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Abstract

Cross-modal hashing has demonstrated advantages on fast retrieval tasks. It im-

proves the quality of hash coding by exploiting semantic correlation across differ-

ent modalities. In supervised cross-modal hashing, the learning of hash function

replies on the quality of extracted features, for which deep learning models have

been adopted to replace the traditional models based on handcraft features. Al-

l deep methods, however, have not sufficiently explored semantic correlation of

modalities for the hashing process. In this paper, we introduce a novel end-to-

end deep cross-modal hashing framework which integrates feature and hash-code

learning into the same network. We take both between and within modalities data

correlation into consideration, and propose a novel network structure and a loss

function with dual semantic supervision for hash learning. This method ensures

that the generated binary codes keep the semantic relationship of the original data

points. Cross-modal retrieval experiments on commonly used benchmark dataset-

s show that our method yields substantial performance improvement over several

state-of-the-art hashing methods.

Keywords:

Cross-modal, Deep Hashing, Retrieval, Semantic Embedding,

1. Introduction

Nearest neighbor (NN) search has been widely adopted in image retrieval. The

time complexity of the NN search on a dataset of size n is O(n), which is infeasi-

ble for real-time retrieval on large datasets, e.g. multimedia data of large volume

and high dimensions. Approximate nearest neighbor (ANN) search makes the NN
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Figure 1: Semantic deep cross-modal hashing for retrieval of images and text sentences.

search scalable, and has become a preferred solution in many computer vision ap-

plications [8, 23, 33, 13, 37, 43]. The goal of ANN search is to find approximate

results rather than exact ones so as to achieve high speed data processing [28, 14].

Amongst various ANN search techniques, hashing is widely studied because of its

efficiency in both storage and speed. By generating binary codes for input data,

the retrieval on a dataset with millions of samples can be completed in a constant

time using only tens of hash bits [38, 40, 34, 35, 20, 44, 10, 3, 4].

In many applications, data may be collected in more than one modality. For

example, in Facebook and Flickr websites, image data are associated with text

description or tags. With the rapid growth of such multi-modal data, it is im-

portant to properly encode these data for cross-modal retrieval. Given a query in

a modality, cross-modal retrieval returns semantically relevant results of another

modality. Hashing can be used as a promising solution to handle such retrieval

tasks, by transforming high-dimensional cross-modal data into binary codes for

fast search [2, 50, 47, 26]. The key in cross-modal hashing is to capture the sim-

ilarity of data in different modalities. For similar data, the Hamming distance of

their corresponding binary codes shall be small.

Cross-modal hashing methods can be divided into two types: unsupervised [18,

36, 46] and supervised [2, 48, 39, 16, 6]. Unsupervised methods do not require

labels during the training stage. However, they are faced with a semantic gap,

i.e. low-level feature descriptors can not reflect the high-level semantic informa-

tion of objects and the correlation between cross-modal data is difficult to capture.
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Supervised cross-modal hashing methods train binary codes using labels or rele-

vance feedbacks. There is no semantic gap of data, so better hashing quality can

be achieved.

Early supervised hashing methods use hand-crafted features to explore shared

structures across different modalities [29, 41, 46]. In recent, deep neural networks

have been used for feature learning in hashing [2, 19, 21, 49, 24, 27], including in

deep cross-modal hashing [16, 6]. In these methods, similarity of samples is only

used for feature learning, and the hashing part aims at minimizing the quantization

loss from features. It is not difficult to find two gaps. First, the difference between

features in different modalities comes from only feature learning process. Second,

the difference between features and the corresponding hash codes comes from

hashing process. For the hashing process, only minimizing the quantization loss

may result in a larger gap between hash codes in different modalities. This means

the correlation between samples is lost to some degrees in their final hash codes.

In this paper, we propose a novel Semantic Deep Cross-modal Hashing (S-

DCH) method, which is an end-to-end deep learning framework. Besides using

cross-modal correlation for feature learning, as done by previous works, we also

consider dual semantic correlation (correlations between and within modalities)

in the loss function for hash learning. The main contributions of this paper are

outlined as follows:

• SDCH is a novel end-to-end learning framework which integrates feature

learning and hash learning into the same network to guarantee the quality

of hash codes.

• We design a loss function with dual semantic supervision and the corre-

sponding network structure to achieve better hashing performance after the

semantic hash codes learning.

