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Abstract

The equivalence of two complete sets of Poisson commuting Hamiltonians of the
(super)integrable rational BCn Ruijsenaars-Schneider-van Diejen system is established.
Specifically, the commuting Hamiltonians constructed by van Diejen are shown to be
linear combinations of the Hamiltonians generated by the characteristic polynomial of
the Lax matrix obtained recently by Pusztai, and the explicit formula of this invertible
linear transformation is found.

Keywords: Integrable systems; Calogero-Moser type systems; Lax matrix

MSC2010: 14H70

PACS number: 02.30.Ik

1

http://arxiv.org/abs/1503.01303v2


1 Introduction

Integrable many-body systems of Calogero-Moser type crop up in a wide range of physical
applications and are intimately related to important fields of mathematics [1, 2, 3, 4, 5].
They occur in rational, trigonometric/hyperbolic and elliptic families according to the func-
tional form of the Hamiltonian that inherently also involves a crystallographic root system.
A further significant feature is the existence of interesting deformations and extensions main-
taining integrability, as is exemplified by relativistic [6] and spin Calogero-Moser systems [7].
In this paper we shall deal with the BCn generalization of the relativistic rational Ruijsenaars-
Schneider system, which is the simplest member of the systems discovered by van Diejen [8, 9].
We shall stay at the level of classical mechanics, where the BCn rational ‘RSvD system’ is
defined by the Hamiltonian1

H(λ, θ) =

n
∑

j=1

cosh(θj)

[

1 +
ν2

λ2
j

]

1
2
[

1 +
κ2

λ2
j

]

1
2

n
∏

k=1
(k 6=j)

[

1 +
µ2

(λj − λk)2

]

1
2
[

1 +
µ2

(λj + λk)2

]

1
2

+
νκ

µ2

n
∏

j=1

[

1 +
µ2

λ2
j

]

− νκ

µ2
. (1.1)

Here µ, ν, κ are real parameters for which we impose the conditions µ 6= 0, ν 6= 0 and
νκ ≥ 0. The generalized momenta θ = (θ1, . . . , θn) run over Rn and the ‘particle positions’
λ = (λ1, . . . , λn) vary in the Weyl chamber

c = {x ∈ R
n | x1 > · · · > xn > 0}. (1.2)

In the work [9, 10] first the commutativity of n quantum Hamiltonian difference operators
was proved. It was then shown [10, 11] that the classical limit yields a Poisson commuting
family having the right functional rank for a Liouville integrable system. Except for the
rational case, it is still an open problem to generate the classical Hamiltonians of van Diejen
from a Lax matrix, which would provide a useful tool for analyzing the dynamics of these
systems. A Lax matrix whose trace is the rational RSvD Hamiltonian (1.1) and whose higher
spectral invariants provide n independent commuting Hamiltonians was recently found by
Pusztai [12]. In the papers [12, 13] the action-angle duality between the hyperbolic BCn

Sutherland system and the rational BCn RSvD system was also explored together with the
scattering properties of these systems.

The question we answer in this paper is the following. What is the relationship between
the commuting Hamiltonians introduced by van Diejen and the ones generated by Pusztai’s
Lax matrix? Both commuting families contain the ‘main Hamiltonian’ (1.1) and exhibit
rational dependence on the positions and exponential dependence on the momenta. Thus
one strongly expects that these two sets of commuting Hamiltonians can be expressed in terms
of each other. Nevertheless, the question appears to be non-trivial since the Hamiltonian H
is maximally superintegrable [14], which entails that it is the member of several inequivalent
families of n functionally independent functions in involution.

