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Stress and Functional Neurological Disorders: Mechanistic Insights  
 

 

ABSTRACT 

At the interface between mind and body, psychiatry and neurology, functional neurological disorder 
(FND) remains poorly understood.  Formerly dominant stress-related aetiological models have been 
increasingly challenged, in part due to cases without any history of past or recent trauma.  In this 
perspective article, we review current evidence for such models, and how research into the role of 
traumatic stress in other disorders and the neurobiology of the stress response can inform our 
mechanistic understanding of FND. 
 
First, we discuss the association between stress and the onset or exacerbation of a variety of 
physical and mental health problems. Second, we review the role of hypothalamic-pituitary-adrenal 
axis dysfunction in the neurobiology of ill-health, alongside evidence for similar mechanisms in FND. 
Third, we advocate a stress-diathesis model, in which biological susceptibility interacts with early life 
adversity, where FND can be precipitated by traumatic events later in life and maintained by 
psychological responses. We hypothesise that greater biological susceptibility to FND is associated 
with less severe remote and recent stress, and that FND precipitated by more severe stress is 
associated with lower biological vulnerability. This would explain clinical experience of variable 
exposure to historical and recent traumatic stress among people with FND and requires empirical 
investigation.  
 
A testable, evidence-based stress-diathesis model can inform nuanced understanding of how 
biological and psychological factors interact at the individual level, with potential to inform 
personalised treatment pathways. Much-needed research to establish the aetiology of FND will 
enhance clinical care and communication, facilitate effective treatment and inform prevention 
strategies. 

 

INTRODUCTION 

Functional Neurological Disorder (FND), also known as Conversion Disorder, has been historically 
conceptualised as the archetypal stress-related condition, but current evidence suggests that 
historical and precipitating stressors are neither necessary nor sufficient to cause the disorder. The 
role of stress, particularly severe traumas, in the aetiology of FND remains controversial, but there is 
consistent evidence that such experiences are major risk factors for, and of mechanistic and 
therapeutic relevance to, a significant proportion of cases.[1] In this perspective article, we review 
mechanistic insights into FND provided by the latest neurobiological stress research. 
 
Multifactorial, biopsychosocial models predominate for FND, but details of biological mechanisms 
remain elusive. However, recent research in other fields, from basic neuroscience to mechanistic 
studies of other stress-related disorders, is starting to reveal insights into the molecular processes 
potentially underpinning interactions between biological vulnerability (diathesis) and environmental 
stressors, ĂƐ ƉĂƌƚ ŽĨ Ă ͚stress-diathesis͛ model.  Furthermore, a growing body of literature shows how 
both early life and precipitating stressors play an aetiological role in physical as well as mental health 
disorders. Such developments have the potential to shape our understanding of FND͛Ɛ pathogenesis, 
with wider implications for our understanding of functional disorders affecting other bodily systems.  
FND is suspected when neurological symptoms arise in the absence of identifiable neuropathology 
or pathophysiological disease mechanisms. DSM-5 reflects the fact that FND is not a diagnosis of 
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exclusion, but has distinct ͚ƉŽƐŝƚŝǀĞ͛ clinical features differentiating it from other disorders (Box 1).[2] 
FND is common, often causes severe and chronic disability, but is comparatively under-researched. 
Many questions about its aetiology await clarification.[1s]  
 
Classical models attributed FND to psychological stressors, particularly historical traumas. So 
influential was this view that cases without traumatic histories were sometimes ascribed to poor or 
repressed memories, or even conscious denial. This hypothesis is difficult to prove or disprove, and 
the possibility that FND can arise in the absence of remote or proximal traumas remains. Recent 
research supports significantly more severe stressful life events among people with FND than 
depressed and healthy controls, especially in the month preceding symptom onset; under 20% of 
aetiologically relevant events were identified in routine clinical practice.[3] However, a significant 
proportion of people with FND identified no distressing life events, even when best available 
assessment methods were employed. 
 
Given the lack of definitive empirical evidence for the necessity of precipitating stressors in the 
aetiology of FND, an exclusive focus on stressors in cases with no history of trauma can be counter-
productive to clinician-patient relationships. Furthermore, early and more recent stressful life events 
are relatively common in the general population, so aetiological relevance cannot be assumed when 
identified. The requirement for a triggering stressor was therefore removed from DSM-5 but 
retained as a sub-type specifier (Box 1).  
__________________________________________________ 
 
Box 1: DSM-5 functional neurological symptom disorder (conversion disorder) diagnostic criteria 
 

A. One or more symptoms of altered voluntary motor or sensory function. 
B. Clinical findings provide evidence of incompatibility between the symptom and recognized 

neurological or medical conditions. 
C. The symptom or deficit is not better explained by another medical or mental disorder. 
D. The symptom or deficit causes clinically significant distress or impairment in social, occupational, or 

other important areas of functioning or warrants medical evaluation. 
Specify: 

• Symptom type: e.g. weakness/paralysis, abnormal movement, attacks/seizures, anaesthesia/sensory 
loss. 

• With/without psychological stressor (associated with symptom onset). 

• Acute (< 6 months) or persistent (> 6 months). 