• We validate the advantages of the proposed method on image-text modali-

ties dataset to show that it outperforms the state-of-the-art methods.

2. Related Work

Cross-modal hashing [29, 41, 46] has been an active research topic in com-

puter vision and pattern recognition. Many prior cross-modal hashing methods

used unlabeled training data to learn hash functions which transform input data

to binary codes. The goal is to preserve the distribution of the original data in
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the new Hamming space. Several learning criteria were used, including recon-

struction error minimization [12], similarity preservation with graph-based hash-

ing [36, 18], and quantization error minimization [30]. Some cross-modal hashing

methods explored supervised information (usually labels) to design hash functions

that preserve the relationship of original data, i.e., if two points are similar, their

corresponding hash codes from different modalities should be similar. Typical

supervised learning frameworks adopted metric learning [5, 25], correlation anal-

ysis [42, 48], or neural networks [16, 6]. These methods achieved high accuracy

on cross-modal retrieval tasks because supervised information better keeps the

cross-modal correlation and reduces the semantic gap in the modelling.

In traditional cross-modal hashing methods, feature extraction step is inde-

pendent of the hashing process. They adopt shallow architectures and can not

well address nonlinearity of data across different modalities. Deep learning based

cross-modal hashing methods have been proposed address this problem, [16, 6],

however, the correlation is only used for feature extraction but not in the encod-

ing part. Therefore, the learned hash codes can not fully capture the semantic

relationship of the original data points.
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Figure 2: The proposed semantic deep cross-modal hashing method is an end-to-end deep learn-

ing framework. We introduce cross and within modal semantic relationship Sf and Sh into the

learning process, to ensure that the hash codes preserve the semantic correlation of the original

data.
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3. Semantic Deep Cross-modal Hashing

3.1. Model Structure

Our method is an end-to-end deep learning framework with two key parts for

cross-modal retrieval. The first part learns the correlation of data in two modali-

ties, and the second part performs semantic hash learning. As shown in Fig. 2, the

first part is from Image-data and Text-data to Feature(fx) and Feature(fy).
Its goal is to ensure that the outputs of Img-fc3 and Txt-fc3 for each sample

preserve the correlation between modalities, and passed to the second part for se-

mantic hash learning. Thanks to the end-to-end framework, the loss of the seman-

tic hash learning part also provide feedback to the correlation learning process.

Therefore, both learning parts are seamlessly integrated, which ensures that the

semantic correlation of each sample can be well preserved by their hash codes.

3.2. Correlation Feature Learning

In the correlation feature learning part, individual pipelines are developed re-

spectively for the image and the text modalities. We adopt the AlexNet [17] for

the image network with images resized to 227 ∗ 227 ∗ 3 as the input. The last

fully connected layer is replaced with a feature layer of k-dimension(k = 256 in

our experiments), so as to reduce the high dimensionality of fc8(1000-d) in the

original Alexnet for classification. In the text pipeline, each input is a vector with

bag-of-words (BOW) representation. The network is composed of three fully con-

nected layers corresponding to the last three layers of the image network with the

same number of nodes. Details on these two pipelines are listed in Table 1. The

Local Response Normalization (LRN) is used after img-conv1 and img-conv2,

and the Rectified Linear Unit (ReLU) is used as an activation function for the first

seven layers of the image network and the first two layers of the text network.

Please note that the net structure for image feature extraction is based on wide-

ly used model (Alexnet). The main goal of this paper is to design an end-to-end

learning framework for cross-modal hashing. It uses deep network for feature

learning rather than design different neural networks to extract features. Other

deep network structures can also be used for the feature learning task, such as

VGG net.

Let X = {x1, x2, ..., xm} be the input from images, and Y = {y1, y2, ..., yn}
be the input from texts. Let fxi

= f(xi;ψx) be the output feature of Img-fc3 from

image xi and fyj = f(yi;ψy) be the output feature of Txt-fc3 from text yi, where

f ∈ R
k, ψx and ψy are the parameters of the two networks respectively. The goal

of this part is to guarantee that fxi
and fyj capture the correlation of cross-modal
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Table 1: Configuration of two networks for images and texts: kernel (k), stride (s), pad (p), pooling

kernel (pk), and pooling stride (ps).

