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Abstract

A deformation of the classical trigonometric BCn Sutherland system is derived via
Hamiltonian reduction of the Heisenberg double of SU(2n). We apply a natural Poisson-
Lie analogue of the Kazhdan-Kostant-Sternberg type reduction of the free particle on
SU(2n) that leads to the BCn Sutherland system. We prove that this yields a Liouville
integrable Hamiltonian system and construct a globally valid model of the smooth re-
duced phase space wherein the commuting flows are complete. We point out that the
reduced system, which contains 3 independent coupling constants besides the deforma-
tion parameter, can be recovered (at least on a dense submanifold) as a singular limit of
the standard 5-coupling deformation due to van Diejen. Our findings complement and
further develop those obtained recently by Marshall on the hyperbolic case by reduction
of the Heisenberg double of SU(n, n).
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1 Introduction

Models amenable to exact treatment provide key paradigms for our understanding of natural
phenomena and form a fertile field of research crossing the border of physics and mathematics.
The study of integrable Hamiltonian systems is a very active subfield with particularly strong
ties to group theory and symplectic geometry. For reviews, see e.g. [9, 22, 30, 5, 8]. One of the
time-honoured approaches to such systems consists in viewing them as ‘shadows’ of natural
free systems enjoying high symmetries. This is alternatively known as the projection method
or as Hamiltonian reduction [24, 25]. The list of the free ‘master systems’ is monotonically
expanding in time. To name a few, it includes free particles on Lie groups together with their
Poisson-Lie symmetric deformations and quasi-Hamiltonian analogues. For example, it was
shown in the pioneering paper [17] that the integrable many-body system of Sutherland [34],
which describes particles on the circle interacting via a pair potential given by the inverse
square of the chord-distance, is a reduction of the free particle on the unitary group U(n).
Various deformations of the Sutherland system due to Ruijsenaars and Schneider [31, 29]
were derived [11, 12] from Poisson-Lie symmetric free motion on U(n), whose phase space
is the Heisenberg double [33] of the Poisson-Lie group U(n), and from the internally fused
quasi-Hamiltonian double [2] of U(n), which arose from Chern-Simons field theory.

The projection method was enriched by an interesting recent contribution of Marshall
[20], who obtained an integrable Ruijsenaars-Schneider (RS) type system by reducing the
Heisenberg double of SU(n, n), which directly motivated our present work1. Here, we shall
deal with a reduction of the Heisenberg double of SU(2n) and derive a Liouville integrable
Hamiltonian system related to Marshall’s one in a way similar to the connection between the
original trigonometric Sutherland system and its hyperbolic variant. Although this is essen-
tially analytic continuation, it should be noted that the resulting systems are qualitatively
different in their dynamical characteristics and global features. In addition, what we hope
makes our work worthwhile is that our treatment is different from the one in [20] in several
respects and we go considerably further regarding the global characterization of the reduced
phase space and the completeness of the relevant Hamiltonian flows.

The main Hamiltonian of the system that we obtain can be displayed as follows

H(p̂, q̂; x, u, v) =
e−2u + e2v

2

n
∑

j=1

e−2p̂j+

−
n

∑

j=1

cos(q̂j)
[

1− (1 + e2(v−u))e−2p̂j + e2(v−u)e−4p̂j
]

1
2

n
∏

k=1
(k 6=j)

[

1− sinh2
(

x
2

)

sinh2(p̂j − p̂k)

]

1
2

. (1.1)

Here u, v and x are real coupling parameters that will be assumed to satisfy

u < v, v 6= −u and x 6= 0. (1.2)

The components of q̂ parametrize the torus Tn by eiq̂ and p̂ belongs to the domain

Cx := {p̂ ∈ Rn | 0 > p̂1, p̂k − p̂k+1 > |x|/2 (k = 1, . . . , n− 1)}. (1.3)

The dynamics is then defined via the symplectic form

ω̂ =

n
∑

j=1

dq̂j ∧ dp̂j. (1.4)

1The relation is ‘symmetric’ as the problem studied by Marshall was originally suggested by one of us.
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It will be shown that this system results by restricting a reduced free system on a dense open
submanifold of the pertinent reduced phase space. The Hamiltonian flow is complete on the
full reduced phase space, but it can leave the submanifold parametrized by Cx × Tn. By
glancing at the form of the Hamiltonian, one may say that it represents an RS type system
coupled to external fields. Since differences of the ‘position variables’ p̂k appear, one feels
that this Hamiltonian somehow corresponds to an A-type root system.

