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ABSTRACT Accurate determination of the genetic diversity present in the HIV qua-

sispecies is critical for the development of a preventative vaccine: in particular, little

is known about viral genetic diversity for the second type of HIV, HIV-2. A better un-

derstanding of HIV-2 biology is relevant to the HIV vaccine field because a substan-

tial proportion of infected people experience long-term viral control, and prior HIV-2

infection has been associated with slower HIV-1 disease progression in coinfected

subjects. The majority of traditional and next-generation sequencing methods have

relied on target amplification prior to sequencing, introducing biases that may ob-

scure the true signals of diversity in the viral population. Additionally, target enrich-

ment through PCR requires a priori sequence knowledge, which is lacking for HIV-2.

Therefore, a target enrichment free method of library preparation would be valuable

for the field. We applied an RNA shotgun sequencing (RNA-Seq) method without

PCR amplification to cultured viral stocks and patient plasma samples from HIV-2-

infected individuals. Libraries generated from total plasma RNA were analyzed with a

two-step pipeline: (i) de novo genome assembly, followed by (ii) read remapping. By

this approach, whole-genome sequences were generated with a 28� to 67� mean

depth of coverage. Assembled reads showed a low level of GC bias, and comparison

of the genome diversities at the intrahost level showed low diversity in the acces-

sory gene vpx in all patients. Our study demonstrates that RNA-Seq is a feasible full-

genome de novo sequencing method for blood plasma samples collected from HIV-

2-infected individuals.

IMPORTANCE An accurate picture of viral genetic diversity is critical for the devel-

opment of a globally effective HIV vaccine. However, sequencing strategies are often

complicated by target enrichment prior to sequencing, introducing biases that can

distort variant frequencies, which are not easily corrected for in downstream analy-

ses. Additionally, detailed a priori sequence knowledge is needed to inform robust

primer design when employing PCR amplification, a factor that is often lacking

when working with tropical diseases localized in developing countries. Previous

work has demonstrated that direct RNA shotgun sequencing (RNA-Seq) can be used

to circumvent these issues for hepatitis C virus (HCV) and norovirus. We applied

RNA-Seq to total RNA extracted from HIV-2 blood plasma samples, demonstrating

the applicability of this technique to HIV-2 and allowing us to generate a dynamic

picture of genetic diversity over the whole genome of HIV-2 in the context of low-

bias sequencing.
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Human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2), the two causative

agents of AIDS, are human pathogens of high importance (1). Following the

introduction of HIV-1 and HIV-2 into human populations through zoonotic transmission

of simian immunodeficiency viruses (SIVs) infecting several species of apes and non-

human primates, HIV-1 and HIV-2 are estimated to have infected more than 75 million

people worldwide, resulting in over 40 million deaths (2).

While HIV-1 and HIV-2 share some common features, a major difference between

the two viruses is the typical viral load (VL) associated with chronic infection. In patients

infected with HIV-2, viral load is strongly correlated with disease progression, and a

large proportion (�37% in the Caió cohort) maintained undetectable viral loads and

high CD4 counts in the absence of treatment during follow-up (sometimes for more

than two decades) (3). In addition, based on previous data from this cohort, subjects

with VLs of �10,000 were regarded as having a high likelihood of subsequent pro-

gression (4). Indeed, patients with a viral load of more than 10,000 copies/ml have been

suggested to be HIV-2 progressors with a reduced survival probability that is similar to

that seen in HIV-1-infected individuals in the absence of treatment (5). Furthermore,

lack of HIV-2 control is associated with lower viral loads than for HIV-1 in patients

matched by disease stage (4, 6–8).

HIV-1 disease progression has also been correlated with viral coreceptor use or

molecular properties like glycosylation patterns, charge, and length of the envelope

gene (9–12). Although cytopathic CXCR4-using virions have been isolated from HIV-2-

infected individuals in late-stage disease (13, 14), less is known about correlations

between molecular properties and disease stage in HIV-2 infection, particularly outside

the envelope gene (15, 16). One of the main barriers to a globally protective HIV vaccine

is the ability of HIV to evolve rapidly, introducing mutations that abrogate the binding

of neutralizing antibodies, rendering vaccine responses ineffective (17). Therefore, a

major focus of HIV research has been to understand the factors affecting viral evolution

and to identify viral epitopes of high conservation as potential vaccine targets (18).

Due to the relatively low copy number of the small-sized HIV single-stranded RNA

(ssRNA) genome (�10,000 bases), target enrichment is normally required prior to

sequencing in order to generate sufficient DNA for downstream sequencing applica-

tions (19). The most common method of target enrichment is PCR amplification (20).

This method has two major drawbacks. The first is the requirement for detailed a priori

sequence knowledge to inform robust primer design that ensures that the majority of

variants in the viral quasispecies are captured (21). Different amplification strategies

have shown sensitivities down to 3,000 copies/ml, demonstrating the difficulty of

generating robust and high-depth sequence data from patients without detectable

plasma viremia (22, 23). However, the sequence database for HIV-2 is significantly

smaller than for HIV-1, and a robust and sensitive pan-HIV-2 primer set has yet to be

defined and thoroughly evaluated. Mutations in primer binding sites can also reduce

binding efficiency and therefore alter the proportion of specific variants in the final pool

of amplicons or, in extreme cases, abrogate primer binding completely, resulting in the

loss of that variant in the final analysis (24). The second drawback is that PCR is

stochastically biased by amplicons from previous cycles acting as templates in the

subsequent amplification cycles with the potential to further distort the picture of the

viral diversity (25).

