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A Deep Learning-Based Approach to Power

Minimization in Multi-Carrier NOMA with SWIPT
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Gaojie Chen Senior Member, IEEE, Kanapathippillai Cumanan, Senior Member, IEEE,

and Jonathon Chambers, Fellow, IEEE

Abstract—Simultaneous wireless information and power trans-
fer (SWIPT) and multi-carrier non-orthogonal multiple access
(MC-NOMA) are promising technologies for future fifth gener-
ation (5G) and beyond wireless networks due to their potential
capabilities in energy-efficient and spectrum-efficient system
designs, respectively. In this paper, the joint downlink resource
allocation problem for a SWIPT-enabled MC-NOMA system
with time switching (TS)-based receivers is investigated, where
pattern division multiple access (PDMA) technique is employed.
We focus on minimizing the total transmit power of the system
whilst satisfying the quality-of-service (QoS) requirements of
each user in terms of data rate and harvested power. The
corresponding optimization problem is a non-convex and a mixed
integer programming problem which is difficult to solve. Different
from the conventional iterative searching-based algorithms, we
propose an efficient deep learning-based approach to determine
an approximated optimal solution. Specifically, we employ a
typical class of deep learning model, namely deep belief network
(DBN), where the detailed procedure of the developed approach
consists of three parts, i.e., data preparation, training and
running. Simulation results demonstrate that the proposed DBN-
based approach can achieve a similar performance of power
consumption to the exhaustive search method. Furthermore, the
results also confirm that MC-NOMA with PDMA outperforms
MC-NOMA with sparse code multiple access (SCMA), single-
carrier non-orthogonal multiple access (SC-NOMA) and orthog-
onal frequency division multiple access (OFDMA) in terms of
power consumption in SWIPT-enabled systems.

Index Terms—Non-orthogonal multiple access (NOMA), si-
multaneous wireless information and power transfer (SWIPT),
machine learning.

I. INTRODUCTION

With the dramatically rapid development of mobile Internet

and the exponential growth of connected devices, the future
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wireless networks are expected to provide much higher data

rate which enables supporting the proliferation of the Inter-

net of things (IoT), massive machine-type communications

(mMTC), etc [1]. However, the available radio spectrum is

far from sufficient to support the unexpected high demands

for data services, and hence it is particularly important to

improve spectrum efficiency (SE) in the spectrum-limited

systems. The conventional orthogonal multiple access (OMA)

schemes, including orthogonal frequency-division multiple ac-

cess (OFDMA) which is widely used in the fourth generation

(4G) cellular systems, are increasingly arduous to fulfill the

aforementioned unprecedented requirements due to the limited

improvement of SE in orthogonal channel access [2]. The non-

orthogonal multiple access (NOMA) technique, which allows

multiple users to share the same time-frequency resource

element (RE), has been recognized as the potential multiple

access technique to achieve higher SE in future fifth gener-

ation (5G) and beyond wireless networks [3]. Furthermore,

heterogeneous requirements such as ultra-low latency, ultra-

reliability and massive connectivity are more likely to be

realized in NOMA systems.

Since the system-level performance of NOMA has been

proved to be superior to OMA under various wireless en-

vironments in [4]–[6], NOMA has attracted a significant

attention in both academia and industry. Several forms of

NOMA techniques have been proposed for 5G and beyond

wireless networks. Depending on whether the total available

spectrum resource is or is not divided into several subcarri-

ers, NOMA can be classified into two main types, namely

single-carrier NOMA (SC-NOMA) and multi-carrier NOMA

(MC-NOMA), respectively. The power-domain NOMA (PD-

NOMA) is a well-known and promising SC-NOMA technique

[7], in which multiple users are multiplexed with different

transmit power levels in the same frequency RE and successive

interference cancelation (SIC) is employed at the receiver ends

to remove the corresponding co-channel interference so that

better performance in terms of SE, energy efficiency (EE) or

proportional fairness can be achieved [8], [9]. On the other

hand, sparse code multiple access (SCMA) [10] and pattern

division multiple access (PDMA) [11] are two most well-

known techniques of MC-NOMA. In fact, these two MC-

NOMA techniques can be considered as the superposition of

multiple PD-NOMAs in different frequency REs [12].

