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Abstract Traditional real-time air quality monitoring

instruments are expensive to install and maintain; there-

fore, such existing air quality monitoring networks are

sparsely deployed and lack the measurement density to

develop high-resolution spatiotemporal air pollutant

maps. More recently, low-cost sensors have been used

to collect high-resolution spatial and temporal air pollu-

tion data in real-time. In this paper, for the first time,

Envirowatch E-MOTEs are employed for air quality

monitoring as a case study in Sheffield. Ten E-MOTEs

were deployed for a year (October 2016 to September

2017) monitoring several air pollutants (NO, NO2, CO)

and meteorological parameters. Their performance was

compared to each other and to a reference instrument

installed nearby. E-MOTEs were able to successfully

capture the temporal variability such as diurnal, weekly

and annual cycles in air pollutant concentrations and

demonstrated significant similarity with reference in-

struments. NO2 concentrations showed very strong pos-

itive correlation between various sensors. Mostly,

correlation coefficients (r values) were greater than

0.92. CO from different sensors also had r values mostly

greater than 0.92; however, NO showed r value less than

0.5. Furthermore, several multiple linear regression

models (MLRM) and generalised additive models

(GAM) were developed to calibrate the E-MOTE data

and reproduce NO and NO2 concentrations measured by

the reference instruments. GAMs demonstrated signifi-

cantly better performance than linear models by captur-

ing the non-linear association between the response and

explanatory variables. The best GAM developed for

reproducing NO2 concentrations returned values of

0.95, 3.91, 0.81, 0.005 and 0.61 for factor of two

(FAC2), root mean square error (RMSE), coefficient of

determination (R2), normalised mean biased (NMB) and

coefficient of efficiency (COE), respectively. The low-

cost sensors offer a more affordable alternative for pro-

viding real-time high-resolution spatiotemporal air qual-

ity and meteorological parameter data with acceptable

performance.

Keywords Sensor cost . Sensor networks .

Envirowatch E-MOTEs . Air pollutionmonitoring .

Generalised additivemodel

Introduction

With an increasing trend towards urbanisation due to

better job opportunities and greater access to amenities

and facilities in cities, urban areas are expanding rapidly

globally. Given this trend, air pollutant levels are
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increasing, especially in large urban agglomerations and

at roadside locations, which adversely impact human

health in a variety of ways. Air pollutants, especially

high levels of nitrogen dioxide (NO2) and particulate

matter (PM10 and PM2.5) are considered the most sig-

nificant environmental risks to public health in urban

areas in the UK (Department for Environment, Food and

Rural Affairs (DEFRA) 2015; World Health Organisa-

tion (WHO) 2013). Atmospheric air pollutants were

estimated to cause seven million premature deaths in

2012, worldwide (WHO 2014). Air pollutants (e.g. NO2

and PM10) emitted by various emission sources are risk

factors and are reported to increase the risk of incidence

of various diseases including heart disease, lung cancer

and both chronic and acute respiratory diseases, includ-

ing asthma (WHO 2014).

Air quality monitoring is important to promote air

quality awareness and to support abatement strategies

(Borrego et al. 2016). Several techniques are used to

monitor air quality (Penza et al. 2014), which include (a)

Reference or conventional real-time air quality monitor-

ing, (b) portable air quality monitors, (c) passive diffu-

sion tubes and (d) digital sensors. Reference air quality

monitoring instruments are the most accurate and are

used for air quality compliance purposes, studying ex-

posure, supporting air quality management and devel-

oping policies for reducing and controlling emissions.

Reference instruments are expensive to purchase and

maintain, and therefore, the spatial resolution of air

quality measurement is low and insufficient for detailed

spatiotemporal mapping. Portable or mobile monitors

are either carried by individuals or installed in vehicles

that can be stationed where fixed continuous monitors

cannot be installed. Portable instruments can be useful

for monitoring air quality in certain cases and can pro-

vide high-resolution temporal data for a short period of

time, but have limited application for spatial mapping

and long-term monitoring. Passive tubes are small col-

lection devices used for monitoring gaseous air pollut-

ants such as NO2 and typically provide monthly average

concentrations, which can be converted to annual aver-

ages. These diffusion tubes are the cheapest technique

and provide better spatial coverage. However, these can

be used only for gaseous air pollutants and for long-term

monitoring (mainly monthly average). Low-cost sensors

(LCS) are used to collect real-time air quality data

providing high-resolution spatial and temporal air qual-

ity data. These type of sensors are the new trend in air

quality monitoring and can support the conventional air

quality monitoring stations to increase the density of the

sensing network (Heimann et al. 2015; Van den Bossche

et al. 2015; Viana et al. 2015). The low-cost sensors use

the latest microsensing technology and are considered

the innovative tools for air quality monitoring in the

future (Castell et al. 2015; Snyder et al. 2013; Kumar

et al. 2015; Stojanovic et al. 2015). Data collected by

these sensors can be used for detailed spatial and tem-

poral mapping of air pollution, especially over distinct

areas such as city or an urban district, for atmospheric

model validation and assessing population exposure;

however, the data need to be handle with caution and

several corrections need to be applied first.

Several authors have analysed the performance of the

LCS, comparing their performance with reference

instruments and with each other. Borrego et al. (2016)

performed such an assessment (sensors compared to

reference instruments) in Aveiro, Portugal, from 13 to

27 October 2014. The LCS and reference instruments

were colocated and monitored the levels of gaseous

pollutants (e.g. CO, NOx, O3, SO2), particulate matter

(PM10, PM2.5) and meteorological parameters (e.g. tem-

perature, wind speed and direction, relative humidity,

solar radiation and precipitation). The resultant mea-

surements were mutually compared and different sen-

sors showed significantly different performance in terms

of the statistical metrics used for evaluating the sensors’

performance. The range of R2 (coefficient of determina-

tion) values for different air pollutants was O3 (0.12–

0.77), CO (0.53–0.87), NO2 (0.02–0.89), PM (0.07–

0.36) and SO2 (0.09–0.20), where a lower R2 value

shows poor measurement performance of the sensors.

Borrego et al. (2016) concluded that LCS had great

potential for air quality monitoring, if properly support-

ed by post-processing and data modelling tools.

Different sensor systems use different principles to

measure the concentrations of atmospheric pollutants

(Borrego et al. 2016). These include optical particle

counters (OPC), metal oxide semiconductor sensors

(MOS), electrochemical sensors (EC), non-dispersive

infrared sensors (NDIR) and photo-ionisation detection

sensors (PID). Aleixandre and Gerboles (2012) reported

that these air quality sensors work through either mea-

suring the electrochemical interaction between the sens-

ing materials and the atmospheric chemicals or through

absorption of visible light. The principle of light scat-

tering or absorption is used for measuring the levels of

PM. Individual sensors are usually integrated into a

platform of sensors known as a sensor node. Each
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sensor node contains a sensor board, the sensors and a

control board which integrates all the elements of the

hardware such as GPS, data storage, communication

ports and signal conditioning. Examples of networks

based on these types of sensors are (a) Cambridge

University Sensor Network for Air Quality (SNAQ)

(Mead et al. 2013; Popoola et al. 2013; Borrego et al.