To better understand the nature of this model, let us now introduce new Darboux variables
qk, pk following essentially [20] as

exp(p̂k) = sin(qk) and q̂k = pk tan(qk). (1.5)

In terms of these variables H(p̂, q̂; x, u, v) = H1(q, p; x, u, v) with the ‘new Hamiltonian’

H1(q, p; x, u, v) =
e−2u + e2v

2

n
∑

j=1

1

sin2(qj)

−
n

∑

j=1

cos(pj tan(qj))

[

1− 1 + e2(v−u)

sin2(qj)
+

4e2(v−u)

4 sin2(qj)− sin2(2qj)

]

1
2

×
n
∏

k=1
(k 6=j)

[

1− 2 sinh2
(

x
2

)

sin2(qj) sin
2(qk)

sin2(qj − qk) sin
2(qj + qk)

]

1
2

. (1.6)

Remarkably, only such combinations of the new ‘position variables’ qk appear that are natu-
rally associated with the BCn root system and the Hamiltonian H1 enjoys symmetry under
the corresponding Weyl group. Thus now one may wish to attach the Hamiltonian H1 to the
BCn root system. Indeed, this interpretation is preferable for the following reason. Introduce
the scale parameter (corresponding to the inverse of the velocity of light in the original RS
system) β > 0 and make the substitutions

u → βu, v → βv, x→ βx, p→ βp, ω̂ → βω̂. (1.7)

Then consider the deformed Hamiltonian

Hβ(q, p; x, u, v) := H1(q, βp; βx, βu, βv). (1.8)

The point is that one can then verify the following relation:

lim
β→0

Hβ(q, p; x, u, v)− n

β2
= HSuth

BCn
(q, p; γ, γ1, γ2), (1.9)

where

HSuth
BCn

=
1

2

n
∑

j=1

p2j+
∑

1≤j<k≤n

[

γ

sin2(qj − qk)
+

γ

sin2(qj + qk)

]

+

n
∑

j=1

γ1

sin2(qj)
+

n
∑

j=1

γ2

sin2(2qj)
(1.10)

is the standard trigonometric BCn Sutherland Hamiltonian with coupling constants

γ =
x2

4
, γ1 = 2uv, γ2 = 2(v − u)2. (1.11)
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Note that the domain of the variables q̂, p̂, and correspondingly that of q, p also depends on
β, and in the β → 0 limit it is easily seen that we recover the usual BCn domain

π

2
> q1 > q2 > · · · > qn > 0, p ∈ Rn. (1.12)

In conclusion, we see that H in its equivalent form Hβ is a 1-parameter deformation of the
trigonometric BCn Sutherland Hamiltonian. We remark in passing that the conditions (1.2)
imply that γ2 > 0 and 4γ1 + γ2 > 0, which guarantee that the flows of HSuth

BCn
are complete

on the domain (1.12).
Marshall [20] obtained similar results for an analogous deformation of the hyperbolic BCn

Sutherland Hamiltonian. His deformed Hamiltonian differs from (1.1) above in some impor-
tant signs and in the relevant domain of the ‘position variables’ p̂. Although in our impression
the completeness of the reduced Hamiltonian flows was not treated in a satisfactory way in
[20], the completeness proof that we shall present can be adapted to Marshall’s case as well.

It is natural to ask how the system studied in the present paper (and its cousin in [20]) is
related to van Diejen’s [35] 5-coupling trigonometric BCn system? It was shown already in
[35] that the 5-coupling trigonometric system is a deformation of the BCn Sutherland system,
and later [36] several other integrable systems were also derived as its (‘Inozemtsev type’ [16])
limits. Motivated by this, we can show that the Hamiltonian (1.1) is a singular2 limit of van
Diejen’s general Hamiltonian. Incidentally, a Hamiltonian of Schneider [32] can be viewed as
a subsequent singular limit of the Hamiltonian (1.1). Schneider’s system was mentioned in
[20], too, but the relation to van Diejen’s system was not described.

