molecules per mol (Avogadro constant)

cellDensity rerr # cells per L (re5 cells per uL)

Vecf=1/cellDensity

# concentration of IL—7 at time t=0

dens7 1 # oM (used for parametric plot)

IL7_o dens7*1.0e—9*(NA*Vecf) # M converted to copies per cell (cpc)

# concentration of IL—1§ at time t=0

densis o.ro # nM (used for parametric plot)

IL15_o densis*1r.oe—9*NA*Vecf) # M converted to copies per cell (cpc)

# number of receptors per cell

IL7Ralpha_o r1.0e3 # cpc

ILisRbeta_o 1.0e3 # cpc

go 1.0e3 # (used for parametric plot)

gammac_o go # cpc

# Reaction rates (f: forward/ r: backward)

kfr 1.o0e9/(NA*Vecf) # in units of M {—1} min*{—1} converted to /(molecules/cell)/s
krr o.1 # in units of min"{—1}

kfz 1.0e9/(NA*Vecf) # in units of M{ —1} min"{—1} converted to /(molecules/cell)/s
kr2 o.1 # in units of min™{—1}

kf3 1.0e9/(NA*Vecf) # in units of M {—1} min*{—1} converted to /(molecules/cell)/s
kr3 o.1 # in units of min*{—1}

kf4 o.1*1.0e9/(NA*Vecf) # in units of M {—1} min*{—1} converted to /(molecules/cell)/s
krg o.1 # in units of min™{—1}

end parameters

begin molecule types
IL7(r,r) # IL—7 (ligand to be bound to receptor site ”r” )
IL15(r,r) # IL—15 (ligand to be bound to receptor site ”r”)

» 9

IL7Ralpha(r,1) # IL—7Ralpha receptor (attach to gammac via ”r” or ligand via ”1”)

ILisRbeta(r,1) # IL—sRbeta receptor (attach to gammac via ”"r” or ligand via ”1”)

gammac(r,1) # gammac (attach to gammac via ”r” or ligand via ”17)
end molecule types

begin seed species
IL7(r,r) IL7_0

IL15(r,r) IL15_0
IL7Ralpha(r,1) IL7Ralpha_o
ILisRbeta(r,1) ILisRbeta_o
gammac(r, 1) gammac_o

end seed species

begin observables

Species Bound7R IL7Ralpha.gammac.IL7
Species BoundisR ILisRbeta.gammac. IL1s
end observables

begin functions
Fraction7 () = Bound7R/(Bound7R+BoundisR)
end functions

begin reaction rules

IL7Ralpha(r,1) + gammac(r,1) <—>IL7Ralpha(r!r,1).gammac(r!r,1) kfr,krr # heterodimerization
ILisRbeta(r,1) + gammac(r,l) <—>ILisRbeta(r!r,1).gammac(r!r,1) kfz ,kr2 # heterodimerization

# Binding

IL7Ralpha(r!r,1).gammac(r!r,1) + IL7(r,r) <—>IL7Ralpha(r!r,1!2).gammac(r!1r,1!3).IL7(r!2,r!3) kf3, kr
ILisRbeta(r!r,1).gammac(r!r,1) + IL15(r,r) <—>ILisRbeta(r!r,1!2).gammac(r!x,1!3).IL15(r!2,r!3) kfsg,
end reaction rules

end model

generate_network ({overwrite = >1}); # Generate network

B
krg
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#simulate_ode ({t_end=>1000, n_steps=>100,print_functions=>1}); # Get time—course

#parameter_scan ({method=>"o0de” ,par_min=>1e —1,par_max=>1€3,\

parameter_scan ({method=>"o0de” ,par_min=>1e0, par_max=>1€5 ,\
n_scan_pts=>50,log_scale=>r1,t_end=>1000,n_steps=>2,print_functions=>r,\
parameter=>"dens7”}) # Change by densi5 or go for Figures 2b—c
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B Codelisting for population level stochastic model (see Section 5.3)