___________________________________________________ 
 
Can we therefore reconcile the observation that traumatic experiences appear aetiologically 
important in some cases, without being identified in all people with FND? Since Briquet in 1859,[2s] 
the roles of biological susceptibility, difficult life events and precipitating trauma in the aetiology of 
FND have been recognised. From Bleuler[3s] and Rosenthal͛Ɛ[4s] work on schizophrenia to the 
Camberwell collaborative depression study[4], ͚stress-diathesis͛ models aim to explain how prior 
diatheses interact with precipitating stressors to cause psychopathology. In this perspective article, 
we detail how this model retains contemporary relevance for FND, supported by renewed interest in 
traumatic stressors.[5s-7s]  We first outline the evidence for associations between stress and ill-
health, including mental health, functional and physical health disorders. We then summarise the 
biology of adaptive and maladaptive stress responses and relevant evidence from clinical disorders 
and animal models.  We review advances in the neurobiology of stress-related presentations, such 
as post-traumatic stress disorder (PTSD), alongside evidence for similar mechanisms in FND. Finally, 
we propose a research agenda for FND and other functional ;͚ŵĞĚŝĐĂůůǇ ƵŶĞǆƉůĂŝŶĞĚ͛ Žƌ 
somatoform) syndromes.  
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STRESS AND HEALTH  

Mental health and functional disorders 

Transient anxiety or distress in response to stress is often adaptive, unlike anxiety disorders and 
depression, which persist long after the stressor and impact on functioning. Seminal research among 
women living in Camberwell, UK, demonstrated the association between frequency and type of 
previous-year stressful life events and subsequent psychopathology. Specifically, stressors 
ĐĂƚĞŐŽƌŝƐĞĚ ĂƐ ͚ƐĞǀĞƌĞ ĚĂŶŐĞƌ͛ ǁĞƌĞ ĂƐƐŽĐŝĂƚĞĚ ǁŝƚŚ ŝŶĚĞƉĞŶĚĞŶƚůǇ-ĚŝĂŐŶŽƐĞĚ ĂŶǆŝĞƚǇ͕ ͚ƐĞǀĞƌĞ ůŽƐƐ͛ 
was associated with later depression, and experiencing ďŽƚŚ ͚ƐĞǀĞƌĞ ĚĂŶŐĞƌ͛ ĂŶĚ ͚ůŽƐƐ͛ ǁĂƐ 
associated with mixed anxiety and depression.[5] A large, albeit inconsistent, literature suggests 
hypothalamic-pituitary-adrenal (HPA) axis dysfunction in anxiety disorders.[8s] 
 
Stress is strongly associated with most psychiatric disorders, both via early life traumas as putative 
͚vulnerability factors͛, and later life events preceding symptom onset, ĂƐ ͚ƉƌĞĐŝƉŝƚĂƚŝŶŐ ĨĂĐƚŽƌƐ͛. 
Childhood abuse is associated with high odds ratios (ORs) for all common psychiatric disorders. For 
example, the UK household Adult Psychiatric Morbidity Survey of over 7000 individuals reported 
OR=10 for psychosis,[9s] OR=5 for depression, and OR=12 for phobia among people reporting non-
consensual sexual intercourse under 16 years.[6]  A recent meta-analysis found a significant 
correlation between childhood trauma and severity of hallucinations and delusions, and that 
severity of childhood neglect correlated with negative symptoms of psychosis, such as lethargy and 
apathy.[7] A meta-analysis[8] found that childhood maltreatment and was associated with 
significantly more severe and frequent relapses of bipolar affective disorder, higher rates of 
psychiatric comorbidity and suicide attempts. Structural and functional neuroimaging correlates of 
childhood maltreatment[10s] (so-ĐĂůůĞĚ ͚ůŝŵďŝĐ ƐĐĂƌƐ͛Ϳ ŚĂǀĞ ůĞĚ ĂƵƚŚŽƌƐ ƚŽ ƉƌŽƉŽƐĞ ͚ĞĐŽƉŚĞŶŽƚǇƉĞƐ͛͗ 
sub-types of psychopathological phenotypic expression according to early-life adversity.[9] 
 
FND studies show high rates of preceding severe life events, compared to healthy controls and 
people with depression, with increasing frequency preceding symptom onset.[3] A recent meta-
analysis of case-control studies found higher frequency of both childhood and adulthood stressors in 
people with FND than controls.[1] It reported OR=2.8-4.3 for stressful life events preceding FND 
symptom onset, with higher ratios in studies using better-quality interview methods. Odds ratios 
were greatest when people with FND were compared with healthy controls (OR=8.6), compared to 
neurological (OR=2.5) and mental health (OR=2.0) control participants. A temporal interaction 
between stress exposure and symptoms is supported by evidence that late-onset (over 55 years) 
functional seizures are associated with higher rates of severe physical health problems and health-
related trauma, whilst younger-onset functional seizures are associated with higher rates of 
antecedent sexual abuse.[11s] 
 
A systematic review of other functional disorders (including irritable bowel syndrome, chronic pelvic 
pain and somatisation disorder) also showed significantly increased rates of lifetime abuse in 
comparison to controls, and an association of abuse with symptom severity.[10] A case control study 
of chronic fatigue syndrome (CFS) clinic referrals found more severe stressful life events and 
difficulties in the three months (OR=9) and year (OR=4.3) preceding illness onset, compared to age 
and sex-matched population controls.[11] 

Physical health disorders 

The association between stress and the onset or exacerbation of symptoms is acknowledged by the 
ĂĚĚŝƚŝŽŶ ŽĨ ͞ƉƐǇĐŚŽůŽŐŝĐĂů ĨĂĐƚŽƌƐ ĂĨĨĞĐƚŝŶŐ ŽƚŚĞƌ ŵĞĚŝĐĂů ĐŽŶĚŝƚŝŽŶƐ͟ ƚŽ D“M-5.[2] Here, we discuss 
robust findings from dermatology, cardiology and neurology. 
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Dermatological disorders  

The historically-recognised association between stress and exacerbations of skin disorders, such as 
flare-ups of previously dormant psoriasis, is increasingly understood in terms of neuroendocrinology 
and inflammation.[12s] For example, dysregulation of pro-inflammatory processes and 
corticotropin-releasing hormone (CRH) have been identified in psoriasis, atopic dermatitis, acne, 
allergic reactions and alopecia areata. 