Several methods have been proposed to circumvent these problems and reduce the

biases introduced into sequencing data through target enrichment. For example,

primer identification (ID) allows identification of reads derived from the same viral

template through incorporation of a unique 8-mer tag during the reverse transcription

of viral RNA (26). Downstream reads can be pooled according to template, and multiple

reads from the same template can be used for error correction. A study using primer
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ID observed biased diversity estimates between 2- and 100-fold compared to a library

generated without any PCR bias correction, highlighting the importance of considering

this factor when sequencing a highly diverse population, such as HIV (26). However,

primer ID still relies on sufficient a priori sequence knowledge to allow robust primer

design, and the incorporation of the barcode into the 3= end of the cDNA molecule

means that it is not applicable to library preparation techniques involving random

fragmentation of the target, such as those employed when using Illumina platforms.

Shotgun RNA sequencing (RNA-Seq) has been demonstrated as a powerful tool for

the study of RNA viruses (27). Library preparation is performed using random-hexamer

priming of the total RNA in a sample, negating the need for sequence-specific target

enrichment (28). This is particularly desirable for HIV-2, for which the sequence data

available are significantly limited compared with those for HIV-1. Few studies have

applied RNA-Seq to human RNA viruses. For example, Ninomiya et al. applied RNA-Seq

to plasma samples taken from two chronically hepatitis C virus (HCV)-infected patients

and demonstrated nearly full-length genome sequences with a mean depth of cover-

age between 50� to 70� for the two patients (29). In another study, Batty et al. further

expanded this method, presenting a high-throughput method for norovirus sequenc-

ing allowing 77 fecal samples to be sequenced, with a mean depth of coverage of 100�

and a success rate of more than 99% (30). The authors compared this with a PCR

amplification strategy and found that the success rate for whole-genome amplification

using PCR was 29%. This represents a significant decrease in the performance com-

pared to that of RNA-Seq. RNA-Seq has also been used for the discovery of two novel

SIVs, demonstrating the power of this method of sequencing without prior sequence

information in viral discovery (31).

In the present study, we applied RNA-Seq library preparation methods to both

patient plasma samples taken from a rural West African community cohort and cultured

lab-adapted HIV-2 reference strains. We show that RNA-Seq followed by de novo

assembly is a feasible and powerful approach when applied to HIV-2 samples with viral

loads of at least 5,280 copies/ml. In addition, we demonstrate that RNA-Seq represents

a novel, low-bias method of HIV-2 sequencing. Finally, we computed estimates of

nucleotide diversity for each gene of HIV-2 on both the intra- and interhost levels.

These analyses indicated consistently low estimates of diversity in the accessory gene

vpx within hosts, highlighting the importance of this HIV-2-specific gene in successful

HIV-2 infection.

RESULTS

Patient and sample characteristics. Samples from a panel of six members of the

Caió HIV-2 community cohort (TD003, TD006, TD013, TD024, TD031, and TD062), whose

plasma viral loads represented the broad spectrum seen in natural HIV-2 infection, as

well as cultures of two lab-adapted HIV-2 strains (HIV-2 ROD and HIV-2 CBL20) were

subjected to standard RNA-Seq library preparation (Table 1).

Assessment of RNA-Seq using HIV-2 ROD. First, we assessed the performance of

RNA-Seq using the well-characterized reference strain HIV-2 ROD. Following initial

TABLE 1 Clinical data related to the analyzed samples and controlsa

Sample Sampling year Sexb Country CD4 (cells/�l) Viral load (cp/ml)c
Clinical status at

sample date

TD003 2010 F Guinea-Bissau 560 82,005 Asymptomatic

TD006 2010 F Guinea-Bissau 1,176 �50 Asymptomatic

TD013 2010 M Guinea-Bissau 509 1,632 Asymptomatic

TD024 2010 F Guinea-Bissau 191 10,560 AIDS

TD031 2010 F Guinea-Bissau 407 107,183 Asymptomatic

TD062 2010 M Guinea-Bissau 497 139,519 Asymptomatic

CBL20 1988 M The Gambia 18 NA AIDS

ROD 1985 M Cape Verde 100 NA AIDS

aPatients samples included TD003 to TD062. Controls included CBL20 and ROD.
bF, female; M, male.
cAs determined by an in-house RT-PCR assay (66). cp, copies.
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quality control and removal of low-quality reads and adaptor contamination, reads

were assessed for the presence of biased random-hexamer priming. The random-

hexamer analysis indicated that a random-hexamer bias affected the first 13 bp of the

read. The remaining high-quality reads were assembled to the HIV-2 ROD reference

genome sequence (accession number BD413542). The mean depth of coverage over

the whole genome was around 2,000� for all alignment tools, with GSNAP having the

highest mean depth (Table 2). All four alignment tools produced a slightly positive GC

bias, and more GC-rich regions tended to have higher coverage. The slopes were very

similar (0.79 to 0.91), implying that the assembly algorithm used does not affect the GC

bias. In order to assess how divergent the HIV-2 ROD that was propagated for the

present study was from the published reference sequence, polymorphisms that were

fixed at a frequency of �95% in the sample population were annotated as single

nucleotide polymorphisms (SNPs) using VarScan (Fig. 1). The BWA-SW build was used

for this analysis, as it agreed with the majority consensus at each site of conflict. All

genes except vif had SNPs (in total 70 SNPs), and the majority of SNPs were seen in gag,

pol, and nef. However, when corrected for gene length, nef showed the greatest

contribution to divergence from the reference genome.