2016), (b) AUTh-ISAG AQ Microsensors (Borrego

et al. 2016), (c) Energy Centre of Netherlands (ECN

Airbox) (Borrego et al. 2016; Hamm et al. 2016), (d)

NanoEnvi platform (Borrego et al. 2016), (e) AQMesh

sensors (Borrego et al. 2016; Carruthers et al. 2016), (f)

ENEAAir-Sensor (Suriano et al. 2015), (g) EveryAware

Sensor Box (Borrego et al. 2016) and Envirowatch E-

MOTE sensors (Reis et al. 2013). These sensors are

briefly described below.

(a) Cambridge university SNAQ are microsensors for

measuring the concentrations of multispecies in-

cluding gases air pollutants, particulate matter and

meteorological parameters. These are low-cost

sensors and can be powered by battery or mains.

Mead et al. (2013) employed these microsensors

for monitoring air quality in Cambridge. Static

sensors were deployed to street furniture, whereas

mobile sensors were carried by pedestrians and

cyclists. Mead et al. (2013) reported widely vary-

ing concentrations of air pollutants in the urban

environment, which could not be characterised by

sparse static conventional air quality network. Fur-

thermore, Popoola et al. (2013) deployed these

sensors in Heathrow Airport in London for air

quality monitoring. They reported considerable

spatial and temporal variations in air pollutant con-

centrations across the air quality network. Accord-

ing to their findings, high air pollutant levels were

linked with stable weather conditions.

(b) AUTh-ISAGAQMicrosensors use the principle of

Waspmote wireless network, developed by

Libelium, which is an international IT and

engineering company. These sensors aim to

reduce power consumption, reduce thermal noise,

provide easy inspection and require low

maintenance. Data are normally collected using

an SD card and can be run using both battery and

main power supply. These sensors were used by

Borrego et al. (2016) in their study and their per-

formance was compared to several other

microsensors and reference instruments. These

sensors can measure the concentrations of several

air pollutants and meteorological parameters.

(c) ECN Airbox were developed by the Energy Re-

search Centre of the Netherlands (ECN). Airbox

sensors monitor particulate matter (e.g. ultrafine

particles (UFP), PM1, PM2.5 and PM10), gaseous

(e.g. NO2 and O3) and meteorological parameters

(e.g. temperature and relative humidity). Airbox

sensors have been used for air quality monitoring

in the Netherlands in the city of Eindhoven in 35

locations since 2013. These sensors are powered

by battery and mains. Hamm et al. (2016) have

provided a detailed review of these sensors, which

could be read for further details.

(d) NanoEnvi sensors were manufactured by Envira.

These analysers use several sensors with different

technology. The sensors’ work is based on the

changes in electrical properties that happen in the

surface of the sensors when pollutants are present.

The air pollutants which can be measured by

NanoEnvi are gaseous pollutants (e.g. SO2, NO,

NO2, CO, CO2, O3, H2S and VOCs), particulates

(PM10 and PM2.5) and meteorological parameters

(e.g. wind characteristics, temperature, relative

humidity).

(e) AQMesh sensors are manufactured by Environ-

mental Instruments Ltd., UK. These are low-cost

microscale sensors for effective environmental

monitoring, which are developed for harsh outfield

environmental conditions and are capable of

wo r k i n g t o h i gh s t a nd a r d s . AQMesh

microsensors measure the concentrations of NO,

NO2, O3, SO2 and CO using the latest generation of

electrochemical sensors. Particulate matter is

measured using a light scattering optical particle

counter. Using solid state sensors, they can also

measure the levels of temperature, RH and

atmospheric pressure. Carruthers et al. (2016) com-

pared the performance of AQMesh in Cambridge

with reference instruments where AQMesh

showed considerably higher concentrations of

NO2, NO and PM10; however, overall, they per-

formed well and showed great potential for con-

tributing to the air quality monitoring, especially

improving the spatial coverage in the UK.

(f) ENEA Air-Sensor are manufactured by ENEA

(Energia Nucleare ed Energie Alternative), which

is an Italian agency for new technology, energy and

environment. These sensors measure the levels of
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several air pollutants, such as CO, NO2, O3, SO2,

H2S and PM10, and meteorological parameters

such as relative humidity and temperature. These

sensors can be operated via battery or mains.

Suriano et al. (2015) evaluated the performance of

these air sensors during a campaign of several

months in Italian national projects for sustainable

innovation in the smart cities. These sensors were

used both as stationary and mobile air quality mon-

itoring systems, and initial results indicated that

these sensors potentially could improve air quality

monitoring program.

(g) EveryAware sensors are manufactured by Vito (a

leading independent research and technology orga-

nisation based in Belgium andworks in the areas of

cleantech and sustainable development) under the

European Seven Framework Program (EU-FP7).

The EveryAware sensors are used for air quality

monitoring in Belgium, Italy and the UK.

EveryAware is a low-cost, portable air quality

monitor used for measuring personal exposure to

traffic pollution. This device contains six low-cost

gas sensors that react in the presence of traffic

pollutants (e.g. CO, NOx). Borrego et al. (2016)

used EveryAware sensors in Aveiro, Portugal, to

compare their performance with other microsensor

and reference instruments.

Dongol (2015) has listed several sensor platforms

which include DunavNet Platform, UrVamm, GeoTech

and ATEKNEA. In addition to these sensors, there are

several other types of sensors available for air quality

monitoring and the listing is growing with time. Sensors

of this type are cheaper, compact, user-friendly and pro-

vide high-resolution spatiotemporal air pollutant concen-

trations. They have the potential to enhance the existing

air quality network run at local levels by local authorities

and nationally by DEFRA. In addition, these sensors can

be installed independently by various research and gov-

ernmental organisations to monitor public exposure to

various air pollutants within a specific area. Despite all

these positive points, the quality of air pollution data

collected by these sensors is unproven and cannot be used

for regulatory and compliance purposes; however, the data

can be used for highlighting air pollution hotpots, for

public awareness and for complementing traditional air

quality monitoring programmes. There is a need for fur-

ther investigation to quantify uncertainties in the datasets

these types of sensors produce. These uncertainties are

related to exposure to harsh environmental conditions,

especially extreme temperature and relative humidity

and the associated time interval (i.e. the length of time

the instruments are operated in such a harsh environment).

Furthermore, uncertainties are also affected by the mea-

suring principles of the sensors and the quality of the

materials used by the manufacturers. Therefore, inter-

comparison of LCS made by different manufacturers

and with reference instruments is required. Further work

is also required to improve the performance of these

sensors by (a) improving their technology further to make

it more robust, (b) frequent calibration both in laboratory

and outdoor and (c) improving the experimental designs.