Cardiovascular disorders 

The common belief that cardiovascular disorders can be caused, or at least precipitated, by stress is 
increasingly supported by evidence. Large prospective cohort and case-control studies of many 
thousands of participants support an association between ischaemic heart disease and low job 
control[12], and self-reported work, home, financial and major life stress.[13s] 
 
Rates of life-threatening arrhythmias doubled in the month following the World Trade Center 
attacks, in New York residents with implantable cardioverter-defibrillators (ICD) not personally 
affected.[14s] Anger and anxiety are associated with increased rates of ICD shocks,[15s] ameliorated 
by psychological treatment.[16s] Episodes of atrial fibrillation (AF) increase 2.5-fold after feelings of 
stress, sadness, anxiety and anger,[17s] and long-term anger, hostility and tension predict AF and 
coronary heart disease.[18s] 
 
The rare, but severe, and increasingly recognised, Takotsubu cardiomyopathy, known as stress 
cardiomyopathy or ͚ďƌŽŬĞŶ ŚĞĂƌƚ ƐǇŶĚƌŽŵĞ͛, is associated with stressful life events.[13] Even 
impersonal stressors can seemingly provoke cardiac dysfunction: myocardial infarction rates 
increased three-fold in Germans during their football ƚĞĂŵ͛Ɛ ϮϬϬϲ WŽƌůĚ CƵƉ matches.[14] 
Furthermore, PTSD has a complex and bidirectional relationship with cardiovascular disease 
incidence, although studies exploring causation are lacking.[19s] Finally, robust methods for 
identifying stressful life events indicate elevated rates of severe events in the year preceding strokes, 
and strokes preceded by severe stress are associated with less severe hypertension.[20s]  

Neurological disorders 

A strong association between migraine and stress is reported by patients and observed by clinicians. 
High rates of childhood maltreatment, especially emotional abuse and neglect, and re-victimisation 
in adulthood are observed in outpatient clinic attendees diagnosed with migraine.[21s] A systematic 
review found that stress is self-identified as a precipitant by 58% of people experiencing migraine. 
However, self-report methods limit interpretation of this study:[22s]  sub-clinical prodromal 
migraine symptoms could explain preceding experiences of stress in a proportion of cases. Evidence 
that Norwegian adolescents who survived the Utøya mass killings experienced elevated rates of 
migraine (OR=4.3) and tension-type headache (OR=3.39) compared to matched controls, supports a 
role for stress and anxiety.[23s] 
 
The association between stress and epilepsy is also well-described. Early-life stress is increasingly 
acknowledged in the development of mesial temporal lobe epilepsy,[24s] and preceding stress is the 
most frequently reported epileptic seizure trigger, albeit confounded by sleep deprivation, alcohol 
and missed medication.[25s] A study of over 4,500 people with epilepsy found that 5 cases per 1,000 
arose abruptly after a stressful event.[26s] A review found mixed results from prospective human 
studies, but more convincing evidence from animal models, of increased epileptic activity and 
seizures in response to endogenous and exogenous stress mediators. Stress-precipitated epileptic 
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seizures, with improvement in response to stress management interventions, affect a proportion of 
people with epilepsy.[27s] 
 
There is accumulating evidence that other neurological disorders are associated with stress, such as 
Multiple Sclerosis (MS). Elevated rates of severe life events in the six months preceding MS onset 
identified by case-control studies[28s] have been supported by meta-analysis.[29s] A prospective 
longitudinal study found that increased conflict and disruption of routine increased the odds of new 
gadolinium-enhancing (Gd+) brain lesions on MRI, in people with relapsing MS, eight weeks 
later.[30s] A randomised controlled trial of stress management therapy for MS showed reduced 
cumulative Gd+ and new T2 brain lesions, and higher rates of Gd+ and new T2 brain lesion-free scans 
in the treatment group, compared to a waiting list control group͕ ǁŚŝĐŚ ĚŝƐĂƉƉĞĂƌĞĚ Ăƚ Ϯϰ ǁĞĞŬƐ͛ 
follow-up.[31s] 
 
Stress may also influence the development and symptom severity ŽĨ PĂƌŬŝŶƐŽŶ͛Ɛ DŝƐĞĂƐĞ ;PD).[32s]  
Anxiety symptoms and disorders commonly precede and follow development of PD,[33s] and 
neurotic personality traits are associated with increased risk of PD, attenuated by smoking.[34s] 
Stress can also worsen motor and non-motor PD symptoms, prompting the theory that age-related 
HPA axis dysfunction increases dopaminergic neurone susceptibility to the effects of stress.[35s] 
Finally, tremor syndromes are characteristically worsened by stress and anxiety, and studies suggest 
higher rates of anxiety and perfectionism in musicians with focal dystonia, than healthy musician 
controls.[36s] 

THE NEUROBIOLOGY OF THE STRESS RESPONSE 

Here, we briefly review the HPA axis and how its dysfunction in animal and human populations 
contributes to neurological and behavioural symptoms. 

