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Predicting the extinction of HIV-2 in rural
Guinea-Bissau

Helen R. Fryera, Carla Van Tienenc,e, Maarten Schim Van Der Loeff f,g,

Peter Aabyh, Zacarias J. Da Silvah, Hilton Whittlec,i,

Sarah L. Rowland-Jonesb and Thushan I. de Silvac,d

Objective: This article predicts the future epidemiology of HIV-2 in Caió, a rural region
of Guinea Bissau; and investigates whether HIV-2, which has halved in prevalence
between 1990 and 2007 and is now almost absent in young adults in Caió, can persist as
an infection of the elderly.

Design: A mathematical model of the spread of HIV-2 was tailored to the epidemic in
Caió, a village in Guinea-Bissau.

Methods: An age-stratified difference equation model of HIV-2 transmission was fitted
to age-stratified HIV-2 incidence and prevalence data from surveys conducted in Caió
in 1990, 1997 and 2007. A stochastic version of the same model was used to make
projections.

Results: HIV-2 infection is predicted to continue to rapidly decline in Caió such that
new infections will cease and prevalence will reach low levels (e.g. below 0.1%) within
a few decades. HIV-2 is not predicted to persist in the elderly.

Conclusion: HIV-2 is predicted go extinct in Caió during the second half of this century.
Copyright � 2015 Wolters Kluwer Health, Inc. All rights reserved.
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Introduction

HIV-2 is thought to have entered humans in Guinea-
Bissau around 1940 [1] and has since become endemic in
parts of West Africa [2–6]. Although less transmissible
and less pathogenic than HIV-1 [7–12], HIV-2 never-
theless kills 2–3% of infected individuals, each year [9].
Surveys carried out in Guinea-Bissau since 1987 [4,8,13–
16] have provided a detailed description of the
epidemiology of HIV-2, showing that 8.9% of adults

were infected in 1987 [8], but that prevalence almost
halved by 2007 [5,13]. HIV-2 epidemiological studies
outside of Guinea-Bissau are rare and limited to the
neighbouring countries of Senegal and The Gambia
where the epidemics have been similarly in decline [5,6].

Previous studies indicate that the majority of HIV-2
decline in Guinea-Bissau resulted from changes in risk
behaviour over the last few decades [17,18]. It is thought
that the war of independence (1963–1974) promoted the
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early spread of HIV-2 through an increase in prostitution
and expansion of medical infrastructure [3,19]. Greater
access to vaccinations and blood transfusions likely
facilitated the iatrogenic spread of HIV-2 through needle
reuse and unscreened blood [19–21]. Following the war,
prostitution probably receded and hygienic medical
practices became more widespread. Concurrently,
HIV-1 began to spread in Guinea-Bissau, reaching a
prevalence of 3.6% by 2007 [4]. HIV-1 is thought to
compete with HIV-2 [17,18,22] primarily through both
strains being more prevalent in high-risk individuals
[notably commercial sex workers (CSWs)], meaning that
HIV-1 preferentially removes HIV-2-infected individuals
from the population. Modelling work has attributed only
a minority of the decline in HIV-2 from its peak to
competition with HIV-1 [17].

Despite the marked reduction in HIV-2 prevalence since
the late-1980s, the future of the HIV-2 epidemic in
Guinea-Bissau remains unclear. In 2007, infection
amongst young adults was low (<1% amongst ages
15–34) [4]. However, infection has remained prevalent
amongst older adults (12% amongst over 45 years) [4],
susceptibility of women is believed to increase with age
[23] and it has been suggested that HIV-2 may persist as an
infection of the elderly [13].

We predict the future epidemiology of HIV-2 in Caió, a
rural region of Guinea-Bissau, by analysing temporal,
age-stratified incidence and prevalence data [4,14,16].
Specifically, we ask whether HIV-2 is likely to go extinct
in Caió or whether it will persist in the elderly.
Furthermore, we predict how HIV-2 prevalence will
change over time and when, if at all, HIV-2 will go
extinct. To address these questions, we have developed a
mathematical model of the spread of HIV-2 amongst an
age-stratified population and fitted it to data.

