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ABSTRACT

Very low permeability soils and rocks can act as a semi-permeable osmotic membienevill generate
osmotic flow. Such complexities have been extensively studied, but dual chemical osmosikjgheeinf
of sorption on chemical osmotic flow and the consequent influence on the wnesdiange remains
unclear. This study extends mixture-coupling theory, by including chemical sceptimpy and chemical
potential, and provides a new-coupled formulation for chemical transport inovemyermeability rock.
The classical Darcy’s Law and Fick’s Law have been modified to include the influence of chemical
potential and sorption under relevant conditions, and dual chemical osmosis. The medbéoicetion
has been coupled with the water and chemical flows using Helmholtz free enerdly, Bire@upled
unsaturated hydro-mechanical-chemical model which considers dual chemical osmosigptoil iso
presented. This mathematical model provides the possibility of using dualcaletoi control osmotic
flow and chemical transport, which leads to important engineering applications shiobkeam the field of

nuclear waste disposal.
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1 INTRODUCTION

Chemical osmosis is an important process in very low permeability soils and reksthe hydraulic

conductivity is less thah0 ™ m/s [1]. Such soils and rocks can act as semi-permeable membranes and
restrict the migration of large solute molecules. Solutes in the subsurfaich, ave influenced by this
process, originate from a diverse range of sources and industrial applicatiardingchrbon geological
storage and nuclear waste disposal. Single chemical osmosis has been studied watimvastd disposal

and Darcy’s Law has been extended accordingly [2, 3]. However, dual coupled chemical osmosis, the
influence of sorption, and its subsequent effect on solid consolidation has&igedeany attention. This
knowledge is important because it provides a deeper understanding of chemggbrtran very low
permeability porous media; a better prediction of chemicals transport witrdemtgyn of molecular-
coupling of dual chemicals, and most importantly it potentially offers a neWwocheéb control specific

chemicals (e.g. radionuclides) by using another non-harmful chemical.

Several approaches have been developed to model the coupling between thermo-hydro-mechanical
chemical components. These comprise : (1) mechanics approach, based on classicaticon$motées

of Terzaghi [4] and Biot [5, 6], in which considerable research has been dadnejrig the development

of hydro-mechanical coupled models , and theoretical analysis of thermal and/or chetimy d@ug];

(2) mixture theory approach, which was firstly developed by Truesdell [9] and further extended by Bowen
[10-12], maintains the individuality of the solid and fluid phases [12, 18 recent contribution by
Rajagopal etc. [14-18]. A comprehensive review of this approach has been completech landiRiraine

[19]. This approach has the difficulties of obtaining information on the intenalstitween the phases as
discussed by Rajagopal [15]; and (3) Mixture-Coupling theory approach, which confiteredvantage

of both former approaches, provides a smooth link between geophysics and geoct8miir23]
Mixture coupling theory was formally known as Modified Mixture Theory art firoposed by [23] for
saturated rocks. It was later extended to unsaturated conditions and non-isothermal co@jtk¥h26).

As the name Modified Mixture Theory does not fully describe the core of this approach, and also does not
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make clear distinctions from other “Modified Mixture Theory” such as [27], it iS necessary to renameag
Mixture Coupling Theory [3], in this case, the coupling of both fluids aslitiss as multiphases is
specifically addressed (with consideration of secondary phases arising from ¢headtian between

groundwater and soils or rock in the future).

The comparison between these three approaches has been summarized by [25]. The mechanics approach
has the advantage of being able to deal with a hydro-mechanical coupled modahitiatieactions are

included, this approach has to use formulations from chemistry to interpret chieamsport, due to the
knowledge gap between geochemistry and geophysics [28]. Mixture theory has difficutilgtsining
information on the interactions between solid/fluid phases, and also to deal with the coliplingnicals

[12, 13]. Mixture Coupling Theory has successfully overcome the challenges thabdhe domain
approaches face, and has generated more advanced constitutive coupled equatioriptfasenildtw in

deformable porous media [3, 25, 29].