Here, we shall demonstrate that the n Hamiltonians of van Diejen are linear combinations
of the coefficients of the characteristic polynomial of the Lax matrix of [12]. The transfor-
mation between the two sets will be shown to be invertible, and its explicit form will be

1A deformation parameter β > 0 can be introduced by setting Hβ(λ, θ) := H(β−1λ, βθ). Taking Taylor
expansion of Hβ in β, the leading term reproduces the usual BCn rational Calogero-Moser Hamiltonian.
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given as well. Our arguments will rely on the action-angle map constructed with the help of
Hamiltonian reduction in [12]. This is captured by a symplectomorphism

S : c× R
n → c× R

n, (q, p) 7→ (λ, θ), S∗

( n
∑

k=1

dλk ∧ dθk

)

=

n
∑

k=1

dqk ∧ dpk, (1.3)

such that H ◦ S depends only the action variables qk. (The notation fits the fact that the
components of q serve as position variables for the dual system.) Although an explicit formula
of the action-angle map is not available, we can compute the action-angle transform of the
commuting Hamiltonians of interest by utilizing that [13] the H-trajectory (λ(t), θ(t)) with
initial condition (λ, θ) ∈ c× R

n has the t → ∞ asymptotics

λk(t) ∼ t sinh(qk)− pk and θk(t) ∼ qk, k = 1, . . . , n, (1.4)

with (q, p) = S−1(λ, θ). This will allow us to eventually show that the two sets of Hamilto-
nians at issue correspond to two generating sets of the Weyl group invariant polynomials in
the variables e±qk (restricted to the Weyl chamber c). As was already mentioned, we shall
also find the explicit relationship. As a byproduct, we obtain an algebraic formula for the
characteristic polynomial of Pusztai’s Lax matrix, which generalizes well-known determinant
identities for Cauchy-like matrices.

Section 2 describes the two families of Hamiltonians in play and specifies how they share
the main Hamiltonian H (1.1). Our contribution is given by Proposition 1, Proposition 2 and
Remark 3 in Section 3. Section 4 offers a short discussion of the results and open problems.
There is also an appendix, where a useful formula of [9] is presented.

2 Two families of commuting Hamiltonians

2.1 Hamiltonians due to van Diejen

In [8, 11] the following complete set of Poisson commuting Hamiltonians was given:

Hl(λ, θ) =
∑

J⊂{1,...,n}, |J |≤l
εj=±1, j∈J

cosh(θεJ)V
1/2
εJ ;JcV

1/2
−εJ ;JcUJc,l−|J |, l = 1, . . . , n, (2.1)

with

θεJ =
∑

j∈J

εjθj ,

VεJ ;K =
∏

j∈J

w(εjλj)
∏

j,j′∈J
j<j′

v2(εjλj + εj′λj′)
∏

j∈J
k∈K

v(εjλj + λk)v(εjλj − λk),

UK,p = (−1)p
∑

I⊂K, |I|=p
εi=±1, i∈I

(

∏

i∈I

w(εiλi)
∏

i,i′∈I
i<i′

v(εiλi + εi′λi′)v(−εiλi − εi′λi′)

×
∏

i∈I
k∈K\I

v(εiλi + λk)v(εiλi − λk)

)

.

(2.2)

It is worth noting that Jc in (2.1) denotes the complementary set, and the contribution to
Hl coming from J = ∅ is U∅c,l. The relatively simple form of UK,p above was found in [11].
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Equation (2.1) makes sense for l = 0, as well, giving H0 ≡ 1. In the rational case the functions
v and w take the following form2

v(x) =
x+ iµ

x
, w(x) =

[

x+ iν

x

][

x+ iκ

x

]

. (2.3)

Up to irrelevant constants, H1 reproduces the Hamiltonian H (1.1). Indeed, one can check
that H1 = 2(H − n).

Take any (λ, θ) ∈ c× Rn, set (q, p) = S−1(λ, θ) and consider the H-trajectory (λ(t), θ(t))
with initial condition (λ, θ). Notice that the Hamiltonian Hl (2.1) is constant along the
H-trajectory. By utilizing the asymptotics (1.4), one can readily check that

(S∗Hl)(q, p) = lim
t→∞

Hl(λ(t), θ(t)) =
∑

J⊂{1,...,n}, |J |≤l
εj=±1, j∈J

(−2)l−|J |

(

n− |J |
l − |J |

)

cosh(qεJ). (2.4)

From now on we let Hl stand for the pullback S∗Hl just computed, and stress that it depends
only on the variable q.