Materials and methods

HIV-2 data from Caió
Around 1990 (1989–1991) [14], 1997 (1996–1998) [16]
and 2007 (2006–2007) [4], HIV surveillance studies
amongst adults (over 15 years) were conducted in Caió, a
rural region of Guinea-Bissau with a population of
approximately 4000 adults. Fieldworkers visited all adults
in their homes and offered testing for HIV-1 and HIV-2.
Efforts to trace patients were not dependent upon known
HIV status. The three surveys were held in a similar
manner. More details of the surveys and HIV diagnostics
have been previously described [4]. For each survey,
participation was high (mean 74% of census-registered
individuals) and both incidence and prevalence was
measured amongst five different age categories (15–24,
25–34, 35–44, 45–54, �55 years). They reveal that
HIV-2 prevalence in adults reduced from 8.3% in 1990 to

4.7% in 2007 (Fig. 1a, circles). Despite this overall
reduction, prevalence remained higher amongst older
individuals over the same period (Fig. 1b, circles). For
example, in 1997 and 2007, prevalence amongst
individuals aged over 45 years was 22 and 12%,
respectively. By comparison prevalence amongst indi-
viduals aged 15–34 years was 3 and 0.9%, respectively.
Incidence has also remained highest amongst individuals
aged 45–54 years despite declining considerably amongst
younger adults (Fig. 1c). The most striking observation,
however, is that broadly across ages, both incidence and
prevalence have reduced over time.

Modelling the spread of HIV-2
To predict the future epidemiology of HIV-2, a model
(Fig. 2, Tables S1 and S2, http://links.lww.com/QAD/
A764) of the spread of infection in an age-structured
population was developed and tailored to the epidemic in
Caió from 1990. The population is segregated into two
infection states (susceptible and infected) and 70, one-
year age groups (15–84 years). The age structure allows
the model to account for changes in susceptibility to
HIV-2 with age and to be fitted to the age-stratified
incidence and prevalence data (Fig. 1b and c). Thus, we
can evaluate whether HIV-2 is likely to persist in the
elderly and can account for age dependency in sexual
partner choice. Although iatrogenic transmission is
thought to have contributed significantly to the early
spread of HIV-2, improvements in medical practice make
heterosexual intercourse the likely major transmission
route over the period modelled. Accordingly, the spread
of infection, adapted from [24–26], is modelled as
frequency-dependent transmission without recovery,
with contacts occurring more frequently between
individuals who are similar in age than between
individuals with a large age gap [23]. This represents a
system wherein transmission is predominantly sexual.
The average rate of partner exchange (the number of
sexual partners per year) varies in such a way that the
relative rates of partner exchange across different ages
remains fixed over time, whereas the overall rate of
partner exchange varies with time.

The population undergoes individual turnover. Hosts are
born into the population and can leave the population
(through death or emigration). Net removal rates vary
with age and HIV-2 infection status (Text S3 and
Table S2, http://links.lww.com/QAD/A764); further-
more, they vary with time to account for changes in
therapy and HIV-1 prevalence (Fig. 1d), and thus account
for competition from HIV-1 in the form of preferential
removal of high-risk individuals. Removal rates of
untreated HIV-1, HIV-2 and dually infected individuals
are estimated from data [9,10] (Table S2, http://
links.lww.com/QAD/A764). Other mechanisms of
competitive exclusion of HIV-2 by HIV-1 are not
modelled. Evidence for protective cross-immunity from
superinfection is lacking [27], and the observation that
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dual infections occur frequently [4] suggests that any
protective effect that exists is small. Within-host
competitive outgrowth of HIV-1 has been cited as
reducing viral loads – and by inference transmissibility –
of HIV-2 amongst dually infected individuals with low