Couplings have been further classified into two groups by Chen and Hicks (28t3hal (or structure
coupling) and internal coupling. External coupling is a macro-level coupling, wheressal coupling
may be viewed as micro-level coupling (e.g. chemical transport coupled with gratendwMixture
Coupling Theory has great potential to deal with internal coupling. & lih& force analysis for external
coupling and the energy analysis for internal coupling, by using continuum thermonssciuaghinon-

equilibrium thermodynamics [22, 23, 30].

In this paper, Mixture Coupling Theory has been extended to dual chemicals couplingtidmgrar
Darcy’s Law, Fick’s Law and Biot’s equation have been modified by including chemical potential and

sorption, and a new fully-coupled formulation derived.

2 FUNCTION OF BALANCE LAWS FOR AN OPEN SYSTEM
An arbitrary sub-regior2 is chosen in the rock or soil amdis the boundary which is assumed to be

attached to the solid phase to ensure no solid moves across the boundary. lyoteengtiscussion, two
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assumptions are made: (1) there are only two solutes, one is a non-sorbing cearticalother could be

absorbed during transport. The chemical potential of the solutes and watﬁsr amnd §CN and &,

respectively; (2) the continuous gas in the unsaturated zone is at atmospheairie paessBmnequals zero.

131, 32].

2.1 Flux definition

The flux is given as :
Iﬁ:/bﬂ(vp_vs); p=worc (1)
in which
e |gis the flux andys is the velocity, respectively.

* Dy is the fluid density of the watef£w) or chemical =c) component, relative to the unit
volume of the fluid-solid mixture. If chemicals are divided into non-adsorbgyignd adsorbed
fractions (Cs), then equation (1) may be interpreted as :

=PV = V)i L, =g, (Ve —V Y i | (= v~V ) @

wherep, =p, +p0, -

Specifically, the relationship between fluid mass dengifyand the true mass density, can be
described as
ﬁﬂ = ¢ﬂpﬁ (3

where g, is the volume fraction of the relevant fluid component.

If S, is the saturation of the fluid, the relationship betwggrand the porosity of the mediugh is given

by :



2.4 =S¢ (4)

Equation (4) is based on the assumption that gas transport is ignored here.

2.2 Mass and ener gy balance
(1) Solid balance equation: In a continuous porous medisthere is no solid mass flux into the region
Q (note here, it is assumed that sorption will not change the solid mass of the region), the balance

equation for the solid can be described as :

D
E[IPSdQ} =0 ®)
Q
where the solid density is denoted py. The material time derivative is given by ;

Rt:§+vs-v (6)

(2) Fluid balance equation: Becaugeis an open system, which leads to the exchange of fluid mass
(water and non-adsorbed chemical), the balance equation for the fluid (water and chemicationo reac

assumption) can be expressed as

D(¢-.
E(£IoﬁdQJ:—l|ﬂ~ndr )
However, if the ith chemical may be created or destroyed (reaction term or soujceitarthe rateQ, ,

measured in mass per unit volume of porous medium per unit time, equation (7) can be rewritten as [33] :

D%“pﬂdgj:—jlﬁ-ndrﬂ'cgﬂds) (8)
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whereQ, is the adsorbed chemical densi, depends on x,y,z and t through its dependencg arit

can measure an adsorption rate, a decay rate, a rate of consumption in a chemical rea&ioa,gyoesh

or death rate if the tracer is biological.

(3) Helmholtz free energy balance equation:
D
EtuwdQJ = —lcn-vsdl“—l(fwlw+ £ X, +&.I,)nd - Ti;/dQ (9)

whereo is the Cauchy stress tensgiis the Helmholtz free energy densitly s the constant temperature,

n is the outward unit normal vector gnds the entropy production per unit volume.

2.3 Transport theorem for local zone
Reynold’s transport theorem is adopted to give the local balance equations.
The balance equation for the solid mass is :
p+pV-v,=0 (10)

The balance equation for a fluid component is ;

o
%wﬂv-vsw-lﬂqﬂ:o (1)

Note that it is assumed that,@nd Qn are zero, as there no loss of water and non-adsorbed chemical

during the transport process.