In this project, the aim is to install LCS in the city of

Sheffield to provide high-resolution spatiotemporal

maps of various air pollutants, especially NO2 which is

a pollutant of particular concern in Sheffield as well as

the rest of the UK. In this paper, the aim is to evaluate

the monitoring capability of Envirowatch E-MOTEs for

air quality monitoring. This is the first paper comparing

the performance of Envirowatch E-MOTEs with each

other and with reference instruments, which are recom-

mended by the European Union and UK DEFRA for air

quality monitoring. The paper analyses a year’s worth of

data and provides a more detailed assessment in com-

parison to previous studies (which have generally

analysed sensor data for a limited time ranging from a

week to a couple of months). Furthermore, supervised

machine learning approaches including multiple linear

regression and generalised additive modelling ap-

proaches are employed to calibrate the sensors by com-

paring their measurements with the reference instru-

ments and setting up the slope and intercept.

Methodology

In this project, the aim is to analyse CO (ppm), NO and

NO2 (ppb) data measured by LCS (Envirowatch E-

MOTEs) and NO and NO2 (ppb) measured by reference

sensors, along with meteorological data such as wind

speed, temperature and relative humidity, to assess the

performance of LCS. All these data were available for

the period October 2016 to September 2017. In this

section, firstly we describe Envirowatch E-MOTEs,

their operating principle and the air quality monitoring

network in Sheffield. This is followed by a statistical

analysis which includes model selection, development

and assessment.
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Envirowatch E-MOTEs

In this project, E-MOTEs developed by Envirowatch

Newcastle, UK, were employed. The E-MOTE was

launched by Envirowatch in 2010. Precision or reference

instruments used for air quality monitoring are large and

expensive to both purchase and maintain; in contrast,

these sensors are cheaper, small and suitable for a high-

density air quality monitoring network. E-MOTEs work

on a similar principle as the AQMesh pods, which use the

latest generation of electrochemical sensors made by

alphasense. E-MOTEs were used to measure the levels

of three gaseous pollutants: carbonmonoxide (CO), nitric

oxide (NO) and nitrogen dioxide (NO2).

The E-MOTEs use wireless technology to commu-

nicate their sensor reading and can be deployed on lamp

posts or other street furniture (Fig. 1). E-MOTEs in a

cluster communicate with a gateway by means of the

Zigbee protocol within a specific area for high-

resolution monitoring. The use of this protocol allows

the individual units to communicate with each other and

pass data from sensors that are not in range or without

line-of-sight of the gateway. Using GPRS, the gateway

device communicates the collected data over an internet

connection to a cloud server operated by Envirowatch.

The data are post-processed and presented for access by

users via the Enviroview web interface as well made

available for download via an application programming

interface (API).

LCS are more compact, portable and use less

power as compared to reference instruments. E-

MOTEs use electrochemical technology for measur-

ing gaseous air pollutants, including NOx, CO and

O3. Electrochemical sensors work by reacting to the

target gas, generating an electrical output which

varies with the concentration of target gases present

in air. Independent Envirowatch E-MOTEs transmit

raw measurement data to a cloud server. These data

are not concentration readings as such and require

post-processing. Once readings are received, mathe-

matical processing is applied to correct cross-gas

effects and prevailing environmental factors.

An electrochemical sensor contains a cell where three

electrodes are present. These electrodes are known as

the working or sensing electrode, counter electrode and

reference electrode. The electrodes are separated by

wetting filters, which are hydrophobic separators en-

abling ionic (cation and anion) contact between the

electrodes, allowing transport of the electrolyte via

capillary action. The sensed gas is either reduced or

oxidised at the working electrode. These reactions are

catalysed by the electrode materials specifically devel-

oped for the gas in question. Normally, the rate of

diffusion of the sensed gas to the sensor electrode is

slower than the rate of reaction of the gas at the elec-

trode. Therefore, the concentration of the sensed gas

determines the electrical current output by the sensor

(Mead et al. 2013). The potential difference between the

working and counter electrodes then generates an elec-

tric current which is the output signal of the sensor. With

a resistor connected across the electrodes, a current

proportional to the gas concentration flows between

the anode and the cathode. Thus, the current can be

measured to determine the gas concentration. The cur-

rent generated by these types of electrochemical sensors

is measured using suitable electronics and, following

further processing, displayed as a concentration mea-

surement in ppm (for CO) or ppb (for NOx, and O3).

Air quality monitoring network (AQMN)

Air quality data analysed in this paper are mainly from

two sources: LCS and reference instruments, which are

described below:

(1) LCS network

LCS used for air quality monitoring were

Envirowatch E-MOTEs. Ten E-MOTEs were deployed

at the University of Sheffield Campus (Fig. 2) for a year

(October 2016 to September 2017). This area is bound-

ed by Mappin Street, Rockingham Street, Portobello

Street and Broad Lane and can be classified as urban

background area. This area is part of the University of

Sheffield and is mainly comprised of offices, lecture

theatres and student accommodation. E-MOTEs pro-

vide minute-by-minute air pollutant measurements,

which were converted to hourly averages to make them

comparable to the data collected by reference instru-

ments. Sensor identities and coordinates of their loca-

tions are shown in Table 1 along with the average annual

concentration of each pollutant measured.

(2) Reference instruments network

Several reference instruments are installed to monitor

various air pollutant concentrations in Sheffield. These
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total nine (9) continuous air quality monitoring stations

(AQMS) and provide hourly concentrations of air

pollutants, including NOx, CO, SO2, O3 and particulate

matter mainly PM10 and PM2.5. Out of these, three (3) of

Fig. 1 Envirowatch E-MOTEs

post-mounted (left) and showing

the solar panel used for battery

charging (right). Ten of these E-

MOTEs were used for collecting

data used in this study

Fig. 2 Map of the locations of the

Envirowatch E-MOTEs included

in this study, where the red rect-

angle in the upper panel shows the

location where sensors were de-

ployed and the lower panel shows

their localisation sites (the map

was developed in ArcMap10.4.1

using basemaps of

OpenStreetMap)
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the monitoring stations are part of the Automatic Urban

and Rural Network (AURN) run by the UK govern-

ment’s DEFRA, whereas the remaining six sites are

installed and managed by Sheffield City Council

(Fig. 3). Devonshire Green (AURN), Waingate (RM1)

and Wicker (GH4) are the nearest to the E-MOTE

network. However, data from October 2016 to Septem-

ber 2017 were available only from Devonshire Green

(DG) monitoring station, which are compared with data

from the installed sensors. Figure 4 shows box plots

comparing NO (lower panel) and NO2 concentrations

(middle-panel) measured by each of the E-MOTEs and

with reference sensors (upper panel). The box plots

show the distribution of the concentrations with some

descriptive statistics including median (middle line of

the box), lower or first quartile (lower end of the box),

upper or third quartile (upper end of the box), inter-

quartile range (representing middle 50% of the data

points), upper and lower whiskers representing concen-

trations outside the middle 50% and outliers (point lying

beyond the whiskers). Box plots compare both central

tendency and variability or distribution of the concen-

trations. NO2 concentrations measured by the various

sensors exhibit a similar pattern; in contrast, NO con-

centrations show much more variability.