2.2 Hamiltonians obtained from the Lax matrix

We recall some relevant objects of [12]. First, prepare the 2n×2n Hermitian, unitary matrix

C =

[

0n 1n

1n 0n

]

(2.5)

and the 2n× 2n Hermitian matrix

h(λ) =

[

a(diag(λ)) b(diag(λ))
−b(diag(λ)) a(diag(λ))

]

(2.6)

containing the smooth functions a(x), b(x) given on the interval (0,∞) ⊂ R by

a(x) =

√

x+
√
x2 + κ2

√
2x

, b(x) = iκ
1√
2x

1
√

x+
√
x2 + κ2

. (2.7)

Then introduce the vectors z(λ) ∈ C
n, F (λ, θ) ∈ C

2n by the formulae

zl(λ) = −
[

1 +
iν

λl

] n
∏

m=1
(m6=l)

[

1 +
iµ

λl − λm

][

1 +
iµ

λl + λm

]

, (2.8)

and

Fl(λ, θ) = e−
θl
2 |zl(λ)|

1
2 , Fn+l(λ, θ) = zl(λ)Fl(λ, θ)

−1, (2.9)

l = 1, . . . , n. With these notations at hand, the 2n× 2n matrix

Aj,k(λ, θ) =
iµFjFk + i(µ− 2ν)Cj,k

iµ+ Λj − Λk

, j, k ∈ {1, . . . , 2n}, (2.10)

2The parameters appearing in [8, 11] can be recovered by introducing β as in footnote 1 and then writing
µ, µ0, µ

′

0
for βµ, βν, βκ, respectively. In the convention of [13], our µ, θ and q correspond to 2µ, 2θ and 2q.
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with Λ = diag(λ,−λ) is used to define the ‘RSvD Lax matrix’ [12]:

L(λ, θ) = h(λ)−1A(λ, θ)h(λ)−1. (2.11)

The matrices h, A, and L are invertible and satisfy the relations

ChC = h−1, CAC = A−1, CLC = L−1. (2.12)

Their determinants are
det(h) = det(A) = det(L) = 1. (2.13)

Let Km denote the coefficients of the characteristic polynomial of L (2.11),

det(L(λ, θ)− x12n) = K0(λ, θ)x
2n +K1(λ, θ)x

2n−1 + · · ·+K2n−1(λ, θ)x+K2n(λ, θ). (2.14)

An immediate consequence of (2.12),(2.13) is that

K2n−m ≡ Km, m = 0, 1, . . . , n, (2.15)

thus the functions K0 ≡ 1, K1, . . . , Kn fully determine the characteristic polynomial (2.14).
The first non-constant member of this family is proportional to H (1.1), that is K1 = −2H .
The asymptotic form of the Lax matrix L (2.13) is the diagonal matrix

diag(e−q, eq), (2.16)

hence the action-angle transforms of the functions Km (m = 0, 1, . . . , n) can be easily com-
puted to be

(S∗Km)(q, p) = (−1)m

⌊

m
2

⌋

∑

a=0

∑

J⊂{1,...,n}, |J |=m−2a
εj=±1, j∈J

(

n− |J |
a

)

cosh(qεJ). (2.17)

Of course, we used the asymptotics (1.4) and that Km is constant along the flow of H . Now
we introduce the shorthand Km := S∗Km, and observe that it only depends on q.

3 Relation between the two families of Hamiltonians

It is worth emphasizing that finding a formula relating the families {Hl}nl=0 and {Km}nm=0 is
equivalent to finding a relation between their action-angle transforms {Hl}nl=0 and {Km}nm=0.

Proposition 1. There exists an invertible linear relation between the two families {Hl}nl=0

and {Km}nm=0.

