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Abstract—One of the major challenges in shape matching is
recognising and interpreting the small variations in objects that
are distinctly similar in their global structure, as in well known
ETU10 silhouette dataset and the Tool dataset. The solution lies
in modelling these variations with numerous precise details. This
paper presents a novel approach based on fitting shape’s local
details into an adaptive spectral graph domain features. The
proposed framework constructs an adaptive graph model on the
boundaries of silhouette images based on threshold, in such a
way that reveals small differences. This follows feature extraction
on the spectral domain for shape representation. The proposed
method shows that interpreting local details leading to improve
the accuracy levels by 2% to 7% for the two datasets mentioned
above, respectively.

Index Terms—Graph spectral analysis, Graph spectral fea-
tures, Shape matching, Adaptive graph connectivity.

I. INTRODUCTION

Understanding the content of visual media and captured

images receives a lot of interest in computer vision [1] and

security [2]. The human eye can easily discriminate patterns

in images. However, a manual classification process of these

patterns is a challenging task for researchers. For example,

objects may be classified in the same class, although they

have different types of geometric structures as shown in Fig.

1. This is because the similarities between the patterns are

high in terms of the global structure, while few differences are

noticed. As a result, the interpretation of small details is an

important factor for distinguishing between different shapes.

This challenge motivates us to exploit differences in shape

in terms of protrusions and fine details as well as the global

shape.

Many strategies have been introduced to design the optimal

model. Shape matching studies can be considered from two

different perspectives: feature-based methods [3], [4] and

model-based methods, which are based on either a shape-

skeleton [5], [6] or shape-contour [7], [8]. For the model-

based studies, on the one hand, skeleton-based studies have

mainly constructed a tree model using the object edges to

form a shape descriptor, where the similarity measurement is

based on the tree matching approaches. For example, different

methods are implemented by creating a shape descriptors

prototype using: points corresponding [5], part decomposition

[6], shortest path [9] and relative measurement [10].

On the other hand, several studies have relied on the bound-

aries of silhouette images. These edges efficiently characterise

the global structure of the object with a single closed curve, if

Fig. 1. Challenging objects with conceptual high similarity (top row) and
associated graph connectivity (bottom row).

there are no holes in the object. An early study was proposed in

this regard by Zahn and Roskies [11] using Fourier descriptors

to represent the shape, while the latest studies are based on:

circle view shape signature (CVs) with multi view [7] and

applying tangent PCA for variation mode extraction [12].

Shapes are also recognized using feature-based representa-

tion that typically requires more than one feature to describe a

complex structure. Such features may include a scale invariant

feature transform (SIFT) [13], tree union [3], local phase [14],

distance and the central point [4], contour features and distance

[15]. With regards to the graph-based studies, using graph

for 2D shape matching [16], [17] mainly relied on bipartite

matching.

However, the majority of existing works takes into account

the global shape to design their model, while they do not

pay attention to fine details. Interpreting these areas greatly

enhances the detection process, especially in high-similarity

shapes as in the Tool dataset Fig. 1, which has not been

evaluated much compared to the other datasets. Therefore,

the optimal shape-matching system must have the ability to

interpret and understand the protrusions of the boundary along

with the overall structure containment. This paper proposes a

new method for 2D shape recognition based on graph adaptive

connectivity. To the best of our knowledge, this is the first

study to recognize shapes based on their local details.

The main contributions of this paper are:

• Methodology for forming an adaptive graph connectivity

to capture the local protrusions of the shapes.

• Proposing a new set of features based on the graph

spectral domain.



This paper is structured as follows: a comprehensive expla-

nation of the graph concepts, graph connectivity, graph basis

and graph spectral features are shown in Section II. Then,

Section III will evaluate and discuss the proposed system based

on different classifiers and parameters. Finally, the work will

be concluded in Section IV.

II. THE PROPOSED METHOD

The objective of this paper is to identify shapes using

both global and local details. Fig. 2 shows an overview

of the proposed shape-matching algorithm that matches the

corresponding graph spectral features of the shape via machine

learning.

For a given 2D binary shape S, we extract its contour

(x, y) from the input image silhouette using an edge detector

filter such as Sobel operator. The 2D path P of the shape’s

contour with length N is then moved in such a way that

the point (0, 0) will be in the center box of the shape. Since

this paper utilizes machine learning for classification step, a

fixed number of pixels is needed to generate the same length

features. Therefore, n < N pixels are selected from P to be

a candidate to form a new path P̂ as shown in (1) and (2).

P̂ (i) = P (i ∗H), i = 0, . . . , n− 1. (1)

and,

H =
N − 1

n− 1
. (2)

This process is similar to signal down-sampling processing,

where n-samples are uniformly selected from N -samples.

Then, P̂ is used to generate a graph, which represents the

shape structure. Further information can be found in the next

subsections to describe the graph concepts, graph connectivity,

graph basis and finally the proposed features.