Layer Configuration

img-conv1 k : 96× 11× 11, s : 4, p : 0, pk : 3, ps : 2

img-conv2 k : 256× 5× 5, s : 4, p : 2, pk : 3, ps : 2

img-conv3 k : 384× 3× 3, s : 0, p : 1

img-conv4 k : 384× 3× 3, s : 0, p : 1

img-conv5 k : 256× 3× 3, s : 0, p : 1, pk : 3, ps : 2

fc(img)
img-fc1:4096 img-fc2:4096

img-fc3:256

fc(txt)
txt-fc1:4096 txt-fc2:4096

txt-fc3:256

data. To achieve this goal, we define a correlation similarity matrix S
f for feature

learning, where sfij = 0 if image xi and text yj have different labels and sfij =

1 otherwise. Therefore, Sf is associated with the semantic information given

by labels. Inspired by [7, 16], we use logarithm Maximum a Posteriori (MAP)

estimation to learn features Fx = {fx1
; fx2

; ...; fxm
} and Fy = {fy1 ; fy2 ; ...; fyn}.

Its objective function is defined as:

log p(Fx,Fy|S
f ) ∝ log p(Sf |Fx,Fy)p(Fx)p(Fy) (1)

where p(Fx) and p(Fy) are the prior distributions of Fx and Fy, respectively, and

p(Fx,Fy|S
f ) is a likelihood function.

The objective function can be rewritten as:

max
∑

i,j

log p(sfij|fxi
, fyj)p(fxi

)p(fyj) (2)

where p(sfij|fxi
, fyj) is the probability of the correlation between xi and yj . If both

xi and yj are given, it can be calculated as:

p(sfij|fxi
, fyj) = φ(fxi

, fyj)
s
f
ij(1− φ(fxi

, fyj))
1−s

f
ij (3)

where φ(fxi
, fyj) = 1/(1 + e−f

T
xi
·fyj ) is a sigmoid function. f

T

xi
· fyj is the inner

product of vectors fxi
and fyj .
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We can consider Eq. (3) as an extension of a logistic regression classifier. If

sfij = 1, the larger fTxi
· fyj is, the larger p(sfij = 1|fxi

, fyj) we can get. This means

two samples are similar. Conversely, if p(sfij = 0|fxi
, fyj) is large, two samples are

dissimilar. When Eq. (3) is maximized, the feature level relationship S
f between

different modalities can be preserved in the extracted features fxi
and fyj . Finally,

combining Eqs. (1)-(3), we can get the cross-model loss at feature level:

Lf =
∑

s
f
ij

log(1 + exp(fTxi
· fyj))− sfijf

T

xi
· fyj (4)

With minimized Eq. (4), if the relationship of two samples is sfij = 1, the inner

product of their features shall be large. If sfij = 0, the inner product shall be smal-

l. Though the learned features preserve cross-modal correlation in some degrees,

directly quantizing them for hash codes generation is not optimal. We design a

semantic hash learning part with corresponding constraint to preserve the corre-

lation of binary codes. Integrated in an end-to-end framework, this design also

allows the hash learning to contribute to the feature learning, i.e., the gradient in

the back-propagation of feature learning network also contains the semantic hash

learning part. It is an assurance for high quality hash codes generation.

3.3. Semantic Hash Learning

For cross-modal hashing, we aim to encode data from different modalities

to ensure their binary codes preserve the correlation of features generated from

the original data. Unlike the existing deep cross-model methods which directly

quantize the feature, our method uses the learned features for coding with the goal

of reducing the coding error. To model the semantic similarity of data, we use

class labels to provide the code level relationship for supervised hash function

learning. If two samples are in the same class, no matter which modality they

belong to, their hash codes should be similar in the Hamming space.

As shown in Fig. 2, the hash codes learning step is from Feature(fx) and

Feature(fy) to the end of the net, which transforms fxi
and fyj into binary codes.

The proposed network first takes the features fxi
and fyj together to form a col-

lection with all features from two modalities. Then we link the feature layer with

the hash learning network so it is fully connected with fc4. The calculation of the

final hash codes is based on fc4.