The balance equation for the free enasgy

VYV V=V (0v )+ V(L E T +E] ) =-Ty <0 (12)

3 SORPTION AND DISSIPATION ENTROPY
Previous studies for Mixture Coupling Theory have assumed that only one dissipa&ithanism exists

when fluid moves through the porous media [20, 25, 34]. However, the entropy of this sysieatso



change as chemical mass may be stabilized on the surface of the porous metia fhaich condition in
the process of sorption. The reasons for entropy change, including the sonptjdre summarized as: (1)
friction generated at the solid/water boundary; (2) two processes operate for the chentiedlsich the
dissipation between the chemical fluids/solid boundary, which is covered i@spr@t), and partitioning
of the chemicals during the sorption process. Non-equilibrium thermodynamibsdrasised to derive

the dissipation and sorption function [34], which is :
05T7:—|W'V5W—|CN'Vé:cN—hs'Vfcs—Q A, (13)

where Q can be positive or negative, representing dissolution, sorption or chemical redetsubstance.

A¢,represents the change of chemical potential after reducing/increasing freedom ofesolecul

To focus on the coupling of the two chemicals, and simplify the discussion, th@ggrmgcs, which

shows the sorption process, could influence the diffusion process, and has been ignoradatysise

Thus, equation (13) can then be rewritten as :

0<Ty =1, V& -1, V& ~1 V& (14)

G
Equation (14) has presented the relationship between flux and chemical potential.
The total fluid mass densityp, , can be defined as :

:5f ::5W+ﬁcN +ﬁcs (15)
The fluid barycentric velocity, which is a velocity of one body relative to the center of masysiem,

is defined as the mass flux divided by the mass density, as in :

= PuVw ch~VcN + pfivcs (16)
Ps Pt Pt

Since the diffusion fluxes of the water and chemical relative to the barycentric motion cartdreasrit



Jﬁ=,5ﬂ(v,3_vf) (17)

the relationship betweeh, andJ , is:

Jﬂzlﬂ_ﬁﬂ(vf_vs) (18)

As the Darcy velocity can also be desedbhrough the equation :
Up = Sp(vi — V) (19)
the entropy production of the fluid (equation (14an be rearranged as :
0<Ty =-uy,-Vp-Q, V&, +J. V&, +I.-VEL) (20)
Using the Gibbs-Duhem equation for the fluid leads to :

PV éut P Vo, +P VS, =VD, (21)

where p, is the pore fluid pressure of the fluid mixture (i.e. the water and chemical combined) [35]

As there are only two independent diffusion fluxes within the three fluxes system:
Jy+d; +3, =0 (22)
the entropy production equatio2dj can be further rearranged
OSTQ/:_UD'Vpp_‘]cN'V(é:cN_éw)_‘](;s'v(é:%_é:w) (23)
in which :
—U, -Vp, shows the water flow driven by internal water potential difference;

Je, -V(écN —¢,) describes non-sorption chemical diffusion into water, and

Je, ~V(.§CS —£,) represents sorption-chemical diffusion into water.



4 COUPLED DIFFUSION LAW AND DARCY’S LAW

Equation (23) explains the entropy contribution of flow and relative drivirggfdtach driving force of a
specific flux may also hava coupling influence on other fluxes, which leads to the discussion of
interactions between flow and driving force by using “Phenomenological equatichsSuch equations

expressed the linear dependence of the three flows on their corresponding forcesipling between the

three flows, p,u,,, J, andJ_, and the major three driving forcéép, andV(S, -¢,), V(S -&,)

, can be obtained from

PiUp = _{%]vpp - Lizv(‘}v:cN —&w) L13V(§CS —Sw) (24)
Jo, =- % Vp, - Lzzv(qu —Suw) L23v(§% —Sw (25)
o =- % Vp, - Lszv(é:CN —Sw— L33V(§% —Sw (26)

in which L; denotes a set of phenomenological coefficients. Here, mass transport is assumedtgive thr

an isotropic medium.