CD4þ cell counts [28,29]. However, averaged across all
CD4þ cell counts [28,29], HIV-2 viremia is equal in those
harbouring single or dual infection suggesting that this
mechanism would not significantly affect HIV-2 trans-
mission.
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Fig. 1. Data and model predictions of the incidence and prevalence of HIV-2 infection in Caió. (a) The prevalence of HIV-2
infection amongst individuals aged over 15 years. Observations are represented as circular markers. Between 1990 and 2007, the
deterministic result is shown. Beyond 2007, the median and 95% confidence intervals of 5000 stochastic simulations are shown as
solid and dashed markers, respectively. (b) The prevalence of HIV-2 (including dual HIV-1/2) stratified by age in 1990, 1997 and
2007. Owing to the fact that the initial conditions of the model were fixed to observations, the observations and model predictions
for 1990 are identical. (c) The yearly incidence per person of HIV-2 stratified by age in the periods 1990–1997 and 1997–2007. In
(b) and (c), the model predictions are shown using dashed lines and crosses, whereas the data are shown with solid lines and
circles. The univariate 95% CI surrounding the data is also provided. (d) The prevalence of HIV-1 assumed in the model. Between
1990, 1997 and 2007, the assumed prevalence is interpolated from observations (black circles). Beyond 2007, the black line
represents our primary assumption that HIV-1 prevalence remains constant. The dark grey and light grey represent the assumption
of the sensitivity analyses that the prevalence of HIV-1 is 50% larger or 30% smaller by 2027 and remains fixed thereafter. (e) The
yearly incidence per person of HIV-2 in Caió amongst individuals aged over 15 years. The yearly incidences estimated during two
periods (1990–1997 and 1997–2007) from data in Caió are plotted at the midpoints of these periods (circles). Between 1990 and
2007, the deterministic model predictions (solid black line) of yearly incidence are shown. Beyond 2007, the mean (solid black
line), median (grey solid line) and 95% confidence intervals (dashed lines) of 5000 stochastic simulations are shown. Note that the
lower 95% interval is zero for all years. (f) Stochastic model predictions and 95% confidence intervals of the prevalence of HIV-2
amongst different age groups in 2017 and 2027. For comparison, the 2007 prevalence data are also presented. (g) Model
predictions of HIV-2 prevalence assuming HIV-1 is absent in the population (grey line). For comparison, our primary model
prediction assuming HIV-1 is present in the population is shown in black.



Therapy for HIV started in Caió in 2007 and therefore
would not have contributed to the observed decline of
HIV-2. No surveys were conducted in Caió after 2007,
but to model the impact of therapy beyond 2007,
mortality rates of treated HIV-1 and HIV-2-infected
individuals were inferred from other studies in West
Africa [30,31]. Based upon data from The Gambia
indicating that 79% of individuals alive after 36months of
therapy had undetectable viremia [31] treatment effec-
tiveness, both in terms of reducing the infectiousness of
HIV-2-infected individuals and preventing HIV-2
infection in singly HIV-1-infected individuals, was
assumed to equal 0.79. The fact that partnerships are
more likely to be made with high-risk individuals
who in turn are more likely to be HIV-1 positive and
therefore are also more likely to be receiving therapy is

accounted for (Text S4, http://links.lww.com/QAD/
A764) [32,33].

Removal rates for each host category (age and HIV-2
infection status) at each time were estimated to be the
weighted average of treated HIV-1-infected, untreated
HIV-1 infected and HIV-1-uninfected removal rates
amongst that host category. The weightings represent the
fraction of that host category estimated to be in each of
these three states (Figure S1, Table S2, Text S3, http://
links.lww.com/QAD/A764).

The model, formulated using difference equations (Text
S1, equations 1–4, http://links.lww.com/QAD/A764),
was fitted using maximum likelihood estimation (Text S5,
http://links.lww.com/QAD/A764) to the incidence and
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Fig. 2. A schematic representation of a difference equation model of the spread of infection through an age-stratified
population. In the model, the population is segregated by age and infection status (susceptible and infected). There are 70
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15 years are born. A description of the model equations and parameters are provided in the supplementary material.
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prevalence data from the HIV surveys conducted in Caió
in 1990, 1997 and 2007, under an assumption of
independence. A stochastic version (Text S7, equations
19–22, http://links.lww.com/QAD/A764) was also
formulated by allowing death and infection to be
governed by probabilistic methods. This was used with
5000 simulations to make our projections.