HPA function and dysfunction 

The HPA axis is intimately involved in homeostatic responses to environmental change by regulating 
metabolic and immune functioning (Figure 1).[15,16] The association of psychiatric symptoms with 
states of hypocortisolaemia (e.g. ĚĞƉƌĞƐƐŝŽŶ ŝŶ AĚĚŝƐŽŶ͛Ɛ ĚŝƐĞĂƐĞͿ and hypercortisolaemia (e.g. 
psyĐŚŽƐŝƐ ŝŶ CƵƐŚŝŶŐ͛Ɛ ƐǇŶĚƌŽŵĞ Žƌ following corticosteroid treatment), and their resolution 
following endocrine recovery, demonstrate how the HPA axis influences mental as well as physical 
health. 
 

Allostasis is the healthy process of adaptation to environmental challenges, facilitated by stress 
hormones, neurotransmitters, cytokines and other mediators. When these processes are 
insufficient, recurrently activated or persist beyond the stressor, they cause harmful brain and bodily 
wear and tear ʹ allostatic load or overload,[17] which predispose to disease. Stimulation of one 
allostatic system frequently triggers a cascade of responses by others.[37s] For example, persistent 
hypercortisolaemia and elevated inflammation levels may explain the increased risk of 
cardiovascular disease,[38s] metabolic syndrome[39s] and cognitive decline[40s] in people exposed 
to chronic stress. The long-term impact of childhood adversity on adult mental health and age-
related disease suggests ͚ďŝŽůŽŐŝĐĂů ĞŵďĞĚĚŝŶŐ͛ ŽĨ ƚŚĞƐĞ ĞĂƌůǇ ĞǆƉĞƌŝĞŶĐĞƐ ŝŶ ĚĞǀĞůŽƉŵĞŶƚĂůůǇ-
sensitive, inter-related allostatic systems.  
 
Inflammatory and stress responses are closely linked. Animal and human studies of acute 
inflammation triggered by lipopolysaccharide injection and chronic illness (such as obstructive sleep 
apnoea) have demonstrated disruption of the intrinsic circadian pattern of HPA activity, with 
widespread effects on glucocorticoid target organs.[18] The Dunedin cohort study showed that 
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stressors can affect multiple allostatic systems: adults with a history of childhood maltreatment had 
elevated baseline inflammatory biomarkers, including C-reactive protein (CRP), fibrinogen and white 
blood cells.[19]  
 

 
Figure 1: The HPA axis[15] 
 
Corticotropin-releasing hormone (CRH) secretion by the paraventricular nucleus (PVN) of the hypothalamus is traditionally 

considered the first response to a physical or psychological threat. CRH stimulates pituitary adrenocorticotropic hormone 

(ACTH) secretion, prompting glucocorticoid release by the adrenal cortex in a feedforward cascade. Cortisol, the main 

glucocorticoid, is tightly controlled by negative feedback at the pituitary gland, hypothalamus and hippocampus[60]. 

Pituitary adenylate cyclase-activating polypeptide (PACAP) is thought to modulate the HPA response to acute psychogenic 

but not systemic stress, via CRH and increased adrenal cortisol secretion.[36]. ADH: Antidiuretic hormone/Arginine 

Vasopressin. 

 
The glucocorticoid cascade hypothesis proposes that excess cortisol secretion in response to stress 
causes hippocampal damage, which in turn reduces negative feedback on CRH, resulting in 
uncontrolled secretion and further damage. Hypercortisolaemia is associated with altered synaptic 
plasticity, reduced neurogenesis, neuronal atrophy and excess secretion of excitatory 
neurotransmitters such as glutamate, triggering hippocampal changes which can lead to cell 
death.[20] Neurobiological studies of these processes in clinical populations and animals provide 
potential insights into the mechanisms underlying stress-related disorders, including FND and PTSD. 
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HPA dysfunction in animal studies 

TŚĞ ͚ƐƚƌĞƐƐ ŝŶŽĐƵůĂƚŝŽŶ ŚǇƉŽƚŚĞƐŝƐ͛[21] proposes that early-life exposure to stressors over which the 
juvenile exerts control is associated with appropriate hormonal and behavioural responses to stress 
in adulthood. Animal studies consistently show that prenatal, early life and adult stress are 
associated with increased activity of phagocytic microglia in the hippocampus and prefrontal 
cortex.[22]  
 
Research into degu rodents suggests impaired dendritic development following early life stress 
caused by maternal separation.[23] This supports Ă ͚ƚǁŽ Śŝƚ͛ ŚǇƉŽƚŚĞƐŝƐ͕ ǁŚĞƌĞďǇ ŵŝĐƌŽŐůŝĂ and 
dendrites are primed by early life adversity to be more sensitive to future stress. The evolutionary 
͚ŵĂƚĐŚͬŵŝƐŵĂƚĐŚ͛ ƚŚĞŽƌǇ ĂƌŐƵĞƐ ƚŚĂƚ ŵŝƐŵĂƚĐŚ ďĞƚǁĞĞŶ ĞĂƌůǇ ůŝĨĞ ƐƚƌĞƐƐ ĂŶĚ ƚŚĞ ĂĚƵůƚ ĞŶǀŝƌŽŶŵĞŶƚ 
predisposes to non-communicable, including mental health, disorders.[24] Microglial and dendritic 
pathology are hypothesised to mediate the relationship between stress and mental disorders; this 
could also apply to functional disorders.  
 
Rat studies support epigenetic mechanisms for childhood influences on adult behaviour. Rat pups 
receiving low maternal nurturing show increased methylation of the glucocorticoid receptor (GR) 
gene promoter at a hippocampal nerve growth factor binding site, resulting in lifelong reduced GR 
expression from the first week of life.[25] By contrast, pups of high-nurturing mothers lack this 
methylation, have greater hippocampal GR expression, are less anxious adults and more nurturing 
mothers to their own pups.  
 