The original idea behind the present work and [20] was that a natural Poisson-Lie analogue
of the Hamiltonian reduction treatment [13] of the BCn Sutherland system should lead to
a deformation of this system. It was expected that a special case of van Diejen’s standard
5-coupling deformation will arise. The expectation has now been confirmed, although it came
as a surprise that a singular limit is involved in the connection.

The outline of the paper is as follows. We start in Section 2 by defining the reduction
of interest. In Section 3 we observe that several technical results of [11] can be applied
for analyzing the reduction at hand, and solve the momentum map constraints by taking
advantage of this observation. The heart of the paper is Section 4, where we characterize
the reduced system. In Subsection 4.1 we prove that the reduced phase space is smooth, as
formulated in Theorem 4.4. Then in Subsection 4.2 we focus on a dense open submanifold
on which the Hamiltonian (1.1) lives. The demonstration of the Liouville integrability of
the reduced free flows is given in Subsection 4.3. In particular, we prove the integrability of
the completion of the system (1.1) carried by the full reduced phase space. Our main result
is Theorem 4.9 (proved in Subsection 4.4), which establishes a globally valid model of the
reduced phase space. We stress that the global structure of the phase space on which the
flow of (1.1) is complete was not considered previously at all, and will be clarified as a result
of our group theoretic interpretation. Section 5 contains our conclusions, further comments
on the related paper by Marshall [20] and a discussion of open problems. The main text is
complemented by four appendices. Appendix A deals with the connection to van Diejen’s
system; the other 3 appendices contain important details relegated from the main text.

2We call the limit singular since it involves sending some shifted position variables to infinity.
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2 Definition of the Hamiltonian reduction

We below introduce the ‘free’ Hamiltonians and define their reduction. We restrict the
presentation of this background material to a minimum necessary for understanding our
work. The conventions follow [11], which also contains more details. As a general reference,
we recommend [7].

2.1 The unreduced free Hamiltonians

We fix a natural number3 n ≥ 2 and consider the Lie group SU(2n) equipped with its standard
quadratic Poisson bracket defined by the compact form of the Drinfeld-Jimbo classical r-
matrix,

rDJ = i
∑

1≤α<β≤2n

Eαβ ∧ Eβα, (2.1)

where Eαβ is the elementary matrix of size 2n having a single non-zero entry 1 at the αβ
position. In particular, the Poisson brackets of the matrix elements of g ∈ SU(2n) obey
Sklyanin’s formula

{g ⊗, g}SU(2n) = [g ⊗ g, rDJ]. (2.2)

Thus SU(2n) becomes a Poisson-Lie group, i.e., the multiplication SU(2n) × SU(2n) →
SU(2n) is a Poisson map. The cotangent bundle T ∗SU(2n) possesses a natural Poisson-
Lie analogue, the so-called Heisenberg double [33], which is provided by the real Lie group
SL(2n,C) endowed with a certain symplectic form [1], ω. To describe ω, we use the Iwasawa
decomposition and factorize every element K ∈ SL(2n,C) in two alternative ways

K = gLb
−1
R = bLg

−1
R (2.3)

with uniquely determined

gL, gR ∈ SU(2n), bL, bR ∈ SB(2n). (2.4)

Here SB(2n) stands for the subgroup of SL(2n,C) consisting of upper triangular matrices
with positive diagonal entries. The symplectic form ω reads

ω =
1

2
ℑtr(dbLb−1

L ∧ dgLg−1
L ) +

1

2
ℑtr(dbRb−1

R ∧ dgRg−1
R ). (2.5)

Before specifying free Hamiltonians on the phase space SL(2n,C), note that any smooth
function h on SB(2n) corresponds to a function h̃ on the space of positive definite Hermitian
matrices of determinant 1 by the relation

h̃(bb†) = h(b), ∀b ∈ SB(2n). (2.6)

Then introduce the invariant functions

C∞(SB(2n))SU(2n) ≡ {h ∈ C∞(SB(2n)) | h̃(bb†) = h̃(gbb†g−1), ∀g ∈ SU(2n), b ∈ SB(2n)}.
(2.7)

These in turn give rise to the following ring of functions on SL(2n,C):

H ≡ {H ∈ C∞(SL(2n,C)) | H(gLb
−1
R ) = h(bR), h ∈ C∞(SB(2n))SU(2n)}, (2.8)

3The n = 1 case would need special treatment and is excluded in order to simplify the presentation.
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where we utilized the decomposition (2.3). An important point is that H forms an Abelian
algebra with respect to the Poisson bracket associated with ω (2.5).