Tailoring the model to the epidemic in Caió
Model parameters achieving the global maximum of the
likelihood function were used for projections. HIV-2
infections declined in prevalence between 1990 and 1997
before declining at a greater pace between 1997 and 2007
(Fig. 1a). Our model was best able to reproduce this
pattern under the assumption that the risk of transmission
was lower between 1997 and 2007 than between 1990 and
1997. This perhaps represents improvements in medical
practices and/or reductions in sexual risk (e.g. reductions
in unprotected sex, partner exchange rates, the con-
currency of partnerships or commercial sex work) over the
nineties. Nevertheless, for simplicity, we model the
apparent reduction in risk behaviour as a stepwise
reduction, estimated to be a factor of 2.6 in the average
numberof sexual partnerships per year applied across all age
groups occurring in 1997 (Figure S2, http://links.lww.
com/QAD/A764). Confidence in this estimate provides
support for a positive reduction [95% confidence interval
(CI): 1.7–4.3]. This finding is not dependent upon the
assumption of independence of incidence and prevalence
data during model fitting (Text S6, http://links.lww.com/
QAD/A764). Estimations indicate that the effective
reproductive number, defined as the average number of
secondary infections generated by one primary infection,
declined from 0.9 between 1990 and 1997 to 0.4 between
1997 and 2007 (Text S8, http://links.lww.com/QAD/
A764).

Data from Guinea-Bissau [34] are used to specify how the
rate of partner exchange varies with age in the period
1990 to 1997. Individuals aged 20–24 have the highest
average number of partners per year (3.7) and partner
numbers decline with age (0.7/years amongst ages
70–74 years). Individuals aged 75–84 are assumed to
have no sexual partnerships. The age difference between
sexual partners is assumed to be less than 20 years for 81%
of partnerships (Text S4, http://links.lww.com/QAD/
A764) [23]. The remaining 19% of partnerships are
distributed across hosts of all ages.

Two parameters defining how the probability of infection
per partnership between an infected individual and a
susceptible individual depends upon the age of the
susceptible individual were fitted to the incidence and
prevalence data. Assuming that the frequency of coitus is
independent of age, the probability of infection per
partnership can be taken as a proxy for susceptibility with
age. As such, an attribute of our model is that it allows us
to investigate how age influences susceptibility to HIV-2,

while accounting for cohort effects and age dependency
of partner exchange rates. Previous studies have suggested
that susceptibility to HIV-2 increases with age [23], but
our findings indicate any such effect that exists is small.
Individuals aged 74 years are estimated to be 1.4 times as
susceptible as individuals aged 15 years (Figure S2, http://
links.lww.com/QAD/A764). The 95% CI (0.8–2.6)
shows that it cannot be ruled out that susceptibility is
independent of age, decreases a little with age or increases
more significantlywith age. Susceptibility to infection does
not need to increase with age to reproduce higher HIV-2
prevalence amongst older individuals. Such a pattern can
be simply explained by the modest mortality rates
associated with HIV-2 [9,10,35], combined with the fact
that as individuals get older, more time has passed for them
to become infected. Model predictions of the future
epidemiologyofHIV-2 are the samewhen susceptibility to
HIV-2 is independent of age andwhen its age-dependency
optimizes the model fit (Table S4, http://links.lww.com/
QAD/A764). We therefore assume for simplicity that
susceptibility to HIV-2 is independent of age. Additional
details about the model are provided in the supplementary
text, http://links.lww.com/QAD/A764.

Between 1990 and 2007, HIV-1 prevalence was fixed to
levels interpolated from data (Fig. 1d); beyond 2007,
prevalence was assumed to remain constant. This
simplistic assumption was made because epidemic growth
was slowing between 1990 and 2007. The fraction of
HIV-1, HIV-2 and dually infected individuals receiving
therapy was assumed to remain fixed beyond 2007 at
levels estimated from clinical records from 2014 (Table S3,
http://links.lww.com/QAD/A764).

Figure 1 shows that the optimal model fit is closely able to
reproduce the age-stratified prevalence data (Fig. 1b) and
broadly reproduce the age-stratified incidence data
(Fig. 1c). The model is not able to reproduce the high
incidence amongst individuals aged 45–54 years across
both observational periods (1990–1997 and 1997–2007)
whilst simultaneously producing markedly lower inci-
dence amongst younger adults across the second of these
periods. Owing to aging of individuals and mixing
between individuals of different ages, our model predicts
that trends in incidence or prevalence will be broadly
consistent amongst all age groups. Nevertheless, the
better fit of the model to the prevalence data is consistent
with their tighter CIs as compared with the incidence
data. The optimal model fit lies within the univariate
95% CIs surrounding the incidence and prevalence data
for each age category, providing broad support for
the model.