A. Graph concepts

This work generates an undirected graph G={ε, v}, which

comprises vertices v or nodes. These nodes are connected by

edges (ε) that represent the Euclidean distance between nodes

in the graph adjacency matrix A ∈ R
N×N as shown in (3).

Ai,j =

{

ε(i,j), if node i and j are connected,

0, otherwise.
(3)
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Fig. 2. The proposed method includes: 1-contour extraction, 2- graph
generation, 3-feature extraction and 4-classification process.

Then, the non-normalised graph Laplacian matrix is obtained

as L := D−A, where D(i,i) =
∑N

j=1 A(i,j) i = 1, 2, ..., n. D

has zeros in its off-diagonal elements and the diagonal element

corresponding to the degree of each vertex is the summation

of the weights of all its connected edges.

A complete set of orthonormal eigenvectors χℓ of L and

their associated real eigenvalues λℓ for ℓ = 0, ..., n − 1
are calculated. The eigenvalues of the non-normalised graph

Laplacian matrix are ordered as 0 = λ0 < λ1 ≤ λ2... ≤
λn−1 = λmax.

B. Graph connectivity

Connectivity has crucial rules in generating graphs because

the way to connect nodes has a direct effect on the spectral

basis. For global shape prediction, usually full connected

graph, where each node has (n−1) connections or Φi = n−1)

provides an efficient representation [18]. However, in this case

local details are not reliably detected.

This work therefore applies a conditional connectivity to

reveal local details in shape’s contour. Conditional connectivity

means that each node is connected to other nodes that fall in

less than a certain distance as shown in Fig. 3 as an example.

A certain threshold T is used to determine the distance to link

pixels in each shape. T can also be defined as the minimum

distance that keeps all nodes connected, as will be shown in

Section II-C. The next subsection will shown in details how

to compute T.

C. The graph eigenvalues.

For better understanding of the connectivity effects on the

graph basis, Fig. 4 illustrates a single shape with four different

values of T and the graph eigenvalues of these shapes are listed

below:

λℓ of A= [0, 0, 0, 0, ..., 0.50, 1.86, ..., 24.97].

λℓ of B= [0, 0, 0, 0, 0.01, 0.06, ..., 34.54].

λℓ of C= [0, 0.030, 0.050, ..., 49.94].

λℓ of D= [0, 0.031, 0.054, ..., 60.49].

From the graph eigenvalues, we can find that:

Fig. 3. Nodes with certain distance are connected.
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Fig. 4. Graph construction with different value of T.

1) The shape’s density.

As can be seen in λℓ of A, B, C and D, the last

eigenvalue (λn−1) reflects the density of the shape. For

example, λn−1 has a large value in high density shapes

in Fig. 4 D compared with low density in Fig. 4 A.

2) The number of clusters.

The graph eigenvalue can be also used as an indicator to

the number of existing clusters. For example, in shape

A, λ0 → λ38 are equal to zeros, which means that there

are 39 groups in Fig. 4 A. These groups can be made

up of connected nodes or an individual non-connected

node. For shape B, λ0 → λ3 are equal to zeros, which

means that there are four groups as can be seen in Fig.

4 B. In both shapes C and D, only λ0 is equal to zeros,

and that means all the existing nodes are connected as

a single group.

The graph eigenvalue confirms the importance of connectivity

parameters. Based on this interpretation, the number of zeros

in the graph eigenvalues is used to check whether the graph

is connected as a single group or not.

D. The boundary scale of T measurement.

In this paper, we refer to the number of connected nodes at

each pixel with φ. For a given Sℓ, we compute Tℓ, which is

the minimum distance that makes λ1 6= 0. Then, T is used

in graph generation process to compute the spectral basis.

However, the different value of T produces a different number

of nodes connected to each pixel. Fig. 5 shows the nodes

connectivity of random shape with 40 pixels. In this example,

T locates the number of connected nodes in the range between

upper and lower limits. We can determine the boundary scale

of Φ at each node according to :

1) Upper boundary: each pixel reaches the maximum

value at n − 1, which is 39 in this example using high

value of T .

2) Lower boundary is the minimum distance that keeps all

nodes are connected as a one group.

E. Graph Spectral Features (GSF)

A novel set of features is proposed for shape matching

using the graph spectral representation of the adaptive graph
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Fig. 5. Number of connected node at each pixel using different values of
threshold.

connectivity. The proposed feature captures the local FL and

the global details FG. Therefore, this paper uses:

1) Local features (FL) are presented by number of con-

nected elements at each pixel, Φi.

FL = Φi, i = 0, . . . , n− 1. (4)

2) Global shape features (FG) are presented by scaling the

graph eigenvalues by the distance (⊖). This combination

results in high distinctive features.

FG = ⊖iλi, i = 0, . . . , n− 1, (5)

where ⊖ equals to to the distance of each node to the

point (0,0) :

⊖i =
√

x2
i + y2i , i = 0, . . . , n− 1. (6)

The final features with length 2n are:

GSF = [FL, FG] (7)

F. Machine learning

Based on several experiments conducted to select the best

classifier using four datasets, Support Vector Machine with

a cubic form as a kernel function shows better performance

compared to other classifiers, as will be shown in Section III.