The discussion of Phenomenological equations and Onsager Coefficients is explairnat studies [36]

Equations (24),45) and @6) describe the coupled diffusion fluxes and water flow with coupled influence
of water pressure and chemical potential difference. However, chemical concentraticer i® easasure
in practice than chemical potential. The following discussion will estalilie relationship between

chemical potential with chemical concentration.

The Gibbs-Duhem equation describes the link between the change of chenantiapwaith temperature
and pressure. In this paper, it is assumed that an isothermal and constant presswe egisdstifor the
mixture at the local region scale. Thus, the relationship between chewoteatial and mass fraction is

derived as:



C (d&),+C (L) ,+ C(&E) ,=0 27)
in which C, andC,, are the solute and diluent mass fractions, respectively, which can be further
defined as

CW:&:&; CCN:ﬂ:'D_CN; Cc:ﬁ:$ (28)

Pi  Ps P o Lr jo!

Also, chemical potential can be interpreted by using standard non-equilibrium thermodynamics as

1 9
V(gcS - ésw) = (Vcs _VW)Vpp + C_Wﬁvccs (29)
V(E, —&)=(v, -Vv,)Vp +iagch vC (30)
Cn . O Wi p Cw aCcN &

1
in which A :i i ,V :i i andvW:i — | presents the partial specific volumes
v oC, \p, ) OC | o oC,\ o,

w

of the solute (non-sorption and sorption ) and diluent, respectively. Thesttigaashould follow the

thermodynamic identities,

0 0
Vc — §CN , VCS =i, VW :% (31)
Y op op op
Additionally, equations (24) and (25) can be rewrittem, (v, —V,,) <<1, as
0 0
by =Kl yp P %%y P %y (32)
u C. 9C,, G oG
J —L“prv D, -VC D. -VC 33
CN_p— pp_pf o q\‘_pf Gus | (e ( )
p
=R D, .VC, -pD.-VC 34
s P pp_pf G cN_pf & Cs ( )
p

in which



L, 9, L, 0%, . L, 94 L, 0&
DCN_ 2 ’DCS 2 1] %N_ > y Dq\]s_ 2_’
C.(pi) S, Cu(p) 9C G () 9C G (o) S,

39 (

and y,, is the water’s dynamic viscosity.

In equation (35)L;, links to the typical Darcian model,.4to the Fickian modeli to the reflection

Ll 1

Lab,
(o)

represents the fluid pressure influence on chemical diffusion, which may exist in confiti@rg high

coefficient which shows the coupled influence of chemical concentration en fleav, andL =

fluid pressure gradients, or in gas transport.

From the above analysis of equations (32), (33) and (35}yBdraw and Fick’s Law have been modified
from a thermodynamic point of view, with the coupled influence between groundiestearfd chemical
diffusion. The modification of the Darcy velocity includes the effect ofctimmical concentration in Eq.
(27). By studying this model, one will realize that the effect of the chemicalentration is actually to
reduce or increase the Darcian contribution. The change of the Darcian contributicmsadstohsequent
influence on mechanical preformation, which will be discussed later. Theicatidifi of the Fickian
model includes the effect of dual chemical coupling and water pressure. By @xtehgiis model, one
will realize that chemical diffusion can be changed by other chemical diffusionrspggcand increasing

water pressure acts to reduce the diffusion process.

Onsager’s symmetry theorem [37], which is a rigorous description of thermal influences on the electrical
current and vice versa, is not used here, as it is based on an assumption of a balanced energy flow betwee
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a few subsystems by neglecting the loss during heat conduction and energy conversatatiandlt is
validated in an ideal system only with an equilibrium condition. However, @wilsock systems create a

strongly irreversible and non-equilibrium process, in which Onsager's symmetry may not be a&pplicabl

5 STRESS AND STRAIN RESPONSE
5.1 Helmholtz free energy of the system

After discussion of coupled fluxes in section 4, attention is now giviimkiphysical deformation of porous
media with the fluxes inside. By assuming that the rock maintains mechanical equilibtier=0) and
using equations (12) antl3), v can be derived as

AW -V —(VW )+ EV-L +EVD +E VD =0 (36)
Continuum mechanics has defined the state of the porous media deformation, whichugsétibe this
paper [38] as follows:

(;z_Q’ J=IV.v_, T=JF"F" (37)

0

OX 1
F=—(Xt),E==(F'F-1), J=
ax( ) 2( )

where X is an arbitrary reference configuration with a positiorat timet, E is green strainF is

deformation gradient] is second Piola-Kirchhoff stress addis the Jacobian dfF ) .