Different regions of the human brain undergo synaptic proliferation, pruning and myelination at 
different stages of development. Animal studies can experimentally manipulate early life and adult 
stress, to test clinical hypotheses about sensitive periods.[41s] Inter-species variation in brain 
development and vulnerability to early life adversity means that human studies must test 
hypotheses derived from animal models.[42s]   
 
For example, animal research has studied the evolution of the autonomic nervous system, from the 
primitive, unmyelinated vagus to the mammalian, myelinated vagus.[26] In the case of seizure-
variant FND (also known as psychogenic, non-epileptic or dissociative seizures), chronically reduced 
resting vagal tone has been hypothesised to underlie ƌĞĐƵƌƌĞŶƚ ͚ĨŝŐŚƚ Žƌ ĨůŝŐŚƚ͛ ƌĞƐƉŽŶƐĞƐ ƚŽ 
stressors͕ ĂƐ ĨƵƌƚŚĞƌ ƌĞĚƵĐƚŝŽŶ ŽĨ ǀĂŐĂů ƚŽŶĞ ƚŽ ĂƉƉƌĂŝƐĞ ƚŚĞ ƐƚƌĞƐƐŽƌ ;Ă ͚ǀĂŐĂů ďƌĞĂŬ͛Ϳ ŝƐ ŶŽƚ ƉŽƐƐŝďůĞ 
when sympathetic activity (indicated by low heart rate variability) is low at baseline.[27] 

HPA dysfunction in clinical populations 

The relationship between trauma, HPA, neuroanatomical and clinical pathology is highly complex. In 
recent studies,[28] childhood maltreatment was associated with HPA axis dysfunction, epigenetic 
regulation of HPA axis-related genes, and also with structural and functional brain alterations 
suggesting a relationship between these factors. Findings from psychiatric disorders like depression 
might also apply to stress-associated disorders like PTSD and FND. For example, preliminary 
evidence suggests increased methylation of the oxytocin receptor gene (OXTR) promoter in people 
with functional motor symptoms, compared with matched controls.[29] The glucocorticoid cascade 
hypothesis can be expanded to incorporate recent advances in our understanding of genetic, 
epigenetic, personality and time-dependent factors, including evidence from animal studies, with 
benefits for psychiatric research.[20] 
 
Recurrence of depression is associated with reduced hippocampal volume, moderated by age of 
onset,[43s] whilst chronic depression and relapses ŽǀĞƌ ƚŚƌĞĞ ǇĞĂƌƐ͛ ĨŽůůŽǁ-up are associated with 
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reduced amygdala and dorsomedial prefrontal cortex volumes.[30] In contrast to the evidence of 
hypercortisolism in depression and psychosis which prompted the glucocorticoid cascade 
hypothesis, hypocortisolism[44s] and increased GR binding and function in PTSD suggest 
hypersensitivity of negative feedback.[31] Prospective studies suggest low baseline cortisol could be a 
risk factor for PTSD[32] and that hydrocortisone administration post-trauma could be protective,[45s] 
by interfering with traumatic memory retrieval.[46s]  
 
PTSD is the archetypal stress-related disorder, and genetic research suggests potential mechanisms 
through HPA dysfunction͘ FŽƌ ĞǆĂŵƉůĞ͕ FKBPϱ ŝƐ Ă ͚ĐŽ-ĐŚĂƉĞƌŽŶĞ͛ ƉƌŽƚĞŝŶ͕ which regulates the 
effects of cortisol on gene expression. Studies in general medical clinics found that specific FKBP5 
and CRH receptor 1 single nucleotide polymorphisms (SNPs) interact with severity of childhood 
abuse to predict adult symptoms of PTSD[33] and depression.[34] Exposure to childhood adversity in 
individuals with these same FKBP5 risk alleles is associated with epigenetic changes,[35] increased 
dorsal amygdala reactivity[36] and attentional bias to threat.[37]  
 
Pituitary adenylate cyclase-activating polypeptide (PACAP) is thought to modulate the HPA response 
to acute psychogenic but not systemic stress, via CRH and increased adrenal cortisol secretion.[38]  
With its selective PAC1 receptor, PACAP is associated with glucocorticoid secretion and anxiety in 
response to stress in mouse models.[39] In women only, PACAP levels correlate with PTSD diagnosis 
and symptom severity, and a PAC1 gene SNP predicts PTSD diagnosis and symptoms.[40] The location 
of this SNP in a proposed oestrogen receptor element of the gene suggests that oestrogen may 
influence its expression, which may explain the female preponderance of PTSD (also observed in 
FND.[47s])  
 
However, genetic findings are limited by studies focusing on single candidate polymorphisms, given 
the polygenic nature of the HPA axis, and small sample sizes compared with much current genetic 
research. Whilst promising, polygenic approaches[48s] remain in their infancy and require 
replication, given the small effect sizes of common genetic variants, heterogeneity between 
patients, difficulties in robustly measuring stressful experiences in large samples and ascertaining 
the temporal relationship between trauma and symptoms. Recent, rapid improvements in 
technological affordability, coupled with greater collaboration between research centres, mean that 
genetics may become increasingly informative for unifying ŽƵƌ ƵŶĚĞƌƐƚĂŶĚŝŶŐ ŽĨ FND͛Ɛ 
pathogenesis.[49s]  

NEUROBIOLOGY OF FUNCTIONAL DISORDERS 

Aetiological and mechanistic theories of FND have focused on interactions between biological, 
psychological and social factors, although biological evidence is particularly limited. We focus here 
on empirical evidence from fields of most relevance to stress response dysfunction in FND. These 
perspectives are not mutually exclusive and may each represent different mechanistic levels of the 
same, or overlapping, aetiological processes. 