De novo genome assembly and factors influencing RNA-Seq success rate. After

showing that our RNA-Seq approach could be used for whole-genome sequencing of

a high-copy number and lab-adapted HIV-2 strain, we assessed the feasibility of using

RNA-Seq to generate whole-genome sequences directly from primary patient blood

plasma samples (Table 1). Clinical blood plasma samples often contain significant

amounts of human RNA, making it challenging to perform de novo assembly of minority

species (such as HIV-2). VICUNA is designed to target populations with high mutation

rates and map minority variants into a single consensus sequence and is therefore

particularly suitable for HIV-2, considering the few publicly available HIV-2 whole-

genome sequences. In addition, since HIV-2 blood plasma samples usually have sig-

nificantly lower viral copy numbers than propagated virus isolates, we included a

lab-adapted HIV-2 strain derived from a Gambian subject (CBL20), for which the

whole-genome sequence is unknown, as a high-viremia control (Table 1).

In total, whole-genome assembly was successful for three of the six patient samples

(TD024, TD031, and TD062) and the control (CBL20). Successful patient samples showed

complete capture of the protein-coding region of HIV-2 and merged contigs ranged

from 9,397 to 9776 bp in length. A merged contig spanning the complete coding

region was also assembled for CBL20, demonstrating the applicability of RNA-Seq to

both in vitro and ex vivo samples. Although we are unable to provide a formal cutoff

value, these results suggest that a viral load of at least 5,000 copies/ml is needed for

successful sequencing, with an expectation of at least 0.001% HIV-derived RNA (Table

3). When these limits are considered, the success rate was 75%.

In order to assess how well de novo assembly using VICUNA had captured the HIV-2

genome, consensus sequences were aligned to the commonly used HIV-2 group A

reference sequence UC2 (accession number U38293) and annotated according to

homology (Table S1). In patient sample TD031, the first 177 bp of the gag leader

sequence was missing, whereas the long terminal repeat (LTR) region lacked coverage

for patient samples TD024 and TD062 and the reference strain CBL20.

TABLE 2 Summary of read mapping to sample-specific reference sequences

Sample ID

Bowtie2 BWA-SW GSNAP NovoAlign

Mean

depth

Reads

aligning

Mean

depth

Reads

aligning

Mean

depth

Reads

aligning

Mean

depth

Reads

aligning

TD024 28.53� 3,709 31.90� 3,988 27.69� 3,426 27.79� 3,463

TD031 62.33� 7,658 67.23� 8,044 60.33� 7,172 60.50� 7,267

TD062 50.01� 6,617 59.61� 7,468 45.92� 5,658 46.64� 5,751

CBL20 5,502� 539,906 4,734� 412,557 6,451� 618,464 5,156� 432,538

ROD 1,924� 165,506 1,794� 152,105 2,146� 176,885 1,862� 155,696
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Phylogenetic analysis of de novo genome sequences. A BLAST analysis of the

newly generated sequences indicated highest similarity with HIV-2 group A sequences.

Bayesian phylogenetic analysis with the 20 publicly available HIV-2 group A near

full-genome sequences confirmed this (Fig. 2; Table S1). This analysis also showed that

the newly generated sequences were clearly distinguishable from existing reference

sequences. As expected, the HIV-2 ROD sequence generated in the present study and

the published reference sequence were closely related and clustered together, with a

posterior probability of 1.

Read remapping to the patient-specific consensus whole-genome sequences.

In contrast to resequencing projects, in which a high depth of coverage is required for

error correction, deep sequencing of pathogen populations uses high depth of cover-

age to gain a picture of the diversity in the population as a whole (27). Following de

novo assembly of a patient-specific consensus genome sequence, we assessed the

FIG 1 Divergence in vitro of the lab-adapted HIV-2 isolate HIV-2 ROD. Assembled reads were visualized in Integrative Genomics Viewer (54) and mismatched

sites were colored (A). Sites of conservation with the published reference sequence are shown in gray. Single nucleotide polymorphisms (SNPs) were defined

as fixed at a frequency of �95%, and the total number of SNPs in each gene was calculated (B). In order to allow for varying gene lengths, the frequency of

SNPs in each gene was also calculated (C).
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performance of four commonly used alignment tools when remapping reads to the

patient-specific consensus (Table 2). Read remapping was performed using the total

reads without prior HIV-2 enrichment or digital subtraction of human sequences to

allow an assessment of how these tools perform in the context of a high level of

contamination. This is likely to be a factor of all pathogen sequencing strategies

employing RNA-Seq. Mean depth and range of coverage were compared for each

aligner (Fig. 3). These results show consistent performance of the four aligners, with

mean depths of coverage ranging from 28� to 67� for the three patient samples. This

range is in line with previous RNA-Seq studies, showing that RNA-Seq is a feasible tool

for generating HIV-2 whole-genome sequences. Additionally, the high similarity indi-

cates that read mapping is robust and repeatable irrespective of which alignment

TABLE 3 Samples included in the present study and de novo assembly statistics

Sample ID

No. of viral

copiesa
Total RNA

(ng)b
Predicted HIV

RNA (%)c
No. of reads aligning

to viral reference

Genome covered

by all contigs (%)

No. of genes

intact

Merged contig

length (bp)

TD003 41,002 8.70 0.0023 0 0 0 0

TD006 �50 7.65 0.0000033 0 0 0 0

TD013 816 34.00 0.000012 0 0 0 0

TD024 5,280 2.30 0.0011 4,998 93 9 9,531

TD031 53,591 3.10 0.0087 9,065 90 9 9,397

TD062 69,759 2.85 0.012 13,304 87 9 9,776

CBL20 �10,000,000 9.65 �20 930,072 87 9 9,885

aAbsolute viral input estimated from viral load.
bTotal RNA input used for library preparation.
cEstimated using a viral genome length of 10 kb and absolute viral input.