By using equations (36) and (37), the free energy in the reference configutatiaan be derived as
W=t TE |+ &0, +&, m, +E M, (38)
where
¥=Jdy; m=Jdp, = W,p,. (39)
in which m, is the mass density of the fluid in the reference configuration.

5.2 Porefluid
Fluids may exist both in the pore spaces as the bulk phase, or in clay platelelscagamscale entities

[3] ard surface of the solids (for sorption). Thermodynamic relationshipsatame used for molecular
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scale forces, but can be used for the bulk fluids in the pore spaces.:}rlr%@cehe Helmholtz free energy
density of the pore fluid) can be obtairesd
Yoore="Pp TSP +E P TSP (40)
in which p, is the pore fluid pressure. From the Gibbs-Duhem equation, the relationship between
pressure change and chemical concentration can be obtained by
Pp =&, Lo, +EPutEePe (41)
Equation(40) may be further rearranged by as
Ve =Py +&q, P, 6P HEPWHE L TEL TSP (42)
Thus by substituting equation (41) into equation (42), this leads to

lr/)porezgq\,pqq_'_é:gpg_'_é:vpm (43)

5.3 “Wet” matrix
The free energy of the “wet matrix”, including solid and surface molecular entities, can not be directly

derived because non-equilibrium thermodynamics is not applicable to potealiaular force. Thus the

free energy may be found by subtracting the contribuigy ..., due to the pore fluid, from the total free

energyV . If v=J¢ is the pore volume per unit reference volume, the free energy density of the wet

matrix may be written as

0 : ) . . .
(=300 = UITE 4 RO+ & M+ &, (44

To simply the discussiorf, m_+&. m, +¢&,m, is assumed to be one fluid and described as bound

fluid with chemical potentiat, and mass densit), .



The dual potentialWV , which is employed in the following discussion for reasons of convenience, can be

described as W=(¥-Jgy ) — PP —&,m, (45)
If W is expressed as a function E&f, P, &, the expressions fof and v M, can be obtainedrrom

the implication of Equation (45%he time derivative o¥V(E, pp,.fb) satisfies the following relationship:

W(E, p,&) =tr(TE)— po—¢,m, (46)
S0 thatTij ,U andm, can be derived as
(@ e, e
E, Py o Po e, % Je,
and also equation (46) can be rearranged as
. oW : oW oW :
W(E,p,.¢)=| = | B+ =—| P +(—j g (48)
" an Py | 6pp E; p agb Ej b

By differentiating equations (47) with respect to time, the evolution of stressygaree fraction and

bound fluid can be given as

Ti=LwB -M R +$¢ (49)
o=M;E +Qf + B 0)
m=SE+Bp+ Z (51)

where the parametets,, , M; andQ, B, andZ are defined in the following equations :

j
OBy Pp i o8, Pp i
M,,:_[ﬂJ (LJ
ij
app S aE\J Pp b



ol
P Ei %

6 THE INFLUENCE OF CHEMICAL POTENTIAL ON TRANSPORT
6.1 Chemical potential
Three chemical components are present in this paper including solute (conseraasipert of chemical,
and chemical with sorption function) and diluent (water). Using Eq (41) results in
Do = Pt PoEoy + Pl (53)
and then

(o [ij( -l ~pol) -

w

The solute chemical potential may be described as [34] :

c

;
£ =g.(p, T)+[9&—]In a (55)

where

e (. isassumed to be ignored because of the week dependerdgeoof g, .

e M, isthe molar mass art® is the universal gas constant

e & isthe activity of the solute.