Statistical analysis

Statistical analyses were carried out, comprising corre-

lation analysis, regression analysis and graphical pre-

sentations, in the base packages of the R programming

language (R Core Team 2017) and two of its additional

packages known as ‘openair’ (Carslaw 2016) and

‘mgcv’ (Wood 2017).

In this paper, supervised machine learning ap-

proaches are suggested for calibrating E-MOTE outputs

in comparison with measurements gathered from the

reference instruments. Although these sensors are pre-

calibrated by the manufacturers, they require local out-

field calibration to account for cross interference of

other pollutants and meteorological parameters, e.g.

temperature and relative humidity. Two modelling ap-

proaches are employed in this study: (a) linear regres-

sion models (LRM) and (b) generalised additive models

(GAMs). For details on these models, see Hastie and

Tibshirani (1990),Wood (2006), Munir et al. (2013) and

Sayegh et al. (2014).

Model selection: choosing the best set of predictors

Air pollutant data were obtained from ten E-MOTEs

and a reference AQMS each measuring NO and

NO2. Meteorological data of wind speed, relative

humidity and temperature were also available from

a weather station collocated with reference station.

Firstly, NO and NO2 from all ten E-MOTEs (making

20 variables) along with relative humidity, wind

speed and temperature were considered as predictors

(independent variables) for predicting the concentra-

tion of NO and NO2 measured by the reference

instrument (Fig. 5, upper panel). Various other com-

binations of predictors were also tested to find the

best set of predictors using best subset regression

(BSR). After testing a combination of various pre-

dictors, six predictors were chosen and were used in

Table 1 Coordinates of the sensors and data summary showing the mean concentrations (annual mean) of various air pollutants from

October 2016 to September 2017

Sensors ID Northing (m) Easting (m) CO (ppm) NO (ppb) NO2 (ppb)

S701 392,846 631,411 0.33 2.39 58.00

S702 392,846 631,425 0.46 20.31 16.60

S703 392,845 631,437 0.33 10.95 13.30

S704 392,878 631,425 0.33 3.70 18.85

S705 392,878 631,409 0.35 11.55 19.03

S706 392,883 631,390 0.43 15.98 18.60

S707 392,878 631,418 0.33 7.87 17.59

S708 392,900 631,429 0.33 9.60 17.93

S709 392,837 631,400 0.33 9.49 18.70

S710 392,837 631,418 0.32 5.66 17.07
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the model development to model the concentrations

of NO2 and NO measured by reference instrument.

It can be seen in (Fig. 5 upper panel) that the value

of R2 increases with an increase in the number of

independent variables; however, after adding a cer-

tain number of covariates, the line becomes horizon-

tal showing little improvement in the R2 value. Con-

sidering the results of BSR and the outputs of the

actual LRM and GAM (discussed in coming sec-

tions), the final number of covariates were decided.

The whole dataset was divided into two subsets: a

training dataset (75%) and a testing dataset (25%)

both selected randomly. The raining dataset was

used to train the model, whereas the testing dataset

was used to assess the model’s performance and

check its validity.

The model selection process examines all possi-

ble sets of predictors in ordinary least square (OLS)

regressions and leads to choosing one that fits best

according to some criterion. The criterion could be

based on p value as in the standard stepwise

methods (e.g. backwards stepwise regression),

which take one variable away and then re-examine

the model. Alternatively, the criterion could be

based on R2 or adj-R2. This is called BSR or leaps-

and-bounds approach. Criterion based on R2 and

adj-R2 is technically much stronger than on the p

value; therefore, in this paper, the leaps-and-bounds

method is adopted. To apply the leaps-and-bounds

method, we employed one of the package of R

programming language known as ‘Leaps’ to select

the best set of predictors.

Model development

In this paper, two modelling approaches are employed:

linear regression model (LRM) and generalised additive

model (GAM).

(a) LRM

Two types of linear models were developed: Simple

linear regression and multiple linear regression model.

In simple linear regression model, only one dependent

variable (predictor) was used. This helps correct slopes

and offsets (intercepts) values of the lower-cost sensors

Fig. 3 Air quality monitoring

network of continuous

monitoring stations in Sheffield

comprised of AURN sites run by

DEFRA and Sheffield City

Council sites (the map was

developed in ArcMap10.4.1

using basemap of

OpenStreetMap)
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to improve the accuracy of results. During calibration,

the measurements are regressed vs reference measure-

ments, where readings from the E-MOTEs (NO_mean

or NO2_mean) are taken as independent (x-axis) and

reference readings (NO_DG or NO2_DG) as the depen-

dent (y-axis) variable. The regression model is run and

values of slopes and intercepts are calculated as shown

in Eqs. 1 and 2; here, DG stands for Devonshire Green

Fig. 4 Box plots of hourly

concentrations (ppb) NO (lower

panel), NO2 (centre panel) mea-

sured by E-MOTEs and their

mean compared with reference

measurements from Devonshire

Green monitoring station

(upper panel)
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which is the location of a reference air quality monitor-

ing station and NO_mean is the average of the readings

from all the sensors.

NO DG ¼ βo þ β1 NO meanð Þ þ Ɛ ð1Þ

NO2 DG ¼ βo þ β1 NO2 meanð Þ þ Ɛ ð2Þ

The values of slopes and intercepts are then applied

to the whole dataset of E-MOTEs.

βo is the intercept, β1 is the coefficient or slope, Ɛ is

the error term (the difference between observed and

modelled concentrations).

To account for cross interference and for the effect of

meteorological parameters, a multiple linear regression

model was developed for each NO and NO2 value as

given in Eqs. 3 and 4 using the predictors selected in the

model selection section (3.2.1).

NO DG ¼ βo þ β1 NO meanð Þ þ β2 NO2 DGð Þ

þ β3 NO2 meanð Þ þ β4 WSð Þ

þ β5 RHð Þ þ β6 Tempð Þ þ Ɛ ð3Þ

NO2 DG ¼ βo þ β1 NO DGð Þ þ β2 NO2 meanð Þ

þ β3 NO meanð Þ þ β4 WSð Þ

þ β5 RHð Þ þ β6 Tempð Þ þ Ɛ ð4Þ

In the above equations, βo is the intercept, β1

to β6 are the coefficients or slopes and Ɛ is the

error term. Furthermore, NO_mean and NO2_mean

are average concentrations of NO and NO2 from

the lower-cost sensors, NO_DG and NO2_DG are

NOx concentrations from the Devonshire Green

monitoring station, WS is wind speed (m/s), RH

is relative humidity (%) and Temp is the air tem-

perature (°C).