# Simulation of IL—; model using Gillespie algorithm and Euler metbod for
# solution of ODE governing IL—7 dynamics

T T T R N N RN RN RN NN N N R NN R RN N NIRRT RN IN NN TN TN NIRRT TR
L L o o o L L L o L L i L L L e T e L L e e e e

import numpy as np, matplotlib.pyplot as plt, math, random

Io =1

N1 = 50

N2 = 50

N3 = 50

N4 = 50
gamr = o0.08
gam2 = 0.02
mur = 0.028
muz = 0.017
lam1 = 0.083
lam2 = 0.055
phir = 0.083
phiz = o0.042
kap_s = 0.8
kap_p = 1.5
alpha = 5

h = o.oor
dt = o.or
t_end = 300# 3350 # 72

delta = o # bh"—1
nu = 50 # 1, 1§, §0

n_steps = int(t_end / dt)

def IL7(n1,n2,n3,n4,1):

return nu — gamr * *

*

(n1 + n3) I — gam2 (nz2 + ng) * I — delta * I

def rho_s(I):
return 1 / (1 + math.exp(alpha * (I — kap_s)))

def rho_p(I):
return 1 / (1 + math.exp(alpha * (kap_p — I)))

X = np.zeros ((6,n_steps))

XloHol = To
X[1llo]l = N1
X{2Ho}l = N2
X[3Hol = N3

X{4Hol = N4
X[s5Hol = Nr+N2+N3+N4

I = To
n1 = N1
nz = N2
n3 = N3
ng = Ny
t =o0

IL={}

for k in range(o,n_steps):
while t < k*dt:
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if n1 == o and n2 == o and n3 == o0 and n4 == oO:

break
rmur = mur*ni*rho_s (1)
rmuz = mur*n2*rho_s (1)
rmu3 = muz2*n3*rho_s (1)
rmu4 = muz*ng*rho_s (1)
rlamr = lamr*n1*rho_p (I)

rlam2 = lam2*n3*rho_p (I)
rphitr = phir*n2
rphi2 = phi2*ng

rtotal = rmur+rmuz+rmu3+rmug+rlami+rlam2+rphir+rphiz
r1 = random.random ()

T = — (1/rtotal) * math.log(rr)

t += T

r2 = random.random ()

r2 = r2*rtotal

if o <= r2 < rmur:

nr —= 1
elif rmur <= r2 < rmur+rmuz:
nz —= 1
elif rmur+rmuz <= r2 < rmul+rmuz+rmuj:
n3 —= 1
elif rmur+rmuz+rmu3 <= r2 < rMuUI+rmu2+rmu3+rmu4:
ng —= 1
elif rmur+rmuz+rmuj+rmu4 <= r2 < rmul+rmu2+rmuj+rmug+rlamr:
nr —= 1
n2 += 2

elif rmur+rmuz+rmuj+rmug+rlami <= r2 < rmur+rmuz+rmuj+rmu4+rlamr+rlamz:

n3 —= 1
ng += 2
elif rmur+rmuz+rmuj+rmug+rlamr+rlam2 <= r2 < rmur+rmuz+rmu3+rmug+rlamr+rlamz+rphir:
n1 += 1
nz —= 1
elif rmur+rmuz+rmuj+rmug+rlamr+rlam2+rphit <= r2 < rtotal:
n3 += 1
ng —= 1

n_iter = int(T / h)

for | in range(o,n_iter):
I =1+ h* IL7(n1r,n2,n3,n4,1)
IL.append (1)

X{oHk} =1
X[1}k}l = n1
X[{2Hk]l = n2
X{3Hk} = n3
X{4Hkl = ng

X{5Hk} = nr+n2+n3+ng

xticks = [}
tickinterval = t_end / (5*dt)
for k in range (0 ,6):

xticks .append(k*tickinterval)
xlabels = {1
ticks = t_end / 5
for k in range (0 ,6):

xlabels .append (k*ticks)