In addition to the efficient spectrum utilization, energy

saving is another key issue in future green communication, as

the contradiction between the tremendous energy consumption



caused by wireless communication systems and the global en-

ergy shortage is intensifying. Thus, it is crucial to improve EE

in future wireless networks for their sustainability. Motivated

by the progress in the research on wireless power transfer

(WPT) [13] and the fact that the radio frequency (RF) signal

is the carrier of both information and energy, an advanced tech-

nology namely simultaneous wireless information and power

transfer (SWIPT) has been identified to meet the demanding

requirements in future wireless networks in [14]. In order to

deal with the sensitivity difference between the information re-

ceiver and the energy receiver, two practical receiver architec-

ture designs namely time switching (TS) and power splitting

(PS) have been developed in [15] where information decoding

(ID) and energy harvesting (EH) could be separated through

time domain and power domain, respectively. The purpose of

SWIPT is to reduce energy waste and prolong the battery-

life of communication terminals by simultaneously harvesting

energy and receiving information. Furthermore, SWIPT is

viewed as a potential energy-efficient solution for 5G and

beyond wireless networks [13] and a great deal of research has

been carried out on the application of SWIPT technology in

different systems, including OFDMA systems [16], multiple-

input single-output (MISO) systems [17], [18], multiple-input

multiple-output (MIMO) systems [19], heterogenous cellular

networks [20] and two way cooperative networks [21], etc.

A. Related works

In the literature, many works have explored the combination

of SWIPT technology and NOMA network to reduce the

power consumption of the terminals. For instance, studies

on SWIPT-based SC-NOMA systems have been investigat-

ed in [22]–[26]. Specifically, the work in [22] considered

incorporating the SWIPT in cooperative MISO SC-NOMA

systems and developed a strategy of jointly optimizing PS

ratio and the beamforming vectors to maximize the data rate

of the “strong user” while satisfying the QoS requirements of

“weaker user”. In [26], sum secrecy rate (SSR) maximization

problem was addressed in a SWIPT-based SC-NOMA system,

and the numerical results demonstrated that the performance

gains in terms of SSR could be achieved over the conventional

OMA as well as the SWIPT-based OMA systems.

Additionally, Zhai et al. have combined the SWIPT with

MC-NOMA in [27] by employing SCMA technique where

an optimization framework was developed to strike a good

balance between the conflicting performance metrics, namely,

data rate and harvested energy. Nevertheless, the performance

of the combination of the SWIPT and the MC-NOMA with

PDMA remains unknown. Since Zeng et al. have confirmed

that PDMA outperforms SCMA in terms of both system

throughput performance and block error ratio (BLER) perfor-

mance [28], it is worth studying on SWIPT-aided MC-NOMA

systems with PDMA technique.

B. Contributions

In this paper, we solve a power minimization problem in the

downlink of SWIPT-enabled and PDMA-based MC-NOMA

system with TS-based receivers. In particular, we aim to de-

velop a joint optimal solution of subscarrier assignment, power

allocation as well as the TS ratio. In general, this kind of joint

resource allocation problems are non-deterministic polynomial

(NP) hard, and thus the corresponding optimal solutions are of

great computational complexity with conventional approaches.

Recently, deep learning methods have been exploited to solve

the fundamental high complex resource allocation problems

in wireless communication systems. More specifically, deep

learning methods were developed for solving the problem

of route estimation in [29], network traffic classification in

[30], mobility prediction [31], resource allocation [32], etc.

Motivated by the aforementioned works, we exploit deep

learning technique to determine an approximated optimal joint

resource allocation strategy for the complicated optimization

problem in the considered system.

The main contributions in this work are summarized in the

following:

• A deep learning-based resource allocation framework is

developed to solve the high complex power minimization

problem, which consists of three parts:

1) Data preparation: we randomly generate a set of

channel gains, i.e., the input of the training sample;

and then we apply the well-known genetic algorithm

to determine the corresponding optimal solution,

i.e., the output of the training sample.

2) Training: we establish a deep belief network (DBN)

for each parameter to be optimized, and train the

DBNs based on the obtained samples through both

unsupervised and supervised trainings.

3) Running: with a given input (channel gains), the

well-trained DBNs are exploited to directly approx-

imate the optimal solution of the considered power

minimization problem.

• Numerical results demonstrate that the developed deep

learning-based approach can achieve a similar perfor-

mance of power consumption to the exhaustive search

method as well as the genetic algorithm.