Results

Themodel predicts that HIV-2 will continue to decline in
prevalence and become extinct in Caió this century.
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Prevalence is expected to fall below 0.1% by 2050 (95%
stochastic CI: 2042–2065) (Fig. 1a). New infections are
predicted to cease around 2043 (2027–2075) (Fig. 1e) but
complete extinction is expected to take longer. Mortality
rates for HIV-2 are slower than for HIV-1 [9,10], meaning
that the last few individuals to acquire infection may
survive for decades. Extinction is expected to occur
around 2068 (2053–2099). By 2027, HIV-2 should
be almost absent in young adults (<0.1% amongst
15–34 years; Fig. 1f). Although HIV-2 will be more
prevalent amongst older adults at any particular point in
time, over time prevalence in older adults will continue to
decline. Thus, infection will not persist indefinitely in the
elderly. In agreement with the earlier work [17],
competition by HIV-1 is estimated to account for only
a minority of the decline of HIV-2 prevalence – 13%
between 1990 and 2007 (Fig. 1g). This suggests that risk
reductions, for example reductions in iatrogenic spread or
war-related CSW, have turned a growing epidemic in the
1960–1980s into a declining one by the 1990s.

All of the parameters in the model are derived from data,
however, mortality rates because of HIV-2 vary across
data sources [9,10,35] and data on the extent to which
contacts are segregated by age in Guinea-Bissau are
limited [23]. Sensitivity analysis (Table S4, http://
links.lww.com/QAD/A764) reveals that plausible uni-
variate changes to parameter values defining these
processes and others reduce the fit of the model to the
data and change the predicted median time to extinction
by 7 years at most.

Thus far, it has been assumed that beyond 2007, therapy
prevalence and HIV-1 prevalence remain unchanged.
Arguably, HIV-1 prevalence could decline from this level
before equilibrating because of saturation effects, or it
could continue to increase from it – older HIV-1
epidemics in Africa often exceed the 3% prevalence
observed here. Therapy rates are estimated from clinical
records from 2014, not a population survey, and therefore
may vary compared with our best estimates (Table S3,
http://links.lww.com/QAD/A764; Fig. S1d). Future
changes in therapy uptake are also plausible. It could
increase with future improvements to healthcare,
although it will always be limited by undiagnosed
infections. Population surveys have now ceased in Caió
meaning that diagnoses and therefore treatment rates
could alternatively decline in the future. The sensitivity of
our results to plausible increases or decreases in treatment
rates and/or HIV-1 rates (Table S4, http://links.lww.
com/QAD/A764) suggests that the median year of
extinction would vary by no more than 1 year. This
additionally suggests that ignoring the timing of treatment
during infection [32] will not significantly affect our
findings.

It is noteworthy that a better fit of the model to the
incidence data can be achieved by applying the contact

rate reduction in 1997 only to younger cohorts, for
example those born after 1952. A possible explanation for
this finding is that younger generations have been
adopting safer sexual practices since 1997, compared with
previously, whilst sexual practices of older generations
have remained largely unchanged. Whether such changes
have taken place is uncertain but, nevertheless, the
model’s predictions remain qualitatively unchanged. Such
an assumption adds an extra degree of freedom to the
model and does not significantly improve the fit,
according to a likelihood ratio test (P value¼ 0.18).
The optimal fit under this assumption is therefore
presented in the supplementary material (Figure S3,
http://links.lww.com/QAD/A764). As this model pro-
vides a better fit to the very low incidence observed
amongst younger adults between 1997 and 2007, it
predicts that new infections would cease sooner (2036)
and prevalence would decline more rapidly (0.1% by
2047). Extinction would occur around 2064.