Proof. Let us introduce the auxiliary functions

Mk(q) =
∑

J⊂{1,...,n}, |J |=k
εj=±1, j∈J

cosh(qεJ), q ∈ R
n, k = 0, 1, . . . , n. (3.1)

For any l ∈ {0, 1, . . . , n} the HamiltonianHl (2.4) is a linear combination ofM0,M1, . . . ,Ml,

Hl(q) =

l
∑

k=0

(−2)l−k

(

n− k

l − k

)

Mk(q). (3.2)

5



This shows that the matrix of the linear map transforming {Mk}nk=0 into {Hl}nl=0 is lower
triangular with ones on the diagonal, hence the above relation is invertible. Similarly,
any function Km (2.17), m ∈ {0, 1, . . . , n} can be expressed as a linear combination of
Mm,Mm−2, . . . ,M3,M1 or Mm,Mm−2, . . . ,M2,M0 depending on the parity of m, that is

Km(q) = (−1)m

⌊

m
2

⌋

∑

a=0

(

n− (m− 2a)

a

)

Mm−2a(q). (3.3)

Hence the linear transformation relating {Mk}nk=0 to {Km}nm=0 has a lower triangular matrix
with diagonal components ±1, implying that it is invertible. This proves the existence of an
invertible linear relation between the two families {Hl}nl=0 and {Km}nm=0.

Now, we prove an explicit formula expressing Hl as linear combination of {Km}lm=0.

Proposition 2. For any fixed n ∈ N, l ∈ {1, . . . , n} and q ∈ Rn we have

(−1)lHl(q) = Kl(q) +
l−1
∑

m=0

2(n−m)

2(n−m)− (l −m)

(

(n− l) + (n−m)

l −m

)

Km(q). (3.4)

Proof. Substitute Km (2.17) into the right-hand side of the expression above to obtain

l−1
∑

k=0

⌊

k
2

⌋

∑

a=0

∑

J⊂{1,...,n}, |J |=k−2a
εj=±1, j∈J

(−1)k
2(n− k)

2(n− k)− (l − k)

(

(n− l) + (n− k)

l − k

)

×

×
(

n− (k − 2a)

a

)

cosh(qεJ) +

⌊

l
2

⌋

∑

a=0

∑

J⊂{1,...,n}, |J |=l−2a
εj=±1, j∈J

(−1)l
(

n− (l − 2a)

a

)

cosh(qεJ). (3.5)

Since k = |J | + 2a it is obvious that (−1)k = (−1)−|J |. Multiply (3.5) by (−1)l and change
the order of summations over a and J to get

∑

J⊂{1,...,n}, |J |<l
εj=±1, j∈J

(−1)l−|J |

⌊ l−|J |
2

⌋

∑

a=0

2[n− (|J |+ 2a)]

2[n− (|J |+ 2a)]− [l − (|J |+ 2a)]
×

×
(

(n− l) + (n− (|J |+ 2a))

l − (|J |+ 2a)

)(

n− |J |
a

)

cosh(qεJ) +
∑

J⊂{1,...,n}, |J |=l
εj=±1, j∈J

cosh(qεJ). (3.6)

Now, comparison of (3.2) with (3.6) leads to a relation equivalent to (3.4),

⌊ l−|J |
2

⌋

∑

a=0

2[n− (|J |+ 2a)]

2[n− (|J |+ 2a)]− [l − (|J |+ 2a)]
×

×
(

2n− (l + |J |+ 2a)

l − (|J |+ 2a)

)(

n− |J |
a

)/(

n− |J |
l − |J |

)

= 2l−|J |. (3.7)
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For n = l in (3.7) one obtains



































2

⌊ l−|J |
2

⌋

∑

a=0

(

l − |J |
a

)

= 2l−|J |, if l − |J | is odd,

2

l−|J |
2

−1
∑

a=0

(

l − |J |
a

)

+

(

l − |J |
l−|J |
2

)

= 2l−|J |, if l − |J | is even,

(3.8)

which are well-known identities for the binomial coefficients. This means that (3.4) holds for
l = n for all n ∈ N, which implies that if we consider n + 1 variables it is sufficient to check
the cases l < n + 1. With that in mind let us progress by induction on n and suppose that
(3.4) is verified for all 1 ≤ l ≤ n for some n ∈ N.