Ixticks = [}

Ixtickint = t_end / (5*h)

for k in range (o ,6):
Ixticks.append(k* Ixtickint)

Ilabels = {}

Iticks = t_end / 5

for k in range (0 ,6):
Ilabels.append(k*Iticks)
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np.savetxt (”concentration.csv” ,np. transpose (X), delimiter=",")
np.savetxt(”I.csv” ,np.transpose (IL), delimiter=",")

fig = plt.figure O

plt.subplots_adjust (hspace=1.0)

ax1 = fig.add_subplot(132)

ax1.plot(X{1l, label = ’CDs High & IL—7R High’, color = ’green’)
ax1.plot(X{2], label = ’CDs,High & ,IL—7R Low’, color = ’blue’)
ax1.plot(X{3}, label = ’CDsuLow,& IL—7R High’, color = ’red’)
ax1.plot(X{4}, label = ’CDsuLowu& IL—7R Low’, color = ’purple’)
ax1.legend (bbox_to_anchor=(1r.0, 1.0))

ax1.set_xlabel (’Timey (Hours) ’)

axr.set_xticks (xticks)

ax1.set_xticklabels (xlabels)

ax1.set_ylabel (’Cells’)

ax3 = fig.add_subplot(133)

ax3.plot (X{1}+X{21)/X{s5}, label = 'CDsuHigh’, color = ’blue’)
ax3.plot (X{3}+X{41)/X{s51, label = 'CDsuLow’, color = ’red’)
ax3.legend (bbox_to_anchor=(1r.0, 1.0))

ax3.set_xlabel (’Time,(Hours) ’)

ax3.set_xticks (xticks)

ax3.set_xticklabels (xlabels)

ax3.set_ylabel (’Cells’)

ax3.set_ylim (o ,1)

ax2 = fig.add_subplot (131)
ax2.plot(IL, color = ’blue’)
ax2.set_xlabel (’Time, (Hours) ’)
ax2.set_xticks (Ixticks)
axz2.set_xticklabels (Ilabels)
ax2.set_ylabel (’IL—7,Concentration’)
plt.show ()
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C Codellisting for population level deterministic model (see Section5.3)

# Initial values:
#metabolites

init nrz=s5o0

init n22=50

init n21=50

init nIr=5o

init I=1

# Fixed Model Entities:
param muri=0.028
param alpha=5
param kap_s=0.8
param mu2=0.017
param lamr=0.083
param kap_p=1.5
param lam2=0.055
param phir=0.083
param phi2z=0.042
param nu=1§
param gami=0.08
param gam2=0.02

# Assignment Model Entities:
nrz_c=niz

n22_c=n22

I_c=1I

n2r_c=n2r1

nIrr_c=nIr

#Kinetics:

Functio=mur*nri_c /(1+exp (alpha*(I_c—kap_s)))
Functi=mur*nr2_c /(1+exp(alpha*(I_c—kap_s)))
Functir=muz2*n21_c /(1+exp (alpha*(I_c—kap_s)))
Functiz=mu2*n22_c /(1+exp (alpha*(I_c—kap_s)))
Functij=lamr*n1i_c /(1+exp(alpha*(kap_p—I_c)))
Functig=lam2*n21_c /(1+exp (alpha *(kap_p—I_c)))
Functis=phir*n12_c

Functi6=phi2z*n22_c

Functi7=nu
Functi8=(gamr*(nri_c+n21_c)*I_c+gam2*(ni2_c+n22_c)*I_c)

# Equations:
dniz2/dt=—Functi+2*Functi3—Functis
dn22/dt=—Functiz +2* Functi4—Functi6
dI/dt=Functi7—Functi8
dn21/dt=—Functit—Functi4 +Functi6
dnir/dt=—Functio—Functi3+Functis
done
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