Let B = {b1,b2, ...,bm+n} be the hash codes of data samples, m and n are

the number of data in each modality, and S
h denote the pairwise similarity for
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hash codes learning. To preserve the semantic similarity, the learned binary codes

should be close to S
h. Therefore, the binary codes can be learned by minimizing:

||
1

r
B

T
B− S

h||2

s.t. B ∈ {−1, 1}r×(m+n)
(5)

where r is the length of the hash codes. Since the value of each element in B is

binary, the value of each S
h
ij shall be either 1 or −1, which means the pairwise

relationship is similar or dissimilar. With minimized Eq. (5), if the similarity of

two samples shi,j = 1, their hash codes bi and bj are similar. Otherwise, shi,j = 0
leads to dissimilar of their hash codes in Hamming space. So Eq. (5) can effec-

tively restrain the hash codes learning. However, solving this objective function

is an NP hard problem. We relax the problem by replacing Eq. (5) with:

min ||
1

r
Z

T
Z− S

h||2 + ||Z−B||2

s.t. B ∈ {−1, 1}r×(m+n)
(6)

where Z = {z1, z2, ..., zm+n} are the values of fc4 in Fig. (2), and B contains

the binary codes. We do not directly adopt a symmetric relaxation, such as using

Z ≈ B and sign Z to obtain B, because it may produce a large accumulated

quantization error between sgn(Z) and Z. The new objective function is a discrete

optimization function, which is based on the asymmetric relaxation strategy and

can further reduce the quantization error. In Eq. (6), we force the binary codes

B to be similar to the feature, and minimize the differences between the features

and matrix S
h. In this way, both binary property of the codes and the semantic

similarity of data can be guaranteed. Moreover, two terms ||1
r
Z

T
Z − I||2 and

1
r
||Z||2 are added for independence and balance properties of the hash codes. The

final objective function is:

minLh = ||
1

r
Z

T
Z− S

h||2 + β1||Z−B||2

+ β2||
1

r
ZZ

T − I||2 +
β3
r
||Z||2

s.t. B ∈ {−1, 1}r×(m+n)

(7)

where βi(i ∈ 1, 2, 3) are the hyper-parameters to control the contribution of dis-

crete constraint, independence, and balance properties of codes respectively. Note

that, this influences not only the hash learning step, but also the feature learning
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part. Eqs. (4) and (7) are very important, especially the Eq. (7), since the the fea-

ture learning step is partly based on Eq. (7), which is a semantic embedding step

to guarantee the quality of hash codes. Since using Eq. (4) only can not guaran-

tee high quality feature learning, we combine Eq. (4) and Eq. (7) to give a dual

semantic constraint so as to achieve good performance.

The semantic hash learning objective minL = Lf + γLh can be written as

min
Θf ,Θh,B

L =
∑

s
f
i,j

log(1 + exp(fTxi
· fyj))− sfijf

T

xi
· fyj

+ γ(||
1

r
Z

T
Z− S

h||2 + β1||Z−B||2

+ β2||
1

r
ZZ

T − I||2 +
β3
r
||Z||2)

s.t. B ∈ {−1, 1}r×(m+n)

(8)

where γ is used to adjust the contribution of the feature learning and the hash

codes learning parts. In this final objective function, three sets of parameters have

to be solved. Θf = {ψx, ψy} denotes the parameters of the feature learning part,

which can be solved based on the final loss L. Θh denotes the parameters of hash

learning part, whose solution is based on the loss Lh. Therefore, Θf is guided

not only by the correlation between multi-modal data S
f but also by the semantic

similarity S
h.

An alternating learning strategy is adopted to learn the parameters. We can

efficiently optimize the network parameters Θf and Θh via automatic differentia-

tion techniques in Google TensorFlow [1]. Specifically, in each iteration, we first

optimize Z with B, fxi
and fyi fixed to obtain the net parameters Θh. Then we fix

B and Z for optimization of fxi
and fyi to obtain the net parameters Θf . The whole

Back-Propagation is accomplished by TensorFlow. Finally with Θf and Θh fixed,

we can obtain fxi
, fyi and Z by Tensorflow Forward-Propagation. After removing

the uncorrelated, the target can be written as follows:

max tr(ZT
B) =

∑
z
T

i bi

s.t. bi ∈ {−1, 1}r
(9)

It is easy to find that, to maximize the objective function, the hash codes bi for

each sample must keep the same sign as zi, so we can get B by

B = sign(Z) (10)

9



The hash codes of a query can be obtained based on its modality. The hash codes

of an image sample can be obtained through the image pipeline, and the hash

codes of a text sample can be obtained through the text pipeline.

The pseudo-code for training is shown in Algorithm 1.