The experiments include: a Support Vector Machine with a

cubic form as a kernel function (CSVM), Nearest Neighbour

(KNN), Support Vector Machine with a Quadratic form as

a kernel function (QSVM), Classification Tree (CT), and

Decision tree (DT).

III. EXPERIMENTAL VALIDATION

To evaluate the proposed features for shape matching, a

large number of experiments is implemented using many sets

of 2D shapes. 10-fold cross validation scheme is utilised to

train and test all the datasets. N=100 is used to generate

graphs.



TABLE I
AVERAGE RECOGNITION SCORE (%) OF 12 EXPERIMENTS.

Dataset CSVM KNN QSVM CT DT

ETU10 silhouette 99.1 99.24 90.7 93.17 90
Tool 97.14 97.14 97.14 96.66 96.90

Kimia 99 95.87 95.87 94.44 86.5 90.88
Kimia 216 94.75 93.75 91.12 86.45 90.08

Initially, we test different classifiers to determine the op-

timal classifier for recognition. The mean accuracy of 12

experiments is shown in Table I for all the datasets. It is

clear that CSVM and KNN show better performance than the

other classifiers. Therefore, we select a CSVM to evaluate

the proposed features based on four public and well-known

datasets, which are:

1) ETU10 silhouette dataset.

The ETU10 database has 10 classes×72 shapes in each

class = 720 total images. Sample silhouettes from each

class are shown in the top two rows of Fig. 6A. The

bottom row shows different angles of the object. The

evaluation results exceed the state-of-the-art range by

recording 99.31% mean accuracy as shown in Fig. 7.

The ten classes in the confusion matrix are correspond-

ing to the Bed, Bird, Fish, Guitar, Hammer, Horse, Sink,

Teddy, Television and Toilet respectively.

2) Tool dataset.

The tool dataset in Fig. 6B contains 35 articulated

shapes, which are classified into four classes: 10 scis-

sors, 15 pliers, 5 knives and 5 pincers respectively. The

mean accuracy of 12 experiments achieves to 97.14% as

shown in Fig. 7.

3) Kimia 99 dataset.

The Kimia 99 dataset consists of 9 classes × 11 samples

= 99 images as shown in Fig. 6C. The mean accuracy

of 12 experiments is 96% as shown in Fig. 7. There

is no case that causes serious confusion in this dataset.

The nine classes in the confusion matrix correspond to

the Fish, Hand, Human, Aeroplane, Ray, Rabbit, Misk,

Spanner and Dog respectively.

4) kimia 216 dataset.

The kimia 216 dataset consists of 18 classes × 12

samples = 216 images as shown in Fig. 6D. The mean

accuracy of 12 experiments is 95.37% as shown in Fig.

7. The 18 classes in the confusion matrix correspond to

the Bird, Bone, Brick, Camel, Car, Children, Classic,

Elephant, Face, Fork, Fountain, Glas, Hammer, Heart,

Key, Misk, Ray and Turtle respectively.

Although samples in these datasets have different angles

of views, our proposed feature provides a unique description

for each sample. In the literature, there are many methods

to evaluate shape matching studies such as precision-recall

curve, retrieval table and machine learning.

Fig. 6. A: ETU10 silhouette Dataset, B: Tools Dataset, C: Kimia99 dataset
and D: Kimia216 dataset.

This paper relies on a machine learning using support

vector machine classifier to recognize samples based on its

features. SVM classifier recognizes samples based on the

available trained classes, which means that SVM is a class-

based classifier rather than samples. Therefore, finding the

closest features or sample to create a retrieval table is not

possible.

To compare with the state-of-the-art performance, Table II

shows the recognition score of the proposed GSF and the

maximum score of the existing works for the four datasets.

The proposed features perform better than the existing work

using ETU10 silhouette and Tool datasets. kimia 99 and kimia

216 have been used in many studies and satisfactory results

are provided using graph spectral features, comparable with

other works.

IV. CONCLUSIONS

Recognizing the content of images is an important issue

in computer vision field. This paper proposes graph spectral

features for 2D shape matching based on the shape contour. A

graph model based on adaptive connectivity has been created

to cover the variation in shapes. Based on this connectivity,

a novel set of features have been presented to interpret the

local and global details of the shapes. This results in high

recognition level even with high similarity shapes. Four public

and well-known datasets are used for evaluation: ETU10

dataset, Tool dataset, kimia 99 and kimia 216 datasets. The

evaluation process shows that the proposed features are robust

in detecting different kinds of complex shapes and with

satisfactory results compared with the state-of-the-art studies.

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART STUDIES.

Dataset Proposed graph features (%) Existing work (%)

ETU10 silhouette 99.31 97.5 [5]
Tool 97.14 90.86 [14]

Kimia 99 96 99 [15]
Kimia 216 95.37 98.15 [4]



Fig. 7. Confusion matrices of the datasets.
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