The relationship betweea, and X, (the mole fraction) can be describesl

&, =1X (56)
wherer, is the activity coefficient. For an ideal solution, equation (56) leads to

=X (57)

Thus, the chain relationship betwegnand the solute mass fractis, is given through

_ XM,
C XM +@A-X M,

(58)

6.2 Reactive and non-reactive chemical transport
The general chemical transport equation can be derived by using the mass density equation (3) and the

partial mass equation (11), and substituting equali8nand employing the Euler identity

£ (S0,)+ IV-(B,l) + V-3, ~ Q=0 (59)

By assuming the fluid is incompressible and introducing the mass fre(b),ic;tn&, equation (59) can
f

be further rearranged as

£ (S99 C)+V (0, GUy) +V-3, - Q =0 (60)

As the fluid fraction and diffusion flux follows the restriction Eﬂcﬁ =1 and ZﬁJﬂ =0,

respectively, by summation of all the fluid components, equation (60) can be derived as :

£ 08.1)+V+(p1Up) - Q =0 (61

By invoking equation (61), equation (60) can be derived as



oC,
SNUpf?+pqu-VCﬁ+V-Jﬂ—QH=O (62)

7 GOVERNING FIELD EQUATIONS

The average pore pressupeis used in the paper. In the condition of mechanical equilibrunsg

assumed to equal the pore pressppe The relationship betweep,, p, p, and p,is given by

P=R=3R*+3I B~ 9P (63)
The time derivation of equation (63) is
= apw 0 ap/\/
=8, —+— R — 64
p=3 el 5 R (64)

Lewis and Scherefler (1987) has discussed equd#)nand @ is the specific moisture content (related to
pressure). Note that the potential chemical effects on specific moisture havertoeed kere to simibly

the discussion.

7.1 Solid matrix deformation
The general constitutive equations (49) and (50) describes the changes imessidrst volume fraction
in the coupling with pore pressure, chemical concentration and sthase Two equations can be further

simplified by using the following assumptions.

e Small strain assumption: Green Strain tenkgr and the Piola-Kirchhoff stres§ can be

replaced by strain tensat, and Cauchy stress; , that is :

ij?

[ 1]

where g :%(q ; TU), inwhichy (i=1,2,3)is the displacement component.



Under the mechanical equilibrium condition, the following relationship can bé&ebtto simpify the

discussion

80'”-

—Y_0 66
x (66)

e Physical and geometrical linearization: The paramdigrs M; , Q are assumed to be material-

ij 1
dependent constants, so that the non-linearity is then of a geometrical natass@sidted with
large deformations.

e Material isotropy: for isotropic materials the tenddy is diagonal, so that it can be written in the
form of the scalawx , called the Biot coefficient :

M; =ad; (67)

and the elastic stiffneds,,, can be formed as a fourth-order isotropic tensor :

Ly =G4 5 +4 4 )+(K—%jq?q§ (68)

in which Gis the rock shear modulus akds the bulk modulus.

From the above simplification, the respective equations for the solid matrix and pore voktina fran

be derivedas
. 2G). . -
S, =(K—?jgkké}j +2G§ —apg (69)
b= as, +Qp (70)

where, in a poro-elastic manneg, has a relationship with the bulk moduK, and K., as:

K
a=1-— 71
" (71)

S

in which K, is the bulk modulus of the solid matrix. The void compressibi@y,can be described as



Q=——— (72)

Note that the swelling terri},, which describes the mass density change in the “wet” matrix, has been

ignored to simpfy the discussion and focus on the dual chemical osmosis

Thus, equation (49) can be rearranged as

2. G ) -
GV u+(1_2‘/jV(V u)—aVp=0 (73)

By substituting the definition of average pressure from (57) into (66), equation (73) can kre furthe

developeds:

GVZU+(1_G2VJV(V-U)—0(HSN+§ gvﬂvpvzo (74)

7.2 Water transport coupled with deformation and dual chemical osmosis
From equations (61) and(, and by introducing equation (55) and (58), this leads to