• It is also proven that the performance of the proposed

MC-NOMA with PDMA is superior to that of the existing

MC-NOMA with SCMA, SC-NOMA and OFDMA in

SWIPT-enabled systems in terms of power saving.

The remainder of this paper is organized as follows. In Sec-

tion II, we present the system model of the considered SWIPT-

enabled MC-NOMA system with PDMA and mathematically

formulate the total transmit power minimization problem. The

proposed deep learning-based resource allocation framework

is defined and developed in Section III. In Section IV, we

evaluate the performance of our proposed algorithm through

numerical simulations. Finally, the conclusions of this work

are provided in Section V.

The following notations are used throughout the paper. We

use the lower-case boldface letters for vectors and uppercase

boldface letters for matrices. N denotes the natural number

set while R+ denotes the non-negative real number set.

E[|x|2] represents the energy of signal x and x′ indicates the

transposition of x.



Fig. 1: The system model of a downlink SWIPT-enabled MC-NOMA with TS-based receivers and PDMA technique.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the system model of the

downlink of SWIPT-enabled MC-NOMA with TS-based re-

ceivers and PDMA technique. Then the total transmit power

minimization problem is mathematically formulated.

A. System Model

As shown in Fig. 1, the considered downlink SWIPT-

enabled MC-NOMA system consists of a base station (BS)

and K users superposed on N subcarriers through PDMA

technique. It is assumed that the transmitter and all the

receivers are equipped with one single antenna. Let us denote

the set of all users’ indexes by K , {1, 2, . . . ,K} while

the set of all subcarriers’ indexes by N , {1, 2, . . . , N}.

The total bandwidth B is equally divided into N subcarriers

and thus the bandwidth of each subchannel is denoted as

Bc = B/N . It is assumed that there is no interference

between different subchannels due to the orthogonal frequency

division. Note that PDMA is based on SIC amenable multiple

access (SAMA) technique which can be completed in different

domains such as code domain, power domain, space domain

or their combinations. In particular, the design of PDMA

includes unequal diversity at the transmitter side and equal

diversity at the receiver side. For convenience, the mapping of

transmitted signal to a group of subcarriers can be described

as a N ×K characteristic pattern matrix QPDMA ∈ N
N×K .

The element in the nth row and the kth column of QPDMA

qn,k = 1 indicates the signal transmitted to the kth user (UEk)

is superposed on the nth subcarrier (REn) while qn,k = 0
indicates the opposite. Let Nn = {k|qn,k = 1}(n ∈ N ) and

|Nn| =
∑K

k=1 qn,k(n ∈ N ) respectively denote the set and

the number of UEs mapped on REn.

For example, the corresponding characteristic pattern matrix

of the mapping schematic diagram in Fig. 1 can be given as

QPDMA
(4,6) =




1 1 0 1 1 0
1 0 1 1 1 1
1 1 1 0 1 0
1 0 1 1 0 1


 , (1)

where the signal of the UE1 is mapped to all four REs; the

signal of the UE2 is superposed in the RE1 and RE3; etc.

The number of transmission diversity of these six UEs is 4,

2, 3, 3, 3 and 2, respectively. Moreover, N1 = {1, 2, 4, 5} and

|N1| = 4, etc.

We denote the transmit power allocated to the UEk on REn

as Pn,k. Hence, the received signal of UEk via REn can be

expressed as

yn,k = hn,k


qn,k

√
Pn,kxn,k +

∑

j∈K,
j 6=k

qn,j
√
Pn,jxn,j


+zn,k,

(2)

where hn,k = gn,kd
−β
k denotes the channel coefficient from

the BS to UEk via REn; gn,k represents the small-scale fading

and follows a Rayleigh distribution with unit variance. The

d−β
k denotes the large-scale fading; dk is the distance between

the BS and UEk while β is the related path-loss exponent;

xn,k (xn,j) is the data symbol transmitted from the BS to

UEk (URj) via subcarrier REn with unit energy E[|xn,k|
2]

(E[|xn,j |
2]); and zn,k ∼ CN (0, σ2

n) is the additive white

Gaussian noise (AWGN) on REn. For notation simplicity, we

normalize the channel coefficient as h̃n,k = |hn,k|
2/σ2

n, which

is redefined as the channel to noise ratio (CNR).