FIG 2 Bayesian phylogeny of HIV-2 genome sequences generated in the present study. Eighteen whole-genome

HIV-2 group A sequences were included as a reference set (Table S1). Reference sequences are colored according

to country of origin, and sequences generated in the present study are shown in red. Bayesian posterior

probabilities are included on the corresponding nodes, and the scale bar represents the number of nucleotide

substitutions per site.
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algorithm is employed following de novo assembly of patient-specific consensus se-

quences. Error rates were consistent over cycles, and there was no evidence of a drop

in accuracy over the length of the read (Fig. 4).

Assessment of the random-hexamer bias. A commonly recognized bias that is

specific to RNA-Seq protocols is the random-hexamer bias (32, 33). Hypothetical

differential binding affinities between different random hexamers result in biased

nucleotide composition at the 3= ends of the reads, normally spanning 7 to 13 bp. In

line with previous studies and our initial assessment of RNA-Seq using HIV-2 ROD, the

random-hexamer analysis indicated that a random hexamer bias affected the first 13 bp

of the read (Fig. S1). The pattern of the bias was similar in all three patient samples and

FIG 3 Depth of coverage with the four different aligners. Depth of coverage for each locus was plotted

for TD024 (A), TD031 (B), and TD062 (C). Open rectangles represent the locations of HIV-2 genes, and the

position of the longest merged contig is also shown for each sample. Coverage plots are shown for each

of the four aligners, Bowtie2, GSNP, BWA-SW, and NovoAlign. Coverage was plotted as raw depth,

showing the number of reads mapping to each locus.
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the control (CBL20), suggesting that there may be preferential binding to the same

motifs in all samples. This biased read composition can be attributed to random-

hexamer bias rather than low-quality sequencing at the end of the reads, as the median

Q-score was constant over the length of the read. The effect of the bias did not extend

past the first 13 bp of each read, and the nucleotide composition stabilized after this

point. A correction was not applied to account for the biased nucleotide composition

of the first 13 bp, as removal of these positions does not remove the effects of this bias

seen in downstream analyses.

Quantification of the GC bias and depth of coverage as a function of genomic

context. Depth of coverage in samples sequenced using Illumina short-read chemistry

can be affected by the local GC content of the genome (34). We assessed the effect of

local GC content on depth of coverage using a custom script which took a sliding

window of 50 bp, with a step size of 20 bp, and calculated percent GC and mean depth

of coverage in each window. The extent of the GC bias was quantified using the slope

of the linear regression line, and the bias was assessed for each aligner individually

(Table 4). To further compare the different aligners, the mean depth of coverage was

normalized in each window using the genome-wide mean depth of coverage (Fig. 5).

All assemblies showed a slight, positive GC bias, suggesting that GC-rich regions had a

depth of coverage that was higher than the mean. For patient samples TD024 and

TD031, the magnitudes of the slope were similar for all four aligners, suggesting a

constant effect when different assembly algorithms were employed. In contrast, sample

TD062 showed more fluctuation between aligners. However, the magnitude of the bias

was lowest for this patient, suggesting that the overall effect of the GC bias would be

reduced, in spite of the fluctuations. Hence, a positive GC bias in HIV-2 samples

sequenced using RNA-Seq may confer variability in depth of coverage over the ge-

nome. However, the magnitude of the bias was in line with previous studies and did not

show a loss of coverage of any genomic regions due to GC bias (34).

In order to assess whether genomic context could affect depth of coverage, the

HIV-2 genome was partitioned according to gene and mean depth of coverage was

compared for each gene individually. The effect of genomic context on depth of

FIG 4 Error rate per sequencing cycle. Error rates were estimated for each sample using the GATK package using the

number of mismatches seen during each cycle and the recalibrated quality score of each position. This gave an estimation

of error rate per cycle for each of the 100 sequencing cycles for the first read set of each pair. Error rates per cycle were

plotted for samples TD024 (A), TD031 (B), and TD062 (C) for each aligner. Mean error rate per cycle was plotted against

the probability density for all 100 cycles. Generally, error rates were consistent over cycles, and there was no evidence of

a drop in accuracy over the length of the read. Estimations of mean error rates were a little on the high side (TD024, 1.3%;

TD031, 1.7%; TD062, 2.1%), likely caused by the underlying variability of HIV-2. GATK was not able to distinguish between

low-frequency variants in the viral population and sequencing errors. However, predicted mean error rates are in line with

what would be expected and are informative when choosing a cutoff frequency for reliable SNP calling.