(b) GAMs

GAMs are advanced modelling techniques

which are applicable to both normal and non-

normal data distribution and do not assume the

relationship between response and explanatory var-

iables to be linear. GAMs rather permit the re-

sponse probability distribution to be any member

of the exponential family (e.g. normal, exponential,

gamma and poisson distribution). In contrast, a

linear model assumes the response distribution to

be normal and the relationship between response

and explanatory variables to be linear.

The GAMmodels developed in this study are shown

in Eqs. 5 to 8 below, using the same predictors used by

LRM shown in Eqs. 1 to 4.

NO DG ¼ s1 NO meanð Þ þ Ɛ ð5Þ

NO2 DG ¼ s1 NO2 meanð Þ þ Ɛ ð6Þ

Fig. 5 Best subset regression (BSR) using 23 predictors (NO_1 to

NO_10, NO2_1 to NO2_10, wind speed (WS), temperature

(Temp) and relative humidity (RH)) for predicting NO2_DG (up-

per panel) and 6 predictors (NO_mean, NO2_mean, NO_DG,WS,

Temp and RH) for predicting NO2_DG (lower panel)

   94 Page 10 of 22 Environ Monit Assess          (2019) 191:94 



NO DG ¼ s1 NO meanð Þ þ s2 NO2 DGð Þ

þ s3 NO2 meanð Þ þ s4 WSð Þ

þ s5 RHð Þ þ s6 Tempð Þ þ Ɛ ð7Þ

NO2 DG ¼ s1 NO DGð Þ þ s2 NO2 meanð Þ

þ s3 NO meanð Þ þ s4 WSð Þ

þ s5 RHð Þ þ s6 Tempð Þ þ Ɛ ð8Þ

In the above models (5 to 8), s1 to s6 are the smooth-

ing terms (Wood 2006), each one of these is associated

with the adjacent explanatory variable. Response or

modelled variables are given on the left and the explan-

atory variables of each model are given on the right of

the equations.

Models’ assessment

To evaluate the models’ performance, predicted and

measured (observed) concentrations were compared.

For this purpose, several statistical metrics were calcu-

lated including correlation coefficient (r), coefficient

of determination (R2), rootmean square error (RMSE),

normalised mean biased (NMB), factor of two (FAC2)

and coefficient of efficiency (COE), which are defined

by Carslaw (2016) and Sayegh et al. (2014). RMSE

provides a good measure of the model error by calcu-

lating how close or far the predicted values are to the

observedvalues.NMBestimates average over or under

prediction, whereas ‘r’ is the strength of the linear

relationship between two variables (here, modelled

and observed concentrations). NMB value between +

0.02 and − 0.02 shows acceptable model performance.

Wewould like ‘r’ to have a value as close to one (± 1) as

possible; however, generally, a value ranging from ±

0.5 to ± 0.99 indicates reasonably good performance.

FAC2 is the fraction of modelled values within a factor

of 2 of the observed values. FAC2 should satisfy the

condition that 0.5 ≤Mi/Oi ≤ 2,whereMi represents the

modelledvalues andOi represents theobservedvalues.

A highly efficient or perfect model should have COE

value of 1; however, when analysing real data, a model

should have a COE value of less than 1. COE having a

zero value (COE = 0)means themodel prediction is not

better than the mean of the observed value, which in

otherwordsmeans its predictionpower is zero; it hasno

predictive advantage.

Results and discussion

Temporal variability and correlation analysis

Hourly average NO2 (ppb), NO (ppb) and CO concen-

trations (ppm) measured by ten E-MOTEs seemed rea-

sonable and had an overall mean of about 22 ppb,

10 ppb and 0.35 ppm, respectively. Overall, various air

pollutant concentrations showed a similar pattern at

different monitoring sites during different seasons, for

instance, NO2 concentration was higher in winter

months and lower in summer (time plots not shown

for brevity). These seasonal trends are further analysed

in coming sections. NO2 and NO concentrations mea-

sured at the Devonshire Green monitoring site also

showed higher concentrations in colder months and

lower concentrations in warmer months. Obara et al.

(2011) and Cai et al. (2016) have reported that air

pollutant levels are strongly associated with stable

weather conditions, atmospheric inversion, low wind

speed and shallow boundary layer which are generally

found in winter seasons in the UK. In such meteorolog-

ical conditions, air pollutants emitted by various sources

do not disperse and stay near the emission sources due

to poor horizontal and vertical dispersion.

Figure 6 shows correlation plots of hourly average

NO2 (upper panel), NO (centre panel) and CO (lower

panel) concentrations collected by the ten E-MOTEs.

The correlation coefficient value, ranging from − 1 to +

1, are normally represented as a decimal number (e.g.

0.xx). However, here to facilitate presentation, both zero

and decimal points are avoided, following the default

format of ‘openair’ suggested by Carslaw (2016). NO2

concentrations show very strong positive correlation

between various sensors. Mostly, correlation coeffi-

cients are greater than 0.92 (r > 0.92), except sensor-1

(NO2_1), which shows relatively weaker correlation,

with r values ranging from 0.60 to 0.67. The cause of

this weaker correlation is likely due to erroneous data

caused by bad communication between the sensor and

the gateway. Taking this into account, this shows all the

E-MOTE measurements of NO2 are consistent with

each other and show strong similarity with each other.

This strong similarity puts confidence in the consistency

of these sensors. This is the first study reporting the

performance of E-MOTEs; therefore, no comparison

was possible with previous studies. However, several

researchers have assessed the performance of other

LCS, such as AQMesh pods both in the UK and Europe
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and reported that their performance varied both spatially

and temporally from sensor to sensor (Castell et al.

2017).

In contrast, NO concentrations (Fig. 6, middle-panel)

showed weaker correlation. NO_5 vs NO_6 and NO_5

vs NO_7 showed strongest correlation with r value of

0.48 each. NO_6 vs NO_9 show zero r value, whereas

NO_2 vs NO_3 showed negative correlation. Figure 6

(lower panel) presents correlation plots of CO concen-

trations showing much stronger correlation than NO

concentrations. Except for CO_2 and CO_6, the remain-

ing sensors compared against each other showed r

values greater than 0.90. CO_2 and CO_6 have r values

ranging from 0.35 to 0.64, which are those for CO_2 vs

CO_6 and CO_1 vs CO_6, respectively. This confirms

that E-MOTEs produce consistent measurements of CO

concentration. For further analysis, time variation plots

are constructed in the next section to see how the pol-

lutant concentrations vary at various time scales, such as

diurnal, weekly and annually.