HPA axis dysregulation 

The limited literature investigating stress biomarkers in FND has yielded conflicting findings from 
relatively small samples.  One study comparing 18 medication-free participants with seizure-variant 
FND with well-matched healthy controls, found significantly increased basal diurnal cortisol 
levels.[41] Elevated basal cortisol was associated with a history of sexual trauma,[50s] which was in 
turn associated with attentional bias for angry faces on a masked emotional Stroop task.[42] The 
same group found that participants with seizure-ǀĂƌŝĂŶƚ FND ƐŚŽǁĞĚ ŚŝŐŚĞƌ ͚ĂƉƉƌŽĂĐŚ-avoidance 
ĐŽŶŐƌƵĞŶĐǇ͛ for angry faces on a computerised task in comparison to controls, which correlated with 
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basal salivary cortisol.[51s] Another study of 33 patients with functional movement disorders found 
no significant differences from healthy controls in salivary cortisol, but over half were taking variable 
doses of psychotropic mediations, with potentially sedative or anxiolytic effects capable of 
influencing the HPA response.[43] A recent study found that participants with motor FND had higher 
background salivary cortisol and (sympathetic) alpha amylase than controls, associated with the 
number and impact of stressful life events they had experienced. Another study found that people 
with FND reported higher stress, despite no biomarker differences from controls, during and after 
the Trier social stress test. This mismatch between subjective and biological stress responses 
supports a role for impaired interoception in FND.[44] 
 
Neuroimaging research found that reduced regional volumes including the left hippocampus and left 
anterior insula (women only) correlated with severity of childhood abuse and lifetime trauma, but 
not self-reported FND symptoms.[45] FND case series indicate that symptoms develop in a proportion 
after brain injury, including post-neurosurgery.[46] However, this association may not indicate 
causative lesions; post-surgical or post-ŝŶũƵƌǇ ƐƚƌĞƐƐ͕ Žƌ ͚ĂďƌĞĂĐƚŝŽŶ͛ ĨŽůůŽǁŝŶŐ ĂŶĂĞƐƚŚĞsia could 
contribute. Furthermore, studies describing brain lesions in FND have failed to show consistent 
patterns of lateralisation or localisation supporting a direct aetiological link. The few structural 
neuroimaging studies to date are limited by small sample sizes, diagnostic heterogeneity, 
comorbidities and cross-sectional designs. Preliminary findings suggest a potential aetiological role 
for trauma-specific neuroplasticity in FND but require further investigation. 

Allostatic load 

Although the relationship between FND and disorders such as CFS remains controversial, several 
studies have investigated biomarker profiles in participants with a range of so-ĐĂůůĞĚ ͚ŵĞĚŝĐĂůůǇ 
ƵŶĞǆƉůĂŝŶĞĚ͛ ĚŝĂŐŶŽƐĞƐ͘ A review found that the evidence of exposure to acute and chronic stress, 
endocrine, autonomic and inflammatory biomarkers in irritable bowel syndrome, fibromyalgia, and 
CFS was inconclusive, frequently contradictory and focused on single systems.[47] A study of 182 
patients with CFS measurĞĚ ĂŶ ͚ĂůůŽƐƚĂƚŝĐ ůŽĂĚ ŝŶĚĞǆ͛ ĐŽŵƉƌŝƐŝŶŐ ϭϭ ďŝŽŵĂƌŬĞƌƐ ŽĨ ŵĞƚĂďŽůŝĐ͕ 
cardiovascular, inflammatory, HPA axis and sympathetic nervous system activity. An angiotensin-1 
converting enzyme (ACE) SNP was associated with higher interleukin-6, CRP and lower cortisol levels 
in women, independent of age, sex, BMI and fatigue levels, which could support a stress-diathesis 
model.[48] Clinical heterogeneity is likely to reflect multiple potential aetiologies in different patients, 
in different combinations. Wide-ranging environmental influences on non-specific biomarkers mean 
that simultaneous assessments of stress, endocrine, autonomic and immune systems in large 
longitudinal samples, ideally alongside genetic and neuroimaging data, are required to establish the 
relevance of these findings to FND.  

Freeze/Hide response  

A developmental perspective proposes that functional symptoms arise from innate responses to 
threat, ƉĂƌƚ ŽĨ Ă ͚ĚĞĨĞŶĐĞ ĐĂƐĐĂĚĞ͛ ĨƌŽŵ ĂƌŽƵƐĂů ƚŽ ;ŝŶ ĞǆƚƌĞŵĞ ĐĂƐĞƐͿ ĐŽůůĂƉƐĞĚ ŝŵŵŽďŝůŝƚǇ͘΀49] Two 
threat responses relevant to FND are  freezing (which inhibits negative emotions), and  hiding (which 
internally appeases distress).[50] In addition to approach-avoidance of angry faces,[42] participants 
with FND have been shown to have increased periaqueductal grey matter (involved in the freeze 
response to fear) and supplementary motor area (SMA, involved in self-awareness and motor 
control) activation in response to sad faces, in addition to the amygdala activation also seen in 
people with depression, PTSD and childhood maltreatment.[51]  
 