First, notice that the Hamiltonians Hl (2.4) satisfy the following recursion

Hl(q1, . . . , qn, qn+1) = Hl(q1, . . . , qn) + 4 sinh2(
qn+1

2
)Hl−1(q1, . . . , qn). (3.9)

This can be checked either directly or by utilizing that Hl is the l-th elementary symmetric
function with variables sinh2( qi

2
) (see Appendix A). Similarly, the functions Kk (2.17) satisfy

Kk(q1, . . . , qn, qn+1) = Kk(q1, . . . , qn)−2 cosh(qn+1)Kk−1(q1, . . . , qn)+Kk−2(q1, . . . , qn), (3.10)

with K−1 ≡ 0. Let us introduce some shorthand notation, such as the Rl+1 vectors

~H(n) := (H0,−H1, . . . , (−1)lHl)
⊤ and ~K(n) := (K0,K1, . . . ,Kl)

⊤ (3.11)

and the R(l+1)×(l+1) matrices

A(n)j+1,k+1 :=











2(n− k)

2(n− k)− (j − k)

(

(n− j) + (n− k)

j − k

)

, if j ≥ k,

0, if j < k,

(3.12)

where j, k ∈ {0, . . . , l} and

H(n, n+1) := 1l+1−4 sinh2(
qn+1

2
)I−1, K(n, n+1) := 1l+1−2 cosh(qn+1)I−1+I−2 (3.13)

with (I−m)j+1,k+1 := δj,k+m, m > 0. The relations (3.9) and (3.10) can be written in the
concise form

~H(n+ 1) = H(n, n+ 1) ~H(n), ~K(n+ 1) = K(n, n + 1)~K(n) (3.14)

and our assumption is condensed into

~H(n) = A(n)~K(n). (3.15)

Using this notation it is clear that the desired induction step is equivalent to the matrix
equation

H(n, n+ 1)A(n) = A(n+ 1)K(n, n+ 1). (3.16)
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Spelling this out at some arbitrary (j, k)-th entry gives us

A+B

A

(

A

B

)

− 4 sinh2

(

α

2

)

A +B

A + 1

(

A+ 1

B − 1

)

=

=
A+B + 2

A+ 2

(

A+ 2

B

)

− 2 cosh(α)
A+B

A+ 1

(

A+ 1

B − 1

)

+
A +B − 2

A

(

A

B − 2

)

, (3.17)

where
A := 2n− j − k, B := j − k, α := qn+1. (3.18)

A simple direct calculation shows that (3.17) indeed holds implying that (3.4) is also true for
n+ 1 for any l ≤ n. The case l = n+ 1 is given by the argument preceding induction. This
completes the proof.

Remark 3. We showed in Proposition 1 that the relation (3.4) is invertible. Without
spending space on the proof, we note that the inverse relation can be written explicitly as

(−1)mKm(q) =
m
∑

l=0

(

2(n− l)

m− l

)

Hl(q). (3.19)

4 Discussion

In this paper we demonstrated that the commuting Hamiltonians of the rational RSvD sys-
tem constructed originally by van Diejen are linear combinations of the coefficients of the
characteristic polynomial of the Lax matrix found recently by Pusztai, and vice versa. The
derivation utilized the action-angle map and the scattering theory results of [12, 13]. Our
Proposition 2 gives rise to a determinant representation of the somewhat complicated ex-
pressions Hl in (2.1). It could be of some interest to provide a purely algebraic proof of the
resulting formula of the characteristic polynomial of the Lax matrix.

The configuration space c (1.2) is an open Weyl chamber associated with the Weyl group
W (BCn), and after extending this domain all Hamiltonians that we dealt with enjoy W (BCn)
invariance. In particular, the sets {Hl}nl=0, {Kl}nl=0 and {Ml}nl=0 represent different free
generating sets of the invariant polynomials in the functions e±qk (k = 1, . . . , n) of the
action variables qk acted upon by the sign changes and permutations that form W (BCn). In
order to verify this, it is useful to point out that the W (BCn) invariant polynomials in the
variables e±qk are the same as the ordinary symmetric polynomials in the variables cosh(qk).
The statement that {Hl}nl=0 is a free generating set for these polynomials then follows, for
example, from the identity presented in Appendix A.