Figure 7 shows time variation plots of NO2 concen-

trations (ppb) collected by nine of the E-MOTEs.

NO2_1 was removed due to missing and likely incorrect

measurements. These plots show strong similarities

among the nine sensors on all time scales, i.e. diurnal,

weekly and annual cycles. During the diurnal cycle (Fig.

7, lower-left-panel), NO2 concentrations (ppb) start de-

creasing after midnight and continue to do so until about

05:00 h, then slightly increase at about 06:00–08:00 h

probably due to morning traffic peak hours. Afterwards,

NO2 levels gradually decrease and reach a minimum

level around midday (12:00 h), most probably due to

low traffic activities and atmospheric conditions which

help disperse air pollutants quickly. Relatively high

temperature, high wind speed and wider atmospheric

boundary layer during the afternoon improve both hor-

izontal and vertical air pollutant dispersion. Diurnal

cycles of temperature (°C) and wind speed (m/s) during

2017 at the Devonshire Green monitoring stations are

shown in Fig. 8, which clearly shows that wind speed

and temperature reach the highest levels during the

afternoon, which leads to a widening of the atmospheric

boundary layer and help disperse locally emitted

Fig. 6 Correlation plots of NO2 ppb (upper panel), NO ppb

(centre panel) and CO concentrations (ppm) (lower panel) from

ten E-MOTEs during Oct 2016 to Sept 2017 in Sheffield. All r

values should have been presented as decimal number; however,

here, both zero and decimal points are avoided to facilitate

presentation

R
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pollutants. After 14:00 h, NO2 levels begin increasing

and reach their highest levels in response to the

evening’s busiest traffic hours (about 18:00–20:00 h),

when this activity cause pollutant emissions to increase.

Fig. 7 Time variation plots of NO2 concentrations (ppb) from nine sensors from October 2016 to September 2017 (readings from one

sensor, NO2_1 were excluded due to missing and erroneous data)

Fig. 8 Diurnal cycles of wind

speed (m/s) and temperature (°C)

at the Devonshire Green

monitoring station during 2017,

showing highest wind speed and

temperature during the afternoon
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Furthermore, in the evening, the atmosphere is colder

and more stable which discourages air pollutants disper-

sion. The stable atmosphere continues as the night pro-

gresses, although traffic levels decline. This reduction in

traffic levels results in a slight decrease in NO2 levels. It

is worth noting that all the sensors produce almost the

same temporal pattern on daily basis. Diurnal cycles on

individual days (Monday to Sunday) are shown in Fig. 7

(upper panel). Weekly cycles of NO2 concentrations

(ppb) are shown in Fig. 7 (lower-right-panel), where a

uniform pattern of various sensors can be observed. As

expected, different traffic patterns during the weekend

result in lower levels of NO2 on Saturday and Sunday.

Annual cycles of NO2 (Fig. 7, lower-middle-pan-

el) are somewhat confusing showing much higher

levels of NO2 during October. It was expected that

NO2 levels would have been higher during the colder

months (i.e. November, December and January) and

lower during the hotter months (i.e. May, June and

July). This is seen in Fig. 9, which depicts NO2 levels

measured at the Devonshire Green monitoring station

during the same period as shown in Fig. 7. Concen-

trations measured at this location are shown as

NO_DG and NO2_DG, and average concentrations

of the E-MOTEs are shown as NO_mean and

NO2_mean. CO is not monitored at this site and

therefore comparison with the E-MOTEs was not

possible. All E-MOTE sensors have a strong correla-

tion with each other and have the same temporal

pattern; therefore, it is convenient to average their

measurements to facilitate comparison with the mea-

surements from the Devonshire Green si te.

NO2_mean and NO_mean are closely related with

NO2_DG and NO_DG at diurnal, weekly and annual

cycles; however, some differences can be observed at

various temporal intervals. To summarise, it can be

said that generally, E-MOTEs show close similarities

with the reference instrument; however, there are

some dissimilarities at various temporal scales. NO2

and NO concentrations (ppb) at Devonshire Green

produced a smooth annual cycle going down from

January to June–July and then going up until Decem-

ber. Such a smooth annual cycle does not exist when

mean NO and NO2 concentrations measured by E-

MOTEs were plotted. NO2_mean showed lowest lev-

el in September and highest in October and the clear

summer and winter difference demonstrated by

Devonshire Green has disappeared here. Overall,

the results discussed above are encouraging as they

successfully capture the temporal trends of air

Fig. 9 Time variation plots comparing diurnal, weekly and annual cycles of NO2 and NO at Devonshire Green and the mean of all 10 E-

MOTE sensors during Oct 2016 to Sept 2017 in Sheffield
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pollutants and show a consistent performance by

showing strong correlation with each other.

Modelling

In this section, both linear and non-linear regression

modelling approaches are employed and their perfor-

mances are compared using several statistical metrics.

Linear regression models

The outputs of model 1 to 4 are presented in Table 2,

showing the values of various statistical metrics. Table 2

shows that the multiple linear regression model

(MLRM) demonstrated much better performance than

the simple linear regression model (SLRM). This was

expected as MLRMs used several extra explanatory

variables including temperature, wind speed and relative

humidity. The values of FAC2, RMSE, R2, NMB and

COE are shown in Table 2. The values of NMB dem-

onstrate acceptable model performance since they lie

within the range of + 0.02 to − 0.02 (Table 2). The other

metrics also signify a small degree of error in the model

and good predictability. Figure 10 shows a scatter plot

with model lines and shows that most of the points lie

between the FAC2 region, which again demonstrates

acceptable model performance. It should be noted that

these metrics were calculated using the testing data

(25% randomly selected), and for the training dataset,

the values returned for these metrics displayed even

better performance (not shown for brevity). This shows

that using air quality data measured by LCS and

Table 2 Showing the outputs of simple (SLRM) and multiple linear regression models (MLRM)

Model Response variable Explanatory variable(s) FAC2 RMSE R2 NMB COE

SLRM NO_DG NO_mean 0.98 2.84 0.25 0.002 0.10

SLRM NO2_DG NO2_mean 0.78 10.15 0.15 0.013 0.05

MLRM NO_DG NO_mean, WS, NO2_mean, RH, NO2_DG, Temp 0.30 12.79 0.51 0.012 0.12

MLRM NO2_DG NO_mean, WS, NO2_mean, Temp NO_DG, RH, 0.83 5.76 0.64 0.001 0.41

Fig. 10 Scatter plot comparing

observed and MLRM-predicted

concentrations of NO2_DG (ppb)

based on the testing data (25%

randomly selected), where the

solid middle line is the 1:1 line,

whereas the upper and lower lines

represent 2:1 and 0.5:1 respec-

tively. Most of the points lie

within these lines demonstrating

acceptable model performance
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meteorological data as explanatory variables, we can

successfully predict (reproduce) NO2 concentrations

measured by reference instruments. Further details of

model 4 are given in Table 3, which shows that all

explanatory parameters in the model had highly signif-

icant effects (p value < 0.01) on the response variable.