How representative are our predictions for Caió of the
epidemiology of HIV-2 elsewhere? The best data from
outside Caió comes from a large HIV survey between
1987 and 2006 in urban areas of Bissau, the capital of
Guinea-Bissau [8,13] which show almost identical HIV-2
dynamics to those observed in Caió. Prevalence amongst
adults has dramatically declined from the late-1980s (8.9,
7.4 and 4.4% in 1987, 1996 and 2006, respectively,
compared with 8.3, 7.9 and 4.7% in 1990, 1997 and 2007,
respectively, in Caió) and it is now almost absent amongst
young adults (1.5% in 2006 amongst 15–34 years,
compared with 0.9% in 2007 in Caió). Our model
predictions of the prevalence in Caió are independent of
population size (Fig. 1a), and given that the epidemic
there appears representative of the rest of Guinea-Bissau,
our prevalence predictions are relevant throughout the
country. Over large populations extinction takes longer
and is less predictable, but our model (parameterized by
the Caió data) adapted to a population the size of
Guinea-Bissau (approximately 1 million adults) predicts
that new infections would cease around 2097 (95% CI:
2081–2130) and infection would persist until 2123
(2106–2154). (Figure S4, http://links.lww.com/QAD/
A764).

Discussion

The aim of this study was to investigate whether HIV-2 is
likely to go extinct in Caió or it will instead persist in the
elderly. We infer that HIV-2 cannot now sustain itself in
Caió, new infections will cease within a few decades
(median: 2043) and the infection is likely to go extinct in
this region during the second half of this century (median:
2068). The observations that infection is more prevalent
amongst the elderly and incidence has remained fairly
stable amongst individuals aged over 45 between 1990
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and 2007 does not preclude this. Furthermore, this
prediction is independent of future changes in HIV-1 or
antiretroviral prevalence in the region, of our parameter
assumptions and our particular assumptions about risk
changes during the 1990s. At most, these model
assumptions change the timescale over which extinction
is predicted to occur.

The fact that all of our model parameters are taken from
data and, in particular, those defining the transmission
dynamics are based upon data from an unusually
comprehensive series of Caió surveys adds confidence
to the model predictions. It is, however, acknowledged
that the model is a simplified representation of the spread
of HIV-2. For example, concurrency of partnerships, the
duration of partnerships, two sexes and heterogeneous
contact patterns within and between different risk groups
are not explicitly modelled. HIV-2 prevalence amongst
the elderly is higher amongst women than men [4,23] and
CSWs have elevated infection levels [16]. Such hetero-
geneities can affect epidemic dynamics [33], but since the
model is fitted to incidence and prevalence data, the
average effect of these heterogeneities on transmission
rates will be accounted for in the transmission parameters
and therefore also in our predictions. The average effect
of heterogeneities is a reasonable approximation because
there will be mixing between the groups (e.g. between
men and women and between CSWs and non-CSWs;
36% of men in Caió report ever having had sex with a
CSW [16]) and the surveys did not exclude particular risk
groups, but spanned a large majority of the population.
Arguably, men who have sex with men would have more
distinct contact networks, but they toowere not excluded
from the surveys and prevalence was lower in men than
women [4]. Thus, no separate HIV-2 epidemics are likely
to be flourishing in the community. Furthermore, the
average effects of these heterogeneities on transmission
dynamics are unlikely to vary significantly over the period
that is modelled because of limited effects of infection
saturation during this period of declining HIV-2
prevalence. The specific impact of core groups on
treatment impact is accounted for. In summary, the model
simplifications will not affect the qualitative predictions
and are unlikely to significantly affect the quantitative
predictions.

Infection amongst children was also not modelled.
Mother-to-child transmission of HIV-2 is rare [36,37]
and the observation that HIV-2 prevalence is low amongst
15–25 years (Fig. 1a) suggests that infections in children
have limited impact upon infections in adults. Further-
more, because our model and data both relate to adults,
infections in children should not significantly affect
our results.

Although HIV-2 epidemiological data from elsewhere in
West Africa are scarce, wherever available, they indicate a
similar decline [5,6]. However, the emergence of a more

transmissible strain in the future is possible. An HIV-2
recombinant, CRF01_AB, has been isolated from three
individuals with advanced disease from Nigeria, Ghana
and Japan [38]. A similar recombinant from Cote d’Ivoire
was described in 1994 [39], but the distribution and
transmissibility of these variants are unknown.

In summary, whilst we cannot rule out the persistence of
HIV-2 further afield or through future changes in risk
behaviour or strain transmissibility, our prediction is that
HIV-2 is rapidly declining in prevalence and will
eventually go extinct in Caió and neighbouring regions.
In recent years, HIV-2 epidemiological surveys have been
lacking, but we advocate their resurrection in order to test
this hypothesis.
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