Algorithm 1: The pseudo-code of Semantic Deep Cross-modal Hashing.

Data: Training image data X and text data Y , similarity matrix S
f and S

h,

the hash codes length r.
Result: Parameters Θf and Θh of the network, and the hash codes B.

Set batch size batch = 64, the number of iteration t = max(m,n)/batch
Initialize Θf and Θh.

Initialize B by ITQ [13].

while epoch ≤ maxepoch do

for iteration = 1, 2, ..., t do

Randomly sample batch data from X and Y to form mini-batch.

Do Forward-Propagation to calculate each fxi
, fyi and Z.

Update the parameter Θh and Θf in sequence by using automatic

Back-Propagation in Google TensorFlow [1].

end

Update B according to Eq. (10).

end

4. Experiments

Our method was implemented using Google TensorFlow [1]. The network was

trained on a NVIDIA TITANX 12GB GPU. All experiments were undertaken on

image-text datasets.

4.1. Datasets

Three datasets were used for experiments, including NUS-WIDE [9], MIR-

FLICKR [15], and IAPR-TC12 [11].

NUS-WIDE is a multi-label dataset containing more than 260k images, with a

total number of 5, 018 unique tags. Each image is annotated with one or multiple

labels from 81 concepts. Following the previous works on the dataset [41, 16],
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Table 2: MAPs of different methods for Image-to-Text retrieval task.

Methods
NUS-WIDE MIR-FLICKR IAPR-TC12

16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

IMH 0.385 0.393 0.418 0.532 0.541 0.557 0.406 0.415 0.423

CorrAE 0.411 0.430 0.474 0.595 0.602 0.623 0.442 0.466 0.478

SCM 0.431 0.445 0.465 0.573 0.589 0.606 0.537 0.569 0.591

CM-NN 0.601 0.616 0.623 0.680 0.731 0.740 0.542 0.548 0.465

QCH 0.487 0.489 0.502 0.621 0.635 0.651 0.501 0.506 0.521

SePH 0.523 0.568 0.573 0.635 0.649 0.671 0.443 0.457 0.474

PRDH 0.771 0.805 0.823 0.815 0.832 0.837 0.701 0.733 0.750

DBRC 0.463 0.471 0.481 0.581 0.596 0.602 0.451 0.467 0.478

NDCH 0.733 0.759 0.779 0.776 0.802 0.815 0.607 0.648 0.673

DVSH 0.765 0.778 0.796 0.805 0.816 0.827 0.692 0.731 0.749

DCMH 0.773 0.804 0.815 0.805 0.824 0.835 0.625 0.697 0.723

SDCH 0.813 0.834 0.841 0.845 0.866 0.873 0.726 0.787 0.803

we used a subset of 195, 834 image-text pairs belonging to 21 most frequent con-

cepts. All images were resized to 256 ∗ 256 ∗ 3 and all texts for each sample were

represented as bag-of-words (BOW) vectors of 1000 dimensions.

MIR-FLICKR is a dataset of 25k images collected from the Flickr website.

We selected those samples with at least 20 textual tags for our experiment. All

images were resized to 256∗256∗3 and the corresponding texts were represented

as BOW vectors of 1386 dimensions. Each sample was labeled with some of the

24 concepts.

IAPR-TC12 dataset contains 20k images collected from a wide variety of

domains, such as sports, actions, people, animals, cities, landscapes, and so on.

Each image is associated with at least one sentence annotation. The text for each

data point was represented as a 2912 dimensional bag-of-words vector. All images

were resized to 256 ∗ 256 ∗ 3. We used 22 most frequent concepts, and selected

the corresponding samples to generate the image-sentence pairs.

For all datasets, if two data samples share at least one common label, we con-

sidered them as similar. Otherwise, they were considered to be dissimilar.
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Table 3: MAPs of different methods for Text-to-Image retrieval task.