Since the subcarrier sharing will inevitably cause intra-band

interference, SIC technology is employed at the receiver side

to mitigate the interference and improve the decoding perfor-

mance. Let π(n) , (πn(1), πn(2), . . . , πn(|Nn|)) denote the

decoding order of the UEs on REn, which can be viewed as

a vector function of the CNR of each UE mapped on REn,

i.e., h̃n,k (k ∈ Nn). In particular, in the downlink of NOMA,

the cancellation order at every UE is always to decode the

UEs with weaker CNR and subtract the signals of these UEs

firstly, and then decode its own data by treating the signals

of the remaining UEs on REn as interference [33]. Hence,

we have h̃n,π(1) < h̃n,π(2) < . . . < h̃n,π(|Nn|). Based on

SIC technique and with this decoding order, the normalized

interference for UEk on REn is hence given by

In,k = h̃n,k

∑

j∈Nn,

h̃n,j>h̃n,k

qn,jPn,j . (3)

Accordingly, the signal to interference-plus-noise ratio (S-

INR) of UEk on REn can be written as

γn,k =
h̃n,kqn,kPn,k

1 + In,k
. (4)

In practice, the outage may occur if the SINR does not

meet the minimum SINR requirement γ, which will lead to

the failure of SIC process. In order to avoid this outage, we

must have the following condition:

γn,k ≥ γ, ∀n ∈ N , ∀k ∈ Nn. (5)

With this condition, the available data rate of UEk on REn

can be written as

Rn,k = Bc log2(1 + γn,k). (6)

Furthermore, we consider SWIPT-enabled UE in our pro-

posed system model, which consists of an ID circuit and an

EH rectification circuit. TS scheme is employed to achieve ID

and EH in two orthogonal time slots. For UEk, αk and 1−αk

correspond to the portion of transmission time allocated to ID

and EH, respectively. Hence, the data rate of UEk based on

TS scenario can be denoted as

RTS
k = αk

∑

n∈N

Rn,k. (7)

On the other hand, the power that can be harvested by UEk

via REn is given by

En,k = η|hn,k|
2
∑

j∈K

qn,jPn,j , (8)

where η denotes the power conversion efficiency of the EH

rectification circuits.

Therefore, the power harvested by UEk based on TS scheme

can be expressed as

ETS
k = (1− αk)

∑

n∈N

En,k. (9)

B. Problem Statement

From energy-efficient communication systems perspective,

we formulate a total transmit power minimization problem

with the QoS requirements and transmit power constrains for

the system defined in the previous subsection. In particular,

the total transmit power is given as

Ptotal =

N∑

n=1

K∑

k=1

qn,kPn,k. (10)

The transmit power minimization problem can be mathe-

matically formulated as follows:

P1 : min
α,Q,P

Ptotal (11)

s.t. (5), (12)

RTS
k ≥ Rreq, ∀k ∈ K, (13)

ETS
k ≥ Ereq, ∀k ∈ K, (14)

0 < αk < 1, ∀k ∈ K, (15)

qn,k ∈ {0, 1}, ∀n ∈ N , ∀k ∈ K, (16)

0 ≤ Pn,k ≤ P , ∀n ∈ N , ∀k ∈ K, (17)

where α = [α1, α2, . . . , αK ]T is the vector that consists of

TS ratios of the all UEs, Q ∈ N
N×K denotes the PDMA

characteristic pattern matrix and P ∈ R
N×K
+ represents the

power allocation matrix. The constraints provided in (12)

define the minimum SINR requirements that ensure a suc-

cessful implementation of the SIC technique. The inequalities

in (13) and (14) are associated with the constraints of QoS

requirements, including data rate and harvested power. In

addition, Rreq and Ereq denote the minimum data rate and

harvested power requirements at each UE, respectively. The

constraints in (15) indicate that the TS ratio for each UE is

required to be in the range of (0, 1). In (16), every element

of the PDMA pattern matrix qn,k(n ∈ N , k ∈ K) can only be

either 0 or 1, indicating whether or not UEk is mapped on REn.

Besides, the transmit power allocated to UEk on REn should

meet the constraint 0 ≤ Pn,k ≤ P , where P is the transmit

power limitation which ensures maintaining a fairness among

UEs.

Note that the convexity of the objective function (11) cannot

be established in general due to the binary variables qn,k
as well as the product of qn,k and Pn,k (n ∈ N , k ∈ K).