Darwinian concepts of stress [52] propose that a balance of genetic traits has been preserved across 
species, favouring a mixture of individuals with ŚŝŐŚ ;͚ŚĂǁŬƐ͛Ϳ ĂŶĚ ůŽǁ ;͚ĚŽǀĞƐ͛Ϳ levels of aggression. 
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That is, hawks are hypothesised to favour fight-flight responses to stressors, and doves favour a 
freeze-hide strategy, with trade-offs in health and disease. This model suggests that sickness 
responses, including fatigue, anorexia and depression, could result ŝŶ ͚ĨƌĞĞǌĞ-ŚŝĚĞ͛ ďĞŚĂǀŝŽƵƌ͕ as an 
evolved behavioural strategy potentially mediated by immunological and neuroendocrine 
cascades.[53] 
 

Relatedly, people with FND causing limb paralysis are more likely to report ͚ĞƐĐĂƉĂďůĞ͛ life events, 
especially immediately preceding the onset of symptoms, than controls.[3]   When recalling life 
events with escape potential, people with FND have significantly higher left dorsolateral prefrontal 
cortex activity and lower left hippocampal activity, with increased activity in the right SMA and 
temporoparietal junction, than when recalling similarly threatening life events from the same 
period.[54] Whilst recalling life events, FND participants did not demonstrate the right inferior frontal 
cortex activation seen in controls, but did show enhanced connectivity between the amygdala, SMA 
and cerebellum. These findings support an association between abnormal emotional and memory 
processing of life events, and changes in motor areas pertaining to symptoms and body schemata.  

Attentional hypotheses 

One mechanistic account of FND[55] proposes that aberrant functional connectivity between the 
limbic system anĚ “MA ĂĐƚŝǀĂƚĞƐ Ă ͚ƉƌĞǀŝŽƵƐůǇ ŵĂƉƉĞĚ ĐŽŶǀĞƌƐŝŽŶ ŵŽƚŽƌ ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ͛͗ 
conditioned movements, originally triggered by a situation of physical illness or injury, and 
emotional arousal.[56] The inability of people with FND to consciously suppress their symptoms, is 
thus explained by impaired connectivity between the SMA and inhibitory areas, such as the 
prefrontal cortex. Bayesian concepts have been used to elaborate this model, which proposes that 
the relationship between sensory evidence and prior beliefs is mediated by bodily attention, 
expectations of symptoms, physical and emotional experience and beliefs about illness.[57] This 
model proposes that a previously mapped functional motor representation (perhaps adaptively 
generated during adverse early life experiences) creates abnormally strong top-down predictions 
;͚ƉƌŝŽƌƐ͛Ϳ ŝŶ FND͕ ǁŚŝĐŚ ŽǀĞƌǁŚĞůŵ ĐŽŶƚƌĂĚŝĐƚŽƌǇ͕ ďŽƚƚŽŵ-up sensory evidence.  

The Bayesian hypothesis shares with an Integrative Cognitive Model (ICM) of FND the prediction that 
symptoms will occur in situations when they are expected. Applying a more general model of 
͚medically unexplained symptoms͛ to seizure-variant FND, the ICM emphasises the roles of chronic 
and acute arousal, which are relieved by dissociation.[58] This model proposes that chronic stress and 
arousal, caused by a range of exposures including traumatic life events and physical illness, 
ƉƌĞĚŝƐƉŽƐĞ ƚŽ ƚŚĞ ŚŝŐŚ ůĞǀĞů ƉƌŽĐĞƐƐŝŶŐ ĚǇƐĨƵŶĐƚŝŽŶ ǁŚŝĐŚ ĞŶĂďůĞƐ Ă ͚ƐĞŝǌƵƌĞ ƐĐĂĨĨŽůĚ͛ ;Ă ĚǇŶĂŵŝĐ 
mental representation shaping expectations) to be activated.  

Predictive coding 

The process by which dissociation may result from stress in FND is outlined by the predictive coding 
model of symptom perception, which posits a continuous process of automatic, unconscious 
͚ŚǇƉŽƚŚĞƐŝƐ ƚĞƐƚŝŶŐ͕͛ ǁŚĞƌĞďǇ ƉƌŝŽƌ ĞǆƉĞĐƚĂƚŝŽŶƐ ĂƌĞ ƌĞĐƵƌƌĞŶƚůǇ ƌĞĨŝŶĞĚ ĂŐĂŝŶƐƚ ŶĞǁ ƐĞŶƐŽƌǇ ŝŶƉƵƚƐ͕ 
ƚŽ ŵŝŶŝŵŝƐĞ ƉƌĞĚŝĐƚŝŽŶ ĞƌƌŽƌ͘ TŚŝƐ ǇŝĞůĚƐ ƐǇŵƉƚŽŵ ĞǆƉĞƌŝĞŶĐĞƐ ǁŚŝĐŚ ͚ĐŽŵƉƌŽŵŝƐĞ͛ ďĞƚǁĞĞŶ ƉƌŝŽƌƐ 
and prediction error, which in turn feed back, adjusting the prior. In functional disorders, impaired 
threat processing, attention, sensitivity to contextual cues, and interoception, all of which can be 
influenced by early life and recent stress, reduce the precision with which sensory cues are 
processed. These factors predispose the individual to erroneous symptom experiences, such as 
those arising from fleeting symptoms of arousal.[59] Similarly, functional seizures would arise from 
re-activation in response to recent stress, of prior dissociative motor and perceptual 
representations, in part formed during early life adversity, in susceptible individuals.[58] 
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Such models generate hypotheses about the neurobiological processes by which functional motor 
representations are formed and how their re-activation can be treated therapeutically, through a 
biopsychosocial approach.  