Analogous statements hold obviously also for the different real form of the complex ra-
tional RSvD system studied in [15], which is also superintegrable.

An interesting open problem for future work is to extend the considerations reported here
to the hyperbolic RSvD system having five independent coupling parameters.

Acknowledgements. We are greatly indebted to J.F. van Diejen for suggesting us to use
the asymptotics of the H-flow in order to prove the formula of Proposition 2, which we
originally found and tried to prove in a rather roundabout way. L.F. also wishes to thank
S. Ruijsenaars for helpful discussions. This work was supported in part by the Hungarian
Scientific Research Fund (OTKA) under the grant K-111697.
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A Hl as elementary symmetric function

Fix an arbitrary n ∈ N and l ∈ {0, 1, . . . , n} and let el stand for the l-th elementary symmetric
polynomial in n variables x1, . . . , xn, i.e., e0(x1, . . . , xn) = 1 and for l ≥ 1

el(x1, . . . , xn) =
∑

1≤j1<···<jl≤n

xj1 · · ·xjl. (A.1)

In the text, we referred to the following useful result due to van Diejen ([9] Proposition 2.3).
For convenience, we present it together with a direct proof.

Proposition A. By using (2.4) it can be shown that

Hl(q) = 4lel(sinh
2 q1
2
, . . . , sinh2 qn

2
). (A.2)

Proof. First, el has the equivalent form

el(sinh
2 q1
2
, . . . , sinh2 qn

2
) =

∑

J⊂{1,...,n}, |J |=l

∏

j∈J

sinh2 qj
2
. (A.3)

Utilizing the identity sinh2(α/2) = [cosh(α)− 1]/2 casts the right-hand side into

∑

J⊂{1,...,n}, |J |=l

2−l
∏

j∈J

[cosh(qj)− 1] =
∑

J⊂{1,...,n}, |J |=l

2−l
∑

K⊂J

(−1)l−|K|
∏

k∈K

cosh(qk). (A.4)

The two sums on the right-hand side can be merged into one, but the multiplicity of subsets
must remain the same. This results in the appearance of a binomial coefficient

∑

J⊂{1,...,n}, |J |≤l

(−1)l−|J |

2l

(

n− |J |
l − |J |

)

∏

j∈J

cosh(qj) =

=
∑

J⊂{1,...,n}, |J |≤l
εj=±1, j∈J

(−1)l−|J |

2l+|J |

(

n− |J |
l − |J |

)

∏

j∈J

cosh(εjqj), (A.5)

where we also used that cosh is an even function and compensated the ‘over-counting’ of
terms. Now, let us simply pull a 4−l factor out of the sum to get

4−l
∑

J⊂{1,...,n}, |J |≤l
εj=±1, j∈J

(−2)l−|J |

(

n− |J |
l − |J |

)

∏

j∈J

cosh(εjqj). (A.6)

Recall the following identity for the hyperbolic cosine of the sum of a finite number, say N ,
real arguments (see [16] Art. 132 and apply cos(iα) = cosh(α))

cosh

( N
∑

k=1

αk

)

=

[ N
∏

k=1

cosh(αk)

][

⌊

N
2

⌋

∑

m=0

e2m(tanh(α1), . . . , tanh(αN))

]

, (A.7)

where e2m are now elementary symmetric functions with arguments tanh(α1), . . . , tanh(αN).

Note that for any m > 0 and set of signs ε there is another one ε′, such that eJ,ε
′

2m = −eJ,ε2m,

9



therefore by using (A.7) we see that (A.6) equals to

4−l
∑

J⊂{1,...,n}, |J |≤l
εj=±1, j∈J

(−2)l−|J |

(

n− |J |
l − |J |

)

∏

j∈J

cosh(εjqj)

⌊ |J |
2

⌋

∑

m=0

sJ,ε2m =

= 4−l
∑

J⊂{1,...,n}, |J |≤l
εj=±1, j∈J

(−2)l−|J |

(

n− |J |
l − |J |

)

cosh(qεJ). (A.8)

Applying (2.4) concludes the proof.
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