Similarly, the convexity of the inequality constraints in (12)-

(14) also does not exist. Consequently, the aforementioned

power minimization problem P1 is a non-convex and a mixed

integer programming problem. In addition, this is a well-

known NP-hard problem [34], which makes it considerably

strenuous to determine the joint optimal solution. In addition

to the exhaustive searching method, there are many iterative

algorithms available in the literature for seeking the optimal

solution for non-convex programming, such as the genetic

algorithm and the simulated annealing. Nevertheless, these

algorithms always require a huge amount of time to converge,

which are not suitable for real-time processing networks.

To overcome these difficulties, we propose a deep learning-

based approach in the following section to determine an

approximated optimal solution for the problem P1.



Fig. 2: An example of the DBN framework used in this work.

III. TOTAL POWER MINIMIZATION BY DEEP LEARNING

In this section, we firstly provide a brief description on the

framework of the considered deep learning model, namely,

DBN. Then, the detailed procedure of the proposed DBN-

based approach is developed, which consists of three parts,

i.e., data preparation, model training and solution running.

A. Framework of DBN

Prior to developing a specific procedure of the deep

learning-based approach, we first briefly introduce the DBN.

This model is a representive class of deep learning networks

and is capable of capturing the potential information between

the input and the output datas [35]. As shown in Fig. 2, the

architecture design of the DBN involves an input layer, a set of

hidden layers and an output layer, which can be also consid-

ered as a series of restricted Boltzmann machines (RBMs).

Each RBM consists of a visible layer and a hidden layer.

In particular, the neurons between the visible and the hidden

layers are fully connected with a certain weight while those

neurons within the same layer are disconnected. Furthermore,

the first RBM takes the input layer of the DBN as its visible

layer and the first hidden layer of the DBN as its own hidden

layer; the second RBM takes the hidden layer of the previous

RBM as its visible layer and the second hidden layer of the

DBN as its own hidden layer; etc. The training procedure for

each DBN includes two phases. In the first phase, the RBMs

are trained one by one with unsupervised learning to roughly

determine the parameters of the DBN. In the second phase,

all the parameters of the DBN are fine-tuned with supervised

learning according to the back-propagation algorithm. More

details of training procedure of the DBNs are given in Section

IV-C.

B. Data Preparation Part

To the best of our knowledge, deep learning technique can

be considered as a comprehensive tool to derive knowledge

from sufficient empirical data. Hence, a large number of

data samples are required to develop a deep learning-based

approach to approximate the optimal solution. In our work,

we firstly randomly generate channel coefficients hn,k(n ∈
N , k ∈ K) and then employ the genetic algorithm to deal

with the optimization problem P1 to determine the optimal

solution including the characteristic pattern matrix Q∗, the

power allocation P∗ and the TS ratio control α∗. In our work,

the input of the training sample x is composed of the channel

coefficients while the output y is related to the optimal solution

that determined by genetic algorithm, which can be more

clearly expressed as

x = [h1,1, . . . , h1,K , . . . , hN,1, . . . , hN,K ], (18)

y =[q∗1,1, . . . , q
∗
1,K , . . . , q∗N,1, . . . , q

∗
N,K ,

P ∗
1,1, . . . , P

∗
1,K , . . . , P ∗

N,1, . . . , P
∗
N,K ,

α∗
1, . . . , α

∗
K ].

(19)

Note that there are K UEs communicating with the BS via

N REs in the considered system, the vector y is consisted

of 2NK + K elements and we need to approximate totally

2NK+K output parameters. Hence, we will establish 2NK+
K DBNs for all parameters in the next part, which are denoted

as DBNℓ (ℓ ∈ 1, 2, . . . , 2NK +K). In particular, the set of

training samples for DBNℓ is given by {(x, yℓ)}, where yℓ is

the ℓth component of y and ℓ ∈ {1, 2, . . . , 2NK +K}.

C. Model Training Part

With sufficient training samples obtained in the previous

part, we now start training the DBN for each parameter to be

estimated one by one. For each RBM in DBNℓ, we denote v

and h as the vector of the visible layer and the hidden layer,

respectively.