TABLE 4 Summary statistics for the GC bias present in assembled readsa

Sample ID

Bowtie2 BWA-SW GSNAP NovoAlign

Slope Intercept Slope Intercept Slope Intercept Slope Intercept

TD024 1.80 0.17 1.95 0.10 1.74 0.19 1.79 0.15

TD031 1.04 0.54 1.17 0.47 0.97 0.56 1.02 0.54

TD062 0.66 0.70 0.88 0.57 0.35 0.81 0.56 0.71

aEstimated by fitting a linear regression to the mean values in each sliding window.
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FIG 5 Scatter plots showing the GC bias in assembled reads. GC proportion and normalized depth of

coverage in each window were plotted for each aligner individually and then grouped by patient sample.

Plots are shown for patients TD024 (A), TD031 (B), and TD062 (C). A linear regression was fitted to assess

the magnitude and direction of the bias. Regression lines are colored by aligner. The dashed line indicates

the expected regression in the absence of any positive or negative GC bias.
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coverage was visualized by plotting mean depth of coverage as a function of GC

content for each gene (Fig. 6). All aligners showed a similar pattern of coverage and no

consistent loss of coverage in any genomic region.

No general trends in molecular properties between the analyzed HIV-2 strains

or correlations with clinical stage. To characterize the molecular properties of the

newly generated sequences and to put them in a broader perspective, we performed

an in-depth analysis of these and the 20 selected and publicly available HIV-2 group A

sequences. Associations between molecular and biological properties were assessed by

available clinical and epidemiological data (Table S1; Fig. S2). All analyses were per-

formed per HIV-2 gene. In the data set there were two occasions of duplicate origin, i.e.,

two sequences that had been generated from the same original patient sample (Table

S1; Fig. S2, RODR and A.SN.ROD plus A.JP.NMC786_41 and A.JP.NMC786_41). These

were counted only once when assessing associations between molecular and biological

properties between sequences collected during the asymptomatic versus AIDS stage of

disease. No significant differences in sequence length, net charge, total charge, or

number of potential N-linked glycosylation sites (PNGS), in any of the nine HIV-2 genes,

were found between sequences from asymptomatic patients (n � 6) and AIDS stage

patients (n � 12) (Table S1; Fig. S2). Prediction of coreceptor tropism based on the env

gp120 V3 region indicated that 50% (3 of 6) and 58% (7 of 12) of the participants had

CXCR4-using viruses in the asymptomatic and AIDS stages, respectively (P � 1.00,

two-tailed Fisher’s exact test) (Table 5). Furthermore, we found no diagnostic motifs or

amino acids between asymptomatic and AIDS stage patients in any of the nine HIV-2

genes (Table S1; Fig. S2).

Genome-wide estimation of genetic diversity in HIV-2 in the context of low-

bias sequencing. To determine how the diversity varies over the HIV-2 genome, we

estimated nucleotide pairwise diversity from assembled reads (Bowtie2 assembly) using

a custom script. Raw estimates of diversity of the whole genome were 0.0010 substi-

tution/site for TD024, 0.0007 substitution/site for TD031, and 0.0014 substitution/site

for TD062. In comparison, the raw estimates for the env gene were 0.0013 substitution/

site for TD024, 0.0008 substitution/site for TD031, and 0.0020 substitution/site for

TD062. To compare the relative genetic diversity between the patients, we normalized

the raw estimates using the genome average (Fig. 7). Overall, our analysis showed

similar results between patients, with the highest level of within-host diversity seen in

env for all three patients, whereas the lowest diversity was seen in the vpx and rev

genes. Interestingly, the diversity in pol seemed to be higher than for the genes gag,

vpx, tat, rev, and vif for all three patients.

To compare the above-described results of intrahost viral diversity in different HIV-2

genes with viral diversity in different HIV-2 genes between hosts, we performed a

phylogenetic bootstrap analysis of our newly generated whole-genome sequences and

the reference sequences. This analysis showed that, similar to the intrahost viral

diversity above, the env gene was the most diverse gene, followed by the nef gene.

However, in contrast to the intrahost analysis, this analysis indicated that pol was the

second least diverse gene between hosts (only vif was less diverse [Fig. 8]).

DISCUSSION

Deep sequencing of HIV offers unparalleled opportunities to gain a high-resolution

picture of the nature and diversity of the viral quasispecies in a single patient. Our study

presents a novel pan-HIV-2 whole-genome amplification strategy using RNA-Seq, al-

lowing the entire protein-coding region of HIV-2 to be sequenced without the need for

detailed a priori sequence knowledge. We show a broad applicability of this method,

presenting data from both lab-adapted isolates and patient plasma samples. To our

knowledge, only one previous study has used a next-generation sequencing approach

to determine the full genome of HIV-2 (35). However, we used HIV-2 isolates propa-

gated in cell culture prior to library preparation and aligned the generated sequence

reads to a common reference strain (HIV-2 BEN). We analyzed patient samples and were

able to successfully sequence samples of viral loads down to 5,280 copies/ml and an
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FIG 6 Depth of coverage as a function of genomic context. The depth of coverage was calculated

individually for each gene of the HIV-2 genome for TD024 (A), TD031 (B), and TD062 (C). Depth of coverage

was colored by aligner and plotted against the mean GC content of the gene. The predicted GC bias is

represented by the dashed line.
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expectation of at least 0.001% HIV-2 RNA in the sample. When these conditions were

fulfilled, the success rate was 75%, which is lower than previously reported by Batty et

al. when applying RNA-Seq to norovirus. However, the lower HIV-2 plasma viral loads

of the patient samples used in the present study readily explain this reduced success

rate. A putative cutoff of approximately 5,000 copies/ml restricts this method to viremic