Methods
NUS-WIDE MIR-FLICKR IAPR-TC12

16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

IMH 0.358 0.366 0.387 0.531 0.543 0.554 0.431 0.450 0.465

CorrAE 0.411 0.427 0.458 0.586 0.594 0.611 0.448 0.468 0.470

SCM 0.433 0.448 0.465 0.536 0.544 0.571 0.515 0.528 0.531

CM-NN 0.585 0.597 0.623 0.670 0.681 0.709 0.497 0.505 0.522

QCH 0.463 0.475 0.494 0.608 0.621 0.650 0.487 0.506 0.521

SePH 0.540 0.578 0.595 0.643 0.656 0.686 0.425 0.445 0.460

PRDH 0.771 0.805 0.823 0.803 0.831 0.843 0.685 0.714 0.732

DBRC 0.453 0.469 0.471 0.583 0.596 0.601 0.463 0.479 0.491

NDCH 0.723 0.731 0.751 0.745 0.785 0.813 0.651 0.676 0.679

DVSH 0.731 0.738 0.753 0.731 0.754 0.775 0.643 0.674 0.695

DCMH 0.770 0.803 0.811 0.801 0.821 0.833 0.679 0.707 0.726

SDCH 0.823 0.857 0.868 0.831 0.856 0.863 0.704 0.783 0.797

4.2. Baselines

For comparison, we used eight state-of-the-art cross-modal hashing meth-

ods as baselines, including IMH [36] , CorrAE [12], SCM [48], CM-NN [32],

QCH [42], SePH [25], PRDH [45], DBRC [22], NDCH [31], DVSH [6], and

DCMH [16]. The codes of IMH, CorrAE, CM-NN, SePH, DVSH, DCMH are

provided online by the corresponding authors. We implemented the rest of the

methods whose codes are not available.

To evaluate the retrieval performance, we followed the approaches in [16, 6,

25, 42] and used three criteria: precision-recall curve, mean Average Precision

(mAP) and precision@top-R curves. The precision and recall are calculated by

precision =
Number of retrieved relevant pairs

Total number of retrieved pairs
(11)

recall =
Number of retrieved relevant pairs

Total number of all relevant pairs
(12)

For the mAP, we adopted mAP @R = 500 which is the same as in [6, 25, 42].
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Figure 3: Examples on MIR-FLICKR dataset of the top-5 retrieval results of our SDCH and

DCMH whose performance is next to ours. The correct result is shown with a green box.

With respect to hand-crafted feature based methods, for a fair comparison, we

used CNN feature with 4096 dimensions extracted from the trained Alexnet [17]

to represent each image. For the deep learning baseline methods, we assigned pre-

trained parameters to their models, and determine the parameters of each method

under comparison by cross-validation, then all results are averaged over five runs.

For our method, we initialized all parameters as follows. For Θf , the param-

eters of the first seven layers in the image pipeline were assigned with the values

according to the first seven layers of the trained model of the Alexnet [17]. The

parameters in pipeline of text (Txt − fc1 to Txt − fc3), the last layer of image

pipeline (Img − fc8), and fc4 of the hashing part were assigned random values

with a normal distribution. In the first epoch, we set the learning rate of Θh to 0
and only updated Θf . For B, we used ITQ [13] with zi(i = 1, ..., (m + n)) as

the input to give initialize B. Then we set the learning rate of Θf to 0 to update

Θh with B in the second epoch to ensure Θh have good initial values. After the

second epoch, all learning were set to normal in order to train the whole network.

The hyper-parameters β1, β2, β3, and γ were set to 1, 1, 0.1, and 0.01, respective-

ly. The size of mini-batch for training was set to 64, the max − epoch was set to

50, and the learning rates for the feature extraction part and the hash codes part
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Figure 4: Precision-recall curves on three datasets. The code length is 32. The top row is the

results of Image-to-Text retrieval tasks. The bottom row is the results of Text-to-Image retrieval

tasks.

were set to 10−3 and 10−2, respectively. Since the parameters of the first seven

layers in the image pipeline were initialized with the trained model of Alexnet,

the corresponding learning rate was set to 10−1 of the rate of the feature learning

part. All experiments were run for at least five times, and we report the average

result.

4.3. Results and Discussions

The mAP results for our SDCH method and other baselines on NUS-WIDE,

MIR-FLICKR, and IAPRIAPR-TC12 datasets are reported in Table 2 and Table 3.

We evaluated all methods with different lengths of hash codes. Table 2 shows

the Image-to-Text retrieval result, which denotes the case where the query is an

image and the dataset contains text. Table 3 shows the Text-to-Image retrieval

result. We find that SDCH outperforms all the other baselines, especially on the

Text-to-Image tasks. SDCH achieves significant increases of 5.7, 3.0, and 7.7 per-
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Figure 5: Precision@top-R curves on three datasets. The code length is 32. The top row shows

results of Image-to-Text retrieval tasks. The bottom row shows results of Text-to-Image retrieval

tasks.

cent in average mAP under 64 bits over the second best method on NUS-WIDE,

MIR-FLICKR, and IAPRIAPR-TC12, respectively. The performance of the deep

learning-based methods (DVSH, DCMH) is next after ours, which is much better

than the hand-crafted feature based methods.