The first stage of the training process is unsupervised

learning. First of all, the corresponding parameters of the

RBM are initialized, including the weights between the visible

and hidden layers w, the biases related to the visible layer

bv and the biases associated with the hidden layer bh. Let

Φ = {w, bv, bh}. Next, these parameters are updated itera-

tively according to the following expression:

Φt+1 = Φt + ε
∂ logPr(vt)

∂Φt

, (20)

where t and ε denote the number of iteration and the learning

rate in the unsupervised training stage, respectively. Further-

more, Pr(vt) corresponds to the probability of the visible

layer in the tth iteration vt, which can be calculated through

the joint probability distribution of the visible and the hidden

layers Pr(vt, ht). Hence, Pr(vt) can be defined as

Pr(vt) =
∑

ht

Pr(vt, ht)

=
∑

ht

exp (−E (vt, ht))∑
vt

∑
ht
exp (−E (vt, ht))

.
(21)

In (21), E(vt, ht) is the energy function related to the RBM,

which can be calculated by

E(vt, ht) = −v′twtht − b′
vt

vt − b′
ht

ht. (22)



It should be noted that it takes considerably long time to

calculate the joint probability distribution Pr(vt, ht) according

to (21) and (22) due to the high computational complexity. For

convenience, an approximate of Pr(vt, ht) based on Gibbs

sampling has been exploited to tackle this complexity issue in

our work.

The second stage of training process is supervised learning.

The purpose of this stage is to fine-tune the parameters of

DBNℓ based on the output of the training sample, i.e., yℓ.

Denote y
(i)
ℓ as the output of the ith training sample and the ŷ

(i)
ℓ

as the output predicted by the DBNℓ with the given input x(i).

The process of fine-tuning can be mathematically formulated

as minimizing a loss function namely cross entropy, which is

given as

Sℓ = −
1

D

D∑

i=1

(
y
(i)
ℓ log(ŷ

(i)
ℓ ) + (1− y

(i)
ℓ ) log(1− ŷ

(i)
ℓ )

)
,

(23)

where D is the number of the training samples. In fact, the

cross entropy Sℓ is the measure of prediction error of DBNℓ.

At the end, the set of parameters Φ is fine-tuned iteratively

by the back-propagation algorithm, which can be expressed

as follow:

Φt+1 = Φt − ε̃
∂S

∂Φt

, (24)

where ε̃ corresponds to the learning rate of the back-

propagation algorithm in the supervised training stage.

D. Solution Running Part

In the solution running part, we first randomly generate the

channel gains hn,k(n ∈ N , k ∈ K), and the input layer of

DBN is denoted as x = [h1,1, . . . , h1,K , . . . , hN,1, . . . , hN,K ].
Then the well-trained DBN networks (DBN1, DBN2, . . . ,

DBN2NK+K) are loaded. With the given input x and the well-

trained DBNℓ, we can compute and predict the output layer of

each DBNℓ, denoting as ŷℓ. Finally, we form the approximate

of the optimal solution (including Q̂, P̂ and α̂) of the power

minimization problem P1 based on the output of each DBN,

i.e.,

Q̂ =




ŷ1 · · · ŷK
...

. . .
...

ŷ(N−1)K+1 · · · ŷNK


 , (25)

P̂ =




ŷNK+1 · · · ŷNK+K

...
. . .

...

ŷ(2N−1)K+1 · · · ŷ2NK


 , (26)

and

α̂ = [ŷ2NK+1, . . . , ŷ2NK+K ]. (27)

Up to now, the complete procedure of the proposed DBN-

based approach to approximate the optimal solution of the for-

mulated transmit power minimization problem is summarized

in TABLE I.

INPUT:

The randomly generated channel gains between BS

and UEk on REn, hn,k(n ∈ N , k ∈ K);
OUTPUT:

The approximation of the optimal solution of resource

allocation, including the characteristic pattern Q̂,

the power allocation P̂ and the TS ratio control α̂;

1: Generate sufficient training samples {(x, y)}:

2: x corresponds to the randomly generated channel gains

while y corresponds to the optimal solution determined

by genetic algorithm; the details are given in (18) and

(19), respectively.

3: Train the framework of DBNs one by one:

4: set the stopping criteria ǫ1 and ǫ2;

5: for ℓ = 1 : 2NK +K
6: for m = 1 : M
7: initialize the parameters vector Φ of the mth RBM;

8: Unsupervised learning stage:

9: repeat

10: update the parameters vector Φ according to (20);

11: until ‖Φt+1 − Φt‖ ≤ ǫ1;

12: Supervised learning stage:

13: repeat

14: fine-tune the parameters Φ by back-propagation

algorithm according to (24);

15: until ‖Φt+1 − Φt‖ ≤ ǫ2;

16: end

17: end

18: Predict the optimal resource allocation solution:

19: for ℓ = 1 : 2NK +K
20: load the well-trained framework of DBNℓ; compute

ŷℓ through DBNℓ with the given channel gains;

21: end

22: form the approximation of the optimal solution

according to (25), (26) and (27);

RETURN: Q̂, P̂ and α̂;

TABLE I: The complete procedure of the proposed DBN-based
approach for total transmit power minimization

IV. SIMULATION RESULTS

In this section, numerical results are provided to evaluate

the performance of our proposed deep learning-based joint

resource allocation approach for minimizing the total transmit

power. It is assumed that the BS is located in the center of

the cellular network and all UEs are randomly distributed

within a circle with radius of 300 meters. In other words, the

distance between BS and the kth UE dk is randomly generated

within the range (0, 300). The system bandwidth is assumed

to be B = 4 MHz. Referring to the typical 3GPP propagation

environment in [36], we set the path-loss exponent β = 3.76.

The detailed radio propagation model has been discussed in

Section II-A and it is omitted here for brevity. Furthermore,

the power conversation efficiency of the EH circuits is set to be

η = 30%; the minimum data rate requirement and harvested

power for each UE are assumed to be Rreq = 1 Mbit/s and

Ereq = 0.1 W, respectively. Other system parameters are



provided with the corresponding simulation results. In order to

construct, train and run the DBNs in our proposed approach,

the well-known and powerful off-the-shelf programming tool

namely Tensorflow r1.8 is used by implementing in the Python

3.6.0 platform.

First, we study the effectiveness of the proposed deep

learning-based approach by comparing the predicted result

with that obtained by exhaustive search method as well as

genetic algorithm. For this study, we consider an example

of a system with 4 UEs and 2 REs. The maximum avail-

able transmit power is set to be P = 1 W and the noise

power on the nth subchannel is assumed to be σ2
n = 0.01

W (n = {1, 2}). To the beginning, we randomly generate

the channel gains and determine the input of the sample x

based on (18); then solve the problem P1 through genetic

algorithm to establish the output of the sample y according

to (19). This process is repeated for 10000 times to generate

10000 training samples {(x, y)}. Next, these 10000 samples

are used to trained the DBNs. Each DBNℓ consists of five

layers, including an input layer x, three hidden layers and

an output layer yℓ. The number of neurons in each layer is

set to be 8, 64, 128, 128 and 1, respectively. In addition,

the learning rates are respectively set to be ε = 0.0001 and

ε̃ = 0.0001; the number of training epochs is set to be 3000;

and the terminating thresholds are set to be ǫ1 = 1e−3 and

ǫ2 = 1e−3, respectively. In the solution running part, we

approximate the optimal solution by the well-trained DBNs

and the corresponding performance is compared to that of

the exhaustive search method and the genetic algorithm. As

shown in Fig. 3, the performance obtained by the genetic

algorithm is very similar to the one derived by the exhaustive

search method. However, it takes about 800 iterations to

converge, which requiers a lot of time. In particular, it takes

much longer time for the genetic algorithm to converge as

the number of UEs and REs increases, and thus it fails to

meet the fundamental requirements of ultra-low latency in the

communication networks. On the other hand, it can be seen in

Fig. 3 that the performance gap between the proposed DBN-

based approach and the exhaustive search method is small

which is acceptable to some extent. More importantly, it takes

less time to approximate the optimal solution through the

proposed DBN-based approach, which facilitates to meet the

stringent requirement of ultra-low latency.

Next, the performance in terms of the minimum required

total transmit power under various system parameters is evalu-

ated in Fig. 4. It should be noted that all the simulation results

are based on the architecture design of DBNs discussed in the

previous simulation, and each result under a certain setting

of system parameters is the average of the approximations

corresponding to 1000 groups of randomly generated channels.

In particular, we assume that the total bandwidth is divided

into 4 subcarriers, i.e., N = 4 and Bc = 1 MHz. The noise

power in any subcarrier is set to be σ2
n = 0.001/0.01/0.1 W

for comparison. As shown in Fig. 4, under the same setting of

noise power, the minimum total transmit power approximated

by deep learning-based approach is monotonically increasing

with the increase in the number of UEs. Furthermore, the trans-

mit power consumption always increases with the increase in
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Fig. 4: Comparison of minimum total transmit power of the proposed
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the noise power, regardless of the number of UEs. In particular,

the relationship between the minimum transmit power and the

number of UEs can be approximated as a linear function and

the slope of it will increase with the increase in the noise

power.