HIV-2 patients, and it is possible that an alternative approach would be needed for

TABLE 5 V3 characteristics and coreceptor tropisma

Sequence name Length (aa)

Net

chargeb
Total

chargec PNGSd L18Ze V19K/Re Net>�6e Ins24e
Predicted

tropismf

TD024 34 5 5 1 N N N N R5

TD031 34 5 5 1 N N N N R5

TD062 34 5 5 1 N N N N R5

CBL20 34 6 6 1 N N N N R5

RODR 36 7 7 1 N N Y N R5X4

A.CI.UC2 35 7 7 1 N N Y Y R5X4

A.DE.BEN 34 5 5 1 N N N N R5

A.DE.PEI2 35 7 9 1 N Y Y Y R5X4

A.GH.GH1 34 5 5 1 N N N N R5

A.GM.D194 35 8 8 1 N N Y Y R5X4

A.GM.ISY_SBL 35 8 10 1 N N Y Y R5X4

A.GM.MCN13 35 7 7 1 N N Y Y R5X4

A.GM.MCR35 35 7 7 1 N N Y Y R5X4

A.GW.CAM2CG 34 6 6 1 N N N N R5

A.GW.MDS 34 6 6 1 N N N N R5

A.GW.NIHZ 35 7 7 1 N N Y Y R5X4

A.IN.CRIK_147 35 7 7 1 N N Y Y R5X4

A.IN.NNVA 34 5 5 1 Y N N N R5X4

A.JP.NMC786_41 35 6 6 1 N N N Y R5X4

A.JP.NMC786_43 35 6 6 1 N N N Y R5X4

A.PT.ALI 34 6 6 1 N N N N R5

A.SN.ROD 36 7 7 1 N N Y N R5X4

A.SN.ST_JSP4_27 34 6 6 1 N N N N R5

aCoreceptor tropism was assessed as described in reference 59.
bNet charge of sequences was determined based on each lysine and arginine contributing �1 and each aspartic acid and glutamic acid contributing �1.
cTotal counts of amino acids were also assessed as described previously (58).
dNumber of potential N-linked glycosylation sites (PNGS) as defined in N-GLYCOSITE (37).
eN, no; Y, yes.
fR5, CCR5-using virus; R5X4, CCR5- and CXCR4-using virus.

FIG 7 Nucleotide diversity plot. Nucleotide site diversity estimates per gene, normalized to the whole-

genome estimate. Diversity was estimated for samples TD024, TD031, and TD062. Calculation of the

diversity relative to the whole-genome estimate was performed to allow a comparison between patients.
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samples with lower viral loads. However, we anticipate that RNA-Seq could also be

successfully applied to samples taken from untreated HIV-1 patients, where the typical

viral load is 10 to 1,000 times higher than for HIV-2.

While RNA-Seq allows whole-genome sequencing of HIV-2 without the need for

detailed prior sequence knowledge, the lack of sequence-specific target amplification

also leads to a reduction in the use of PCR amplification and its resulting biases, thereby

generating sequence data that are more representative of the true population frequen-

cies. In this study, we aimed to quantify the other biases known to be associated with

RNA-Seq. We found evidence of a moderate positive GC bias which varied between

samples but was consistent when different aligners were used. We also found evidence

of a biased nucleotide composition in the first 13 bases of the reads, suggesting the

presence of non-random random hexamer priming. Although these biases could be

responsible for the fluctuations in coverage over the genome, we observed no corre-

lation between genomic location and depth of coverage. This suggests that these

fluctuations were randomly distributed and not due to the various diversities seen in

different functional genomic sites.

While patient consensus sequences contained all nine genes of HIV-2 in intact

reading frames, there was some variability in the assembly of the 3= and 5= LTR and the

gag leader sequence. In patient sample TD031, the loss of the first 177 bases of the gag

leader sequence could be attributed to the failure of the RNA-Seq library preparation

method to capture this region. The initial fragmentation step in library preparation can

lead to the loss of distal regions of the RNA molecule, and this is the most probable

cause of the lack of coverage in this genomic region. For patient samples TD024 and

TD062 and the reference strain CBL20, the lack of coverage was probably due to the

nature of the LTRs in HIV-2. The 5= and 3= LTR regions only exist as true 990-base

FIG 8 Median diversity between the analyzed HIV-2 strains. The median diversity was determined

phylogenetically by analysis of 200 gene-specific maximum likelihood bootstrap replicates. The error bars

show the interquartile ranges of the diversity estimates. (A) Diversity estimates in substitutions per site.

(B) Diversity estimates relative to the average median estimate of all analyzed genes (i.e., genome).
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repeats in the proviral form of the virus, whereas in the RNA genome, the 5= LTR

comprises the R and U5 regions and the 3= LTR is composed of the R and U3 regions

(36). The sequence alignment used during assembly contained HIV-2 sequences from

both cDNA and RNA HIV-2 genomes, so assembly was conducted using “complete”

LTRs, both containing U5, R, and U3 (37). Ambiguous read mapping is normally resolved

by using the location of the read mate to provide information on the most likely

coordinates. In the present study, the insert size (250 to 350 bases) and the nature of

the LTRs made mapping reads for the R region problematic, as the read mate will also

fall in the LTR. Therefore, it was not possible to resolve the correct orientation of the

reads, resulting in the loss of coverage of one LTR.