Explanatory variables with positive coefficients (i.e.

NO_mean and NO2_mean) show positive effect on the

response variable, whereas the variables with negative

coefficients (e.g. temperature and wind speed) show

negative effect on the response variable. The negative

effect of temperature and wind speed suggests that

warmer and windier conditions help disperse locally

emitted pollutants and hence decrease NO2 concentra-

tions. The negative correlation between relative humid-

ity and temperature is well known; therefore, relative

humidity is showing positive associations with NO2.

Positive association between different NOx species is

expected as they have the same emission source and

therefore show positive coefficients in Table 3. Linear

regression is unable to address the non-linear relation-

ship between response and explanatory variables; there-

fore, a non-linear regression model is employed in the

next section to test how it performs in comparison to its

linear counterpart.

Generalised additive model

Generalised additive models (GAM) are shown in Eqs. 5

to 8. After running these models, predicted and observed

concentrations were compared and several metrics were

calculated to assess their performance, which are present-

ed in Table 4. Comparing Tables 2 and 4, it can be

observed that using the same explanatory variables,

GAM performs better and displays greater predictability.

Comparing these models, model 8 showed best perfor-

mance. Its outputs are shown in Fig. 11, which shows how

the response variable (NO2_DG) changes with each ex-

planatory variable. This figure also shows that the associ-

ation between explanatory variables and response variable

(NO2_DG) is not linear and changes for different values of

the explanatory variables. It is interesting to see that the

effect of temperature on NO2 is negative (the curve is

downward) until around 20 °C is reached; afterwards, as

temperature increases further, the curve turns upward,

showing a positive effect, most probably due to the for-

mation of secondary NO2 in the atmosphere. In contrast,

the effect of wind speed results in a downward curve

regardless of wind speed, which is probably due to the

fact that high wind speed disperses locally emitted pollut-

ants more effectively. GAM successfully address the non-

linear relationship between response and explanatory var-

iables, and probably, this is the reason that GAMperforms

significantly better than the MLRM, using the same ex-

planatory variables. As an example, let us compare the

GAM andMLRMbased on NO2_DG. GAMhas resulted

in a high R2 value (0.83) and lower RMSE (3.91) than

MLRM where the R2 value was 0.64 and RMSE was

5.76. This shows that GAM has predicted NO2_DGmore

accurately. Figure 12 compares observed and predicted

NO2 and the plot shows a linear association between

observed and predicted concentrations with most of the

points lying within FAC2 region. All independent vari-

ables have highly significant effects (P < 0.001) on

NO2_DG.AlthoughGAMshows better performance than

MLRM, MLRM are used more often by researchers due

to the ease with which it can be applied and interpreted.

MLRM provide a slope for each explanatory variable as it

assumes a linear relationship, whereas in the case of

GAM, the slope changes almost at every point (Fig. 11).

In real-life situations especially in the case of air quality

data, relationships are not always linear; therefore, GAM

provide a better option for air quality modelling and

display greater predictability as shown in this study. To

explain this further, several plots are shown in Fig. 13

showing that the association between various air pollut-

ants is not linear. To address the non-linear association, we

need a non-linear model. GAM successfully addresses the

non-linear association between various air pollutants and

so performs better than a linear model. A demonstrative is

shown in Fig. 13 (lower-right panel), where the value of

R2 is 0.79 for GAM and 0.5 for LRM showing consider-

able difference in performance of the two models.

Table 3 Showing various parameters of model 4 along with their

slopes and p values

Explanatory

Variable

Coefficient

(slopes)

Significance value (p

value)

Intercept 14.74 0.000***

NO_mean 0.125 0.000 ***

NO_DG 0.250 0.000***

NO2_mean 0.168 0.000***

Temp − 0.412 0.000***

WS − 1.219 0.000***

RH 0.026 0.001 **

Note: p. stars relate to how statistically significant the effect is:

p < 0.001 = ∗∗∗, p < 0.01 = ∗∗
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Further discussion of LCS

Castell et al. (2016) have evaluated the performance of

the AQMesh sensors measuring gaseous air pollutants

(e.g. NOx, CO and O3) and particulate matter (PM10 and

PM2.5) in Oslo, Norway. They performed the evaluation

both outdoors and under indoor laboratory conditions.

They considered several types of emissions and environ-

mental conditions such as roadside traffic and urban

background over a 6-month period (April to September,

2015). Castell et al. (2016) concluded that good perfor-

mance of the low-cost sensors in the laboratory does not

imply similar performance when sited outdoors. There-

fore, to reduce uncertainties, sensors must be calibrated in

Table 4 Showing different statistical metrics for GAM

Response variable Explanatory variable(s) FAC2 RMSE R2 NMB COE

NO_DG NO_mean 0.98 2.80 0.17 0.014 0.101

NO2_DG NO2_mean 0.80 10.06 0.16 0.012 0.048

NO_DG NO_mean, NO2_mean, NO2_DG, WS, RH, Temp 0.53 9.89 0.70 0.008 0.50

NO2_DG NO_mean, NO2_mean, NO_DG, WS, RH, Temp 0.95 3.91 0.83 0.005 0.614

Fig. 11 Outputs of GAM (Eq. 8), in which NO2_DG (ppb) was

used as the response variable and NO2_mean (ppb), NO_DG

(ppb), NO_mean (ppb), temperature (temp °C), wind speed (ws

m/s) and relative humidity (rh %) were used as explanatory

variables. The dashed lines are the estimated 95% confidence

interval, whereas the vertical short lines on the x-axis show the

data presence
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outdoor field locations. They also concluded that there is

a lack of adequate outdoor testing of the sensors by the

manufacturers before marketing such sensors, which can

lead to poor performance and misleading data, which is

of great concern, especially when members of the public

use such instruments without scientific supervision to

collect and interpret air quality data.

Borrego et al. (2016) compared the performance of

several LCS with reference instruments from 13 to 27

October 2014 and reported that for measuring O3,

AQMesh and NanoEnvi sensors had the lowest errors

and higher coefficient of determination (R2 > 0.70),

whereas ENEA Air-Sensors, ISAG and Cambridge

SNAQ showed poor performance with R2 < 0.2. To

measure the levels of NO2, Borrego et al. (2016)

compared the performance of six platforms, where

the highest correlation and lowest errors were shown

by AQMesh, ECN Airbox and Cambridge University

SNAQ with R2 > 0.80 and mean biased error (MBE)

close to zero. In contrast, ENEA Air-Sensors and

AUTh-ISAG AQ Microsensors demonstrated very

poor correlation (R2 < 0.1). For measuring the levels

of CO, AQMesh and Cambridge University SNAQ

had the highest correlation (R2 > 0.80) with reference

instruments, whereas the performance of the rest of

the sensors was also satisfactory (R2 > 0.50) (Borrego

et al. 2016). For monitoring NO, AQMesh and Cam-

bridge University SNAQ were compared, where

AQMesh showed better correlation (R2 = 0.80) than

Cambridge University SNAQ (R2 = 0.30). For mea-

suring PM10, all sensors showed poor correlation with

reference instruments, with R2 = 0.36 being the

highest which was observed with the ECN Airbox

(Borrego et al. 2016). The ECN Airbox also showed

the highest correlation (R2 = 0.27) with reference in-

struments for measuring PM2.5, the other sensors had

lower R2-values.