IMPLICATIONS FOR FND 

The wealth of recent research into the role of stress in health and disease prompts hypotheses 
pertaining to FND, whose implications are summarised in a stress-diathesis model (Figure 2). 
CŽŵďŝŶĂƚŝŽŶƐ ŽĨ ƌŝƐŬ ĂŶĚ ƉƌŽƚĞĐƚŝǀĞ ĨĂĐƚŽƌƐ ĂƌĞ ůŝŬĞůǇ ƚŽ ŝŶĨůƵĞŶĐĞ ĂŶ ŝŶĚŝǀŝĚƵĂů͛Ɛ ĐƵŵƵůĂƚŝǀĞ 
susceptibility to FND, operating at various levels, from endocrine (e.g. HPA response) to 
neurophysiological (e.g. motor planning/initiation, interoception) and psychological (e.g. 
somatosensory and/or threat attention) levels. Our underlying hypothesis, that high biological 
susceptibility requires minimal childhood maltreatment and mild recent stress to precipitate FND, 
whilst low biological susceptibility requires more significant childhood maltreatment and recent 
stress to precipitate FND, must be interrogated through biopsychosocial investigation. Growing 
research focus on sensitive periods of brain development at which maltreatment may exert greater 
harm, predisposing to psychopathology,[9] will inform our understanding of how traumatic stressors 
interact with biological susceptibility in FND. However, the quality of research which recognises the 
key role played by stress, is often limited by methodological issues such as self-report questionnaires 
and recall bias.[1] Detailed interview techniques, which blind-rate a range of experiences, 
contextualised tŽ ƚŚĞ ƉĞƌƐŽŶ͛Ɛ ůŝĨĞ͕ ƌĞŵĂŝŶ ƚŚĞ ŐŽůĚ ƐƚĂŶĚĂƌĚ͕ ďƵƚ ƌĞƋƵŝƌĞ considerable time and 
training, and cannot fully objectify (at least partially) subjective stress experiences. In the absence of 
predisposing or precipitating stressors, unacknowledged iatrogenic stress induced by recurrent 
healthcare contact without identification of underlying pathology may influence recovery from FND. 
Since people with FND are less likely than matched neurological controls to agree that stress is a 
possible cause of their symptoms,[60] our model could facilitate clinical dialogue and therapeutic 
engagement. 

 

Figure 2: A stress-diathesis model of FND 
 

A: In a person with moderate biological (e.g. genetic) risk exposed to moderate childhood maltreatment, including 

traumatic experiences, a moderate stressor may be sufficient to precipitate FND; B: in a person with severe biological risk 

but minimal exposure to childhood maltreatment, a mild stressor may be sufficient to precipitate FND; C: in a person with 

mild biological risk, exposed to minimal childhood maltreatment, a severe stressor would be required to precipitate FND; D: 
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in a person with mild biological risk, exposed to severe childhood maltreatment, a mild stressor may be sufficient to 

precipitate FND. 

_______________________________________________ 
Box 2: Implications of a stress-diathesis model of FND 
 
Research: 

• Genetic research should sub-stratify participants according to identified stressors, with the hypothesis 
that genetic risk variants will be more prevalent, and therefore more easily detected, in those with low 
or minimal histories of precipitating stressors (Figure 2). 

• Research into biological mechanisms of FND should explore multiple, potentially interacting, pathways 
operating at different levels, including genetic/metabolic (e.g. HPA response), neurophysiological (e.g. 
motor planning, interoception), and psychological (e.g. threat, somatosensory attention) levels. 

• Research into interventions, including psychological and physical therapies, should explore the potential 
for evidence-based biomarkers of severity and improvement. 
 

Treatment: 

• PĞƌƐŽŶĂůŝƐĞĚ ƚƌĞĂƚŵĞŶƚƐ ĐŽƵůĚ ďĞ ƚĂŝůŽƌĞĚ ƚŽ ĞĂĐŚ ƉĞƌƐŽŶ͛Ɛ ĐŽŵďŝŶĂƚŝŽŶ ŽĨ ƉƌŽƚĞĐƚŝǀĞ ĂŶĚ ƌŝƐŬ ĨĂĐƚŽƌƐ͕ 
once identified.  

• In the future, preventative interventions could also be explored for individuals at significant (genetic or 
environmental) risk, identified by screening those with known exposures, or genetic loads confirmed by 
biomarker or neuropsychological profiling. These measures could be used to monitor responses to 
treatment and preventative strategies.  

___________________________________________________ 

FUTURE DIRECTIONS 

FND has, until recently, been relatively neglected by psychiatric and neurological research. This 
review demonstrates the potential for studies of stress biology across diagnostic groups to enhance 
our understanding of the mechanisms underlying FND. Important developments in biological and 
cognitive psychiatry mean that we are in a better position than ever to apply well-validated methods 
to testing this hypothesised model (Box 2).  
 
Key questions raised, requiring interventional research, include: do effective psychological therapies 
for FND (targeting aberrant threat or attention processing) cause corresponding neurobiological 
improvements? Are such effects observed where no history of childhood or precipitating stress is 
identified (arising from high hypothesised biological susceptibility)? Does therapeutic conscious 
exploration of aetiologically-relevant distal and proximal stressors have corresponding 
neurobiological effects? Do these differ from effects caused by effective physiotherapy without 
reference to stress? If so, such research might yield preliminary biomarkers of severity and 
improvement, enhancing the assessment, treatment and study of FND and other medically-
unexplained syndromes. Future research should explore commonalities and differences between 
FND and other disorders strongly associated with stressful life events, such as PTSD. Answers to how 
biological and cognitive changes in response to stress operate in FND could furthermore elucidate 
other equally common and disabling functional disorders. 
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