The ability to sequence the whole HIV-2 genome in a single experiment allowed us

to compare pairwise nucleotide diversities between the different HIV-2 genes. A study

comparing outcomes between HIV-1- and HIV-2-coinfected and HIV-1-monoinfected

subjects followed from early infection showed that the extent of HIV-1 genetic diversity

strongly correlated with time to AIDS (38). Much less is known about genetic diversity

in HIV-2 infection. In our small study of three subjects, all of whom presented with

raised viral load, the patterns of within-host diversity were similar in all three. The

highest diversity was seen in env, which is in keeping with previous observations in

HIV-1 infection. Diversity in partial fragments of HIV-2 env has previously been esti-

mated through different approaches, and although on the lower side, our estimated

intrahost env diversities were in the same range as those from previous studies, which

used molecular cloning for sequence generation (15, 39, 40). Similarly, a high level of

nef diversity was seen in all three patients. In HIV-1 infection, pol is thought to be highly

conserved for functional reasons and therefore typically shows a relatively lower

diversity than, for example, the env gene (41). In contrast, we observed a high level of

within-host HIV-2 pol diversity in all three subjects studied in this investigation.

Interestingly, a recent study has shown a high level of within-host diversity in pol

following vertical HIV-1 transmission (42), although vertical transmission of HIV-2 is

uncommon and is unlikely to be implicated in our study subjects. There are some

potential caveats of our intrahost diversity analysis. (i) HIV-2 diversity has been reported

to increase over the course of infection (15, 39). It is possible that parameters such as

the duration of infection or the mode of transmission influenced the diversity levels in

our study, but these parameters are not known for the three study subjects. (ii) For

some single nucleotides over the genome, the coverage was less than 20 sequence

reads, and from a sample perspective, the depth of coverage was positively correlated

with the viral copy number. On the one hand, low coverage may underestimate the

true genetic diversity. On the other hand, some regions of the genome are evolution-

arily conserved, and only a limited number of virus variants can theoretically coexist in

a sample taken from a subject with a low viral load.

vpx is an HIV-2/SIVmm specific accessory gene that is entirely absent from the

HIV-1/SIVcpz lineage. The main role of vpx is antagonism of the host restriction factor

SAMHD1, which blocks reverse transcription of viral RNA in slowly dividing cells, such

as macrophages and resting CD4� T cells (43). Our observation of a consistently low

level of vpx diversity may indicate a high level of conservation in vpx, suggesting that

vpx has a critical role in HIV-2 pathogenesis. The implications of vpx diversity in HIV-2

infection are not yet clearly defined, but a recent study by Yu et al. identified an SNP

in a vpx allele derived from a viremic patient that totally abrogated the ability of vpx to

promote SAMHD1 degradation in vitro (44).

In conclusion, we show that RNA-Seq library preparation methods can be applied to

HIV-2 blood plasma samples. Resulting de novo genome assemblies captured the entire

coding region of HIV-2 in intact open reading frames and read remapping allowed us

to demonstrate the importance of a two-step analysis pipeline. In the context of a

highly diverse retrovirus, such as HIV-2, the selection or generation of an appropriate

reference sequence is a critical first step, allowing robust and repeatable downstream

read mapping. We also demonstrated a low level of GC and random-hexamer bias and,

in the absence of sequence-specific target amplification, showed that RNA-Seq offers a
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method of whole-genome HIV-2 sequencing in a low bias context. However, some

challenges in RNA-Seq remain. For example, although the sequencing costs have fallen

dramatically in recent years, RNA-Seq is still expensive and costs continue to be a

barrier to an even more widespread adoption. In the present study, we multiplexed six

patient samples using the Illumina HiSeq in order to reach a mean depth of coverage

of up to 67�. Although this coverage is more than sufficient for consensus sequence

calling, it may be too low if the primary goal is to determine minority variants (at least

in samples with high viral loads). Hence, the importance of developing novel and

low-bias HIV sequencing protocols cannot be overstated, as the ability to gain a

complete and accurate picture of HIV genetic diversity is critical to the development of

globally effective and preventative HIV vaccines.

MATERIALS AND METHODS

Patient sample collection. All patient samples used in the present study were collected from

members of the Caió community cohort who had provided written and informed consent. Samples were

collected prior to the start of the present study. Plasma was separated from whole blood through

centrifugation (5,000 � g, 5 min, and 4°C) and filtration (0.45-�m filter; Millipore, Billerica, MA). Plasma

samples were stored at �80°C before being transported to Oxford, United Kingdom, in a liquid nitrogen

dry shipper. None of the samples used had any record of previous freeze-thaw cycles.

In vitro culture of lab-adapted HIV-2 reference strains. The lab-adapted HIV-2 strains HIV-2 ROD

and HIV-2 CBL20 were propagated in vitro in the lymphocyte cell line H9, a single cell clone derived from

a HUT 78 cell line. Infection of 5 � 106 cells was carried out with 200 �l of 9 � 103 50% tissue culture

infective doses (TCID50)/ml of viral stock. Cells were removed through centrifugation at 250 � g for 10

min, and supernatant was collected on days 3, 5, 7, 9, 11, 13, and 15. HIV-2 concentrations were assayed

using a colorimetric reverse transcriptase assay (Roche). For each isolate, the supernatant sample with

the highest reverse transcriptase concentration was selected for RNA-Seq.