Castell et al. (2017) compared the measurements

from 24 AQMesh sensors against reference

instruments and reported that the quality of the

data obtained from the LCS were questionable.

The performance of the sensors varied both

spatially and temporally and was dependent on the

atmospheric composition and meteorological

conditions, such as temperature and relative

humidity. Furthermore, Castell et al. (2017) reported

that the performance varied from unit to unit; there-

fore, it is necessary to check the data quality of each

pod separately before use. The sensors installed in

the laboratory showed much stronger correlation

Fig. 12 Scatter plot comparing

observed and GAM-predicted

concentrations of NO2_DG (ppb)

based on the testing data (25%

randomly selected), where the

solid middle line is the 1:1 line,

whereas the upper and lower lines

are 2:1 and 0.5:1 lines respec-

tively. The dashed lines show

within the factor of two regions.

Most of the points lie within these

lines showing an acceptable

model performance
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(R2 > 0.95 for all pollutants) with reference instru-

ments than those installed outdoors, where the aver-

age R2 values were 0.60, 0.86, 0.49, 0.54, 0.56 and

0.51 for CO, NO, NO2, O3, PM10 and PM2.5, re-

spectively. Air quality data collected by means of

LCS are suitable for promoting air quality aware-

ness, general information and for highlighting air

pollution hotpots; however, the data are not suitable

for air quality compliance and research, especially

for assessing health and environmental impacts of

air pollution (Castell et al. 2017). Dongol (2015) has

also concluded that air quality data collected by LCS

cannot be used for air quality regulatory purposes

and for other purposes where highly accurate data

are required. Therefore, Lewis and Edwards (2016)

state there is a need for further legislation to regulate

the usability of data obtained from low-cost sensors.

Referring to the uncertainties in air quality data col-

lected by LCS, Lewis and Edwards (2016) have

commented that the recent introduction of these sensors

R
2

for GAM = 0.95 and LRM = 0.92 R
2

for GAM 0.9 and LRM 0.87

R
2

for GAM 0.91 and LRM 0.84 R
2

for GAM 0.79 and LRM 0.5

Fig. 13 Comparing the performance of linear (LRM) and non-linear (GAM)models. R2 for GAM= 0.95 and LRM= 0.92, R2 for GAM 0.9

and LRM 0.87, R2 for GAM 0.91 and LRM 0.84, R2 for GAM 0.79 and LRM 0.5
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for monitoring public exposure to air pollution are gen-

erating a large volume of data, which remain mostly

untested, and therefore their quality is questionable and

will create difficulty for air quality managers and

planners in the future. Furthermore, Lewis and

Edwards (2016) mentioned that these sensors show

stability and sensitivity issues and that the sensors’

readings are subject to interference from other long-

lived air pollutants, e.g. CO2 and H2 and prevailing

meteorological conditions like relative humidity, tem-

perature and wind speed. The lower-cost sensors per-

form better when air pollutant levels are high (Lewis and

Edwards 2016). The lower-cost sensors have potential

to measure air pollutant levels in places where tradition-

al monitoring was not previously possible. They are

portable, cheaper, and can provide much better spatial

and temporal coverage in real-time, providing more

localised and timely warnings to the public.

Lewis et al. (2016) have shown that one potential

solution to reduce the uncertainties of air quality data

obtained by using this class of sensors is by applying

supervised machine learning techniques, such as the

boosted regression tree (BRT) model. Spinelle et al.

(2017) applied three approaches for calibrating the con-

centration of NO2, CO and CO2. The methods were

linear regression, multiple linear regression and a super-

vised machine learning technique (artificial neural net-

work). Using simple linear regression, only the refer-

ence concentration was used as an explanatory variable,

whereas in the other models, relative humidity and

temperature were also used. Supervised learning tech-

nique showed better performance than the other two

models. The finding of this current study agrees with

the above previous studies and show that the quality of

NO2 concentrations measured by LCS can be much

improved by applying supervised machine learning

techniques based on GAM.

Conclusions

LCS have the potential to contribute to real-time air

quality monitoring networks installed to date as this

type of sensors are cheap, compact, user-friendly and

provide high-resolution spatiotemporal measure-

ments of air pollutant concentrations. However, these

sensors have limitations; therefore, the sensors re-

quire outdoor calibration and the data obtained from

these sensors require further processing employing

advanced statistical modelling approaches, such as

GAM. In this paper, air pollutant data from ten

Envirowatch E-MOTEs were compared with each

other and with reference instruments. The sensors

were able to capture the diurnal, weekly and annual

cycles of air pollutant concentrations with some dis-

crepancies. NO2 and CO showed stronger correlation

between various sensors, where most of the correla-

tion coefficients were greater than 0.9; however, NO

showed relatively weaker correlation between the

various sensor locations. NO2 concentrations showed

very strong positive correlation between various sen-

sors. Mostly, correlation coefficients (r values) were

greater than 0.92. CO from different sensors also had

r values mostly greater than 0.92; however, NO

showed r value less than 0.5. Several linear and

non-linear models were developed for sensor calibra-

tion and for predicting NO2_DG and NO_DG con-

centrations using NO_mean and NO2_mean and me-

teorological parameters as explanatory variables.

GAM demonstrated better performance by exhibiting

stronger similarity (e.g. greater correlation coefficient

and FAC2 values) and lower error (e.g. weaker

RMSE and NMB) between observed and modelled

concentrations of NO and NO2. GAM were able to

capture the non-linear association between various

air pollutants and performed better than linear

models. The best GAM developed for reproducing

NO2 concentrations returned values of 0.95, 3.91,

0.81, 0.005, and 0.61 for factor of two (FAC2), root

mean square error (RMSE), coefficient of determina-

tion (R2), normalised mean biased (NMB) and coef-

ficient of efficiency (COE), respectively. Therefore,

GAM are recommended for LCS calibration and for

reproducing measured NO2. In the coming projects,

we intend to deploy a more dense network of LCS in

the whole city of Sheffield to collect high-resolution

spatial and temporal air quality data. We also aim to

improve experimental designs of the sensor network,

test other sensor technologies and identify new cali-

bration approaches for better performance in the

future.
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