For the hash lookup protocol, the precision-recall curves with 32 bits for

the Image-to-Text and Text-to-Image tasks on three datasets are shown in Fig. 4.

It can be seen that supervised deep learning based methods outperform hand-

crafted feature based methods by large margins. Deep learning with a suitable

network structure and loss function is essential for improving the performance

of cross-model retrieval task. The loss of SDCH is designed not only for the

hash codes learning but also for the feature extraction step. Good features are the

basis of good hash codes. Moreover, SDCH takes two kinds of data together to

keep the relationship in Hamming space for both modalities. With dual semantic

supervision and specially designed network structure, SDCH achieves the best
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Table 4: The running time of each experiment. Hash time means the time to map one sample to

hash code.

Dataset Epoch Training time Hash time (image) Hash time (text)

NUS-WIDE 50 11551s 3ms 1ms

MIR-FLICKR 50 1539s 3ms 1ms

IAPR-TC12 50 1377s 3ms 1ms

cross-modal retrieval performance at all recall levels. From the curves, we can

see that SDCH is robust to diverse retrieval scenarios with higher recall tolerating

lower precision through the curves.

The precision@top-R curves with 32 bits are reported for the two cross-modal

retrieval tasks: image query on text dataset (I → T ), and text query on image

dataset (T → I). The results on three datasets are shown in Fig. 5. It can be seen

that though using deep features, these hand-crafted feature based methods still

have a large gap compared with the deep learning based methods. The curves in

these figures shows that SDCH outperforms all other cross-modal retrieval meth-

ods, which confirms that SDCH is suitable for the applications that prefer higher

precision with fewer top-R retrieved results. The running time of each experiment

is shown in Table. 4.

In summary, the experimental results show that the proposed SDCH method

has achieved better performance than several state-of-the-art methods in all three

hash-based retrieval protocols, especially in the Text-to-Image task. Since our

method takes fully advantage of the semantic relationship in the data, including

both inter-relationship and inner-relationship among modalities, to supervise the

hash codes learning process, the codes of each sample can better preserve the

semantic similarity of the original data in the Hamming space of hash codes.

4.4. Parameter Sensitivity

We ran experiments to analyse the influence of hyper-parameters γ and βi(i =
1, 2, 3). The range for hyper-parameter γ was set to 0.001 < γ < 2. Fig 6(a)

shows the MAP results on three datasets with different values, where the code

length was 64 bits and βi(i = 1, 2, 3) are set to 1, 1 and 0.1 respectively.

With γ → 0, the model gradually lose the hash learning part, leading to the

reduction of performance. With a large γ, the proportion of feature learning part

declines which influences the performance of the whole network. The best result

is reached when γ = 0.01. With respect to βi(i = 1, 2, 3), we changed each of
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Figure 6: The MAP@64bitsversus the parameter γ ∈ [0.001, 2] and βi ∈ [0.01, 20] for the two

cross-modal retrieval tasks.

them in the range of (0.01, 20) while fixing the others to 1 with γ set to 0.01.

The results on MIR-FLICKR dataset are shown in Fig. 6(b) with 64 bits code

length. It can be seen from the Figure that the β1 is the most important parameter

in hashing part since it control the balance of the term restraining the hash codes

preserving similarity of each sample. From these figures, we can see that SDCH

can outperform all the baseline methods by large margins with the parameters γ
between 0.01 and 0.1, and all βi(i = 1, 2, 3) between 0.1 and 1.

5. Conclusion

In this paper, we have introduced a novel hashing method, called Semantic

Deep Cross-modal Hashing(SDCH), for cross-modal retrieval applications. SD-

CH is an end-to-end deep learning framework which takes relationship between

and within modalities into consideration. A specific loss function with dual se-

mantic supervision and corresponding net structure are designed to guarantee ef-

fective hash codes learning. Experiments show that SDCH outperforms sever-

al baselines and achieves the state-of-the-art performance on three widely used

image-sentences datasets.
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