RNA extraction, RNA quantification, and DNase treatment. Total nucleic acid was extracted

directly from 500 �l of patient plasma or purified supernatant using the QIAamp UltraSens viral kit

(Qiagen). Extraction was performed according to the manufacturer’s protocol, with the substitution of

carrier RNA with linear acrylamide (Ambion) as the nucleic acid coprecipitant. Final elution was per-

formed in 12 �l of H2O. DNA was removed from the samples through treatment with DNase I (Turbo

DNase; Ambion) according to the manufacturer’s protocol. RNA concentration was estimated using the

QuBit RNA assay (Invitrogen).

Library preparation and sequencing. Sequencing libraries were prepared from 5 �l of the eluted

RNA using the NEBNext Ultra RNA library prep kit for Illumina (New England BioLabs) according to the

manufacturer’s protocol. Sequencing libraries were multiplexed and sequenced using the Illumina HiSeq

or MiSeq platform (Illumina). Patient samples were multiplexed at 6/lane (HiSeq), generating 2 � 100

nucleotide paired-end reads, and lab-adapted strains were multiplexed at 2/lane (MiSeq), generating

2 � 150 nucleotide paired-end reads.

De novo genome assembly and read remapping. Sequence data were analyzed using a custom

pipeline. Reads were trimmed using Sickle, stipulating a median Q-score of �30 and a read length of �40

bp (45). De novo genome assembly was performed using VICUNA (46), with the addition of the optional

contamination removal step. During contamination removal, HIV-2-derived reads were identified

through similarity to a multiple-sequence alignment containing a set of 18 publicly available HIV-2 group

A sequence data (Table S1). Overlapping contiguous sequences generated by VICUNA were assembled

into whole-genome sequences using the map-to-reference feature in Geneious v6.1.6 (47) and manually

inspected to derive a whole-genome consensus sequence. Consensus genome sequences were manually

inspected to ensure that they contained intact open reading frames. Reads were remapped to the

consensus genome sequence using Bowtie2 (48), BWA-SW (49), GSNAP (50), and NovoAlign (51) for each

sample. Files containing assembled reads were manipulated using the SAMtools package (52), and

downstream statistical analyses and data visualizations were performed using R (53) and the Interactive

Genome Viewer (54). Error rates were estimated using the ErrorRatePerCycle feature of GATK (55).

Quantification of biases. Random-hexamer bias was assessed through visualization of the base

composition of reads using FASTQC (56). GC bias was quantified using a custom Python script that

scanned the genome using a 50-bp sliding window with a step size of 20 bp. Mean GC content and mean

depth of coverage were computed for each window, and GC bias was assessed by fitting a linear

regression in R (57).

Analysis of molecular properties. Analyses of molecular properties were performed using an

in-house Perl script with potential N-linked glycosylation sites (PNGS) as defined in N-GLYCOSITE (37). Net

charge of sequences was determined based on each lysine and arginine contributing �1 and each

aspartic acid and glutamic acid contributing �1. Total counts of amino acids were assessed as described

previously (58). Coreceptor tropism was predicted using four major determinants of dual/CXCR4 core-

ceptor use (L18Z, V19K/R, V3 net charge of ��6, and insertions at position 24) (59). CXCR4 use was

considered when at least one of the criteria was fulfilled. Sample donors were classified as having been

sampled during either the asymptomatic or AIDS stage (as defined by clinical assessment at the sample

time point).

HIV-2 RNA Sequencing Journal of Virology

January 2019 Volume 93 Issue 1 e00677-18 jvi.asm.org 15

https://jvi.asm.org


Phylogenetic analysis. A reference set of 20 HIV-2 group A whole-genome sequences were

obtained from the Los Alamos HIV database (Table S1) (37). Reference sequences were aligned with

consensus whole-genome sequences using Muscle (60), and the alignment was manually inspected

using Geneious v6.1.6. A Bayesian phylogeny was inferred using BEAST v1.8.0 (61), under the general

time-reversible model of nucleotide substitution with a proportion of invariant sites and gamma-

distributed rate heterogeneity, as determined by jModelTest2 (57). The Markov Chain Monte Carlo

algorithm was run using 100,000,000 iterations with samples taken from the posterior distribution every

10,000 generations. Following a burn-in corresponding to 10% of the samples, the resulting maximum

clade credibility (MCC) tree was visualized using FigTree v1.4.1 (62).

Estimation of genetic diversity. Mpileup files were generated from assembled reads using the

SAMtools package, and variants were called using VarScan (63) with a cutoff frequency of 0.05.

Nucleotide pairwise diversity (�) was estimated using the Nei and Li method (64) through a custom

Python script, taking depth at each position as a proxy for population size and the product of frequency

of alternative variants and depth as the number of pairwise differences between sequences. Estimates of

diversity were generated for each individual gene and over the whole genome, and estimates were

normalized using the whole-genome average to allow comparison between patients. For comparison, we

also calculated diversity at the population level by averaging pairwise phylogenetic tree distances in Garli

v2.0 (65). This was done for each gene separately based on 200 maximum likelihood bootstrap replicates

as described previously (58).

Statistics. Two-tailed Fisher’s exact test was used to assess data (IBM SPSS Statistics for Windows,

v23.0; IBM Corp., Armonk, NY).

Ethics. Ethical approval was granted by the Gambian government/MRC joint ethics committee

(SCC1204) and the Oxford tropical research ethics committee (170-12).

Accession number(s). Nucleotide sequences were deposited in GenBank under the following

accession numbers: MH681607 to MH681611.
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