3
ptf + Py {—V-KKW(V p-
Y7

S, 6V U+ §,p; Q;p+¢/3f %+¢ w P

(75)
RT 1 oo RT 1 oo H:O

pfrcN_ cN_pfrcS_ Cs
M, C.C, M, C.C,

Equation (75) shows that the dual chemical osmosis will have a strong influetiheemore water pressure
change. It can be further reformed with consideration of the rate of change afisatand the water

density function [39] :

¢5Sw+¢$v op; :059V+¢ja_92[9+¢_§j8_9 (76)
ot opy ot ot K, o K, ) a

w

where K, is the bulk modulus of water, such that equation (75) can be derived as

r. RT r. RT
_ V.K_kfw va_pﬂ#vcc _mvc +Sav-u+ S 1+Q D |+ 1+i aﬂzo
7 MCSCCSCW N M_C_C w @ K, /| o

oy oy W
(77)
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7.3 Chemical transport with coupled dual chemical osmosis
From equations (32§33) and 62) the chemical transport equation of a non-sorbing chemical with coupled

dual chemical osmosis can be obtained as

oC rRT r. RT
—LV iva —~DV?C, +Sgp—2— KKy VpN—pr—VQN—prLVQS VG =0
P, " ot U M, C. C, M.C.C,

(78)

And for the sorbing chemicals the equation is given as

1 oC, | Kk P I RT P 'RT
-LV| —Vp, |-DV’C_+Sgp—=—| —™|Vp-——=—VGC - \Y VG- Q0
(pw pW] S ot { U ( Ry M.C.C. “ M, C, C. S &~ @&
(79)
whereQ = —p(1- ¢)S(t) [33], in which S;is the mass of solute absorbed. By assuming instantaneous

kinetics and reaction equilibrium, this leads to
§ =kiC,, (80)
The termS could also be expressed as linear, Langmuir, Freundlich, Quadratic, Generalized Langmuir

exponential, based on a microscopic sorption mechanics analysis. Further details can be found in [33]. As

this paper is focused on the osmosis and entropy function, such details will not be discussed.

7.4 Discussion and summary

The function of dual osmosis has been incorporated within chemical transport equations. This shows that
multiple chemicals may have a combined influence on both water and chemical transport. Equation (78)

and (79) are new formulations of chemical transport which consider dual chemical osmosis

Pl RT Ve P 'RT

1
e —— —————VC_ ), and also include the influence of pressure (LV| —V on
M.C.C, = M.C.C, ) P ( [p pwl)

w

chemical transport. The general chemical transport equation in groundwater [33] is a special case of these
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two equations, which does not consider the two osmotic couplings. This general equation will lead to an
incorrect prediction of chemicals transport in a very low permeability porous media, as osmotic and

diffusion processes are the dominant forces driving the movement of water and chemicals

Equation (77) has further extended Darcy’s Law by including a dual chemical osmosis term. Without
considering this, equation (77) resolves to the same term for single chemical osmosis presented in [25].
Equation (74) shows the influence of pore water pressure on mechanical deformation, which indirectly links

the influence of chemical dual osmosis. The equation is the same as in [25]. Equation (74) can also be
obtained as approximations with confined boundary conditions from mixture theory that has been
rigorously developed [14, 15].

8 Conclusion

In this study the concept and mathematical equation of dual chemical osmosis has$emegrMixture
Coupling theory has been further extended, resulting in a new constitutive unsaturated bgdpie
mechanical-chemical model for very low permeability porous media. The poteniiiktofe Coupling
theory to bridge geophysics and geochemistry under a single unified theory has been demdrstrated.
mechanical, water and chemical energy has been combined for the analysishddigbl osmosis and
sorption in an unsaturated condition may have important engineering applications, sucleaswaste
disposal or biological tissue engineering, in which the function of a semi-permeable meexistmd he
new mathematical formulation presented in this paper provides a more accurate meatglifog such
engineering problems. Further research is needed to study the dual chemical osmosis influerliegon swe

rocks, given that clays and claystones have great swelling potential.
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