Next, we study the minimum total transmit power estimated

by the proposed deep learning-based strategy with different

levels of QoS requirements. The minimum data rate require-

ment per user is set to vary from 0.2 Mbit/s to 2 Mbit/s

while the minimum demand of harvested power is set to

vary from 0.02 W to 0.2 W. Furthermore, the number of

subcarriers and the noise power are assumed to be N = 4
and σ2

n = 0.01 W, respectively. The number of UEs is

assumed to be 3/4/5 for comparison. As shown in Fig. 5, the

increasing level of minimum data rate requirement leads to

an increasing total transmit power and this tendency becomes

more and more obvious as the number of UEs increases.

Similar result can be observed in Fig. 6 where the total

transmit power monotonically increases with the increase in

the level of minimum requirement of harvested power. These



Minimum data rate requirement (Mbit/s)
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

M
in

im
um

 to
ta

l t
ra

ns
m

it 
po

w
er

 (
W

)

0.4

0.6

0.8

1

1.2

1.4
K = 3
K = 4
K = 5

Fig. 5: Comparison of minimum total transmit power of the proposed
approach with different minimum data rate requirements

Minimal harvested power requirement (W)
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

M
in

im
al

 to
ta

l t
ra

ns
m

it 
po

w
er

 (
W

)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
K = 3
K = 4
K = 5

Fig. 6: Comparison of minimum total transmit power of the proposed
approach with different minimum harvested power requirements

results confirm and validate the effectiveness of the proposed

deep learning-based approach.

Finally, we study the performance comparison in terms of

transmit power minimization between the MC-NOMA with

PDMA scheme and the OFDMA, SC-NOMA or MC-NOMA

with SCMA scheme in SWIPT-enabled systems. The number

of UEs is set to be 3/4/5 for comparison. Similarly, all the

results are averaged over 1000 trials. Specifically, in OFDMA

system, the available bandwidth is equally divided into K REs

and each UE communicates with the BS via one of the REs

without any inter-user interference. Furthermore, in the SC-

NOMA system, all the UEs communicate with the BS through

the entire bandwidth; in the MC-NOMA system with SCMA

scheme, the total bandwidth is equally divided into N REs

and it allows sparse number of UEs to share the same RE;

the MC-NOMA system with PDMA scheme is similar to that

with SCMA scheme, but there is no constraint on the number

of UEs that share the same RE. The QoS requirements for

each UE are the same in different systems. As shown in

Fig. 7, both SC-NOMA and MC-NOMA systems are more
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Fig. 7: Comparison of minimum total transmit power among OFD-
MA, SC-NOMA, MC-NOMA with SCMA and MC-NOMA with
PDMA in SWIPT-enabled systems

power-efficient than OFDMA system and the performance

of the MC-NOMA systems are superior to that of the SC-

MOMA system. Furthermore, an additional performance gain

can be achieved in MC-NOMA system with PDMA scheme,

comparing to that with SCMA technique. This is due to the

fact that there is no limitation of sparsity in the PDMA scheme

so that it is more likely for the UEs to select REs with better

channel conditions to communicate with the BS. Hence, this

validates and supports the superiority of our proposed scheme

as well as the effectiveness of the developed deep learning-

based approach.

V. CONCLUSIONS

The resource allocation problem for a downlink of SWIPT-

enabled MC-NOMA system with PDMA scheme has been

studied in this work. In particular, we focus on jointly opti-

mizing characteristic pattern matrix, power allocation as well

as TS ratio assignment for the total transmit power minimiza-

tion problem with QoS requirements as well as the transmit

power constraints. With the integer variable and the intra-

band interference, the corresponding optimization problem is

a non-convex and a mixed integer programming in its original

form and thus it is extremely strenuous to determine the

optimal solution. To resolve this problem, we have developed

a deep learning-based approach which includes three phases,

namely, data preparation, model training and solution running.

Numerical results validate that our proposed approach can

yield a solution which is similar to the ones derived by both

exhaustive search method and genetic algorithm while signif-

icantly reduces the required computation time. Furthermore,

it is also confirmed that the considered MC-NOMA with the

application of PDMA outperforms MC-NOMA with SCMA,

OFDMA and SC-NOMA in SWIPT-enabled systems in terms

of the required minimum transmit power.
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