The flows of the ‘free’ Hamiltonians contained in H can be obtained effortlessly. To
describe the result, define the derivative dRf ∈ C∞(SB(2n), su(2n)) of any real function
f ∈ C∞(SB(2n)) by requiring

d

ds

∣

∣

∣

∣

s=0

f(besX) = ℑtr
(

XdRf(b)
)

, ∀b ∈ SB(2n), ∀X ∈ Lie(SB(2n)). (2.9)

The Hamiltonian flow generated by H ∈ H through the initial value K(0) = gL(0)bR(0)
−1 is

in fact given by
K(t) = gL(0) exp

[

− tdRh(bR(0))
]

b−1
R (0), (2.10)

where H and h are related according to (2.8). This means that gL(t) follows the orbit of a
one-parameter subgroup, while bR(t) remains constant. Actually, gR(t) also varies along a
similar orbit, and bL(t) is constant.

The constants of motion bL and bR generate a Poisson-Lie symmetry, which allows one to
define Marsden-Weinstein type [19] reductions.

2.2 Generalized Marsden-Weinstein reduction

The free Hamiltonians in H are invariant with respect to the action of SU(2n)× SU(2n) on
SL(2n,C) given by left- and right-multiplications. This is a Poisson-Lie symmetry, which
means that the corresponding action map

SU(2n)× SU(2n)× SL(2n,C) → SL(2n, C), (2.11)

operating as
(ηL, ηR, K) 7→ ηLKη

−1
R , (2.12)

is a Poisson map. In (2.11) the product Poisson structure is taken using the Sklyanin bracket
on SU(2n) and the Poisson structure on SL(2n,C) associated with the symplectic form ω
(2.5). This Poisson-Lie symmetry admits a momentum map in the sense of Lu [18], given
explicitly by

Φ: SL(2n,C) → SB(2n)× SB(2n), Φ(K) = (bL, bR). (2.13)

The key property of the momentum map is represented by the identity

d

ds

∣

∣

∣

∣

s=0

f(esXKe−sY ) = ℑtr
(

X{f, bL}b−1
L + Y {f, bR}b−1

R

)

, ∀X, Y ∈ su(2n), (2.14)

where f ∈ C∞(SL(2n,C)) is an arbitrary real function and the Poisson bracket is the one
corresponding to ω (2.5). The map Φ enjoys an equivariance property and one can [18]
perform Marsden-Weinstein type reduction in the same way as for usual Hamiltonian actions
(for which the symmetry group has vanishing Poisson structure). To put it in a nutshell, any
H ∈ H gives rise to a reduced Hamiltonian system by fixing the value of Φ and subsequently
taking quotient with respect to the corresponding isotropy group. The reduced flows can be
obtained by the standard restriction-projection algorithm, and under favorable circumstances
the reduced phase space is a smooth symplectic manifold.

Now, consider the block-diagonal subgroup

G+ := S(U(n)×U(n)) < SU(2n). (2.15)
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Since G+ is also a Poisson submanifold of SU(2n), the restriction of (2.12) yields a Poisson-Lie
action

G+ ×G+ × SL(2n,C) → SL(2n,C) (2.16)

of G+ × G+. The momentum map for this action is provided by projecting the original
momentum map Φ as follows. Let us write every element b ∈ SB(2n) in the block-form

b =

[

b(1) b(12)
0n b(2)

]

(2.17)

and define G∗
+ < SB(2n) to be the subgroup for which b(12) = 0n. If π : SB(2n) → G∗

+

denotes the projection

π :

[

b(1) b(12)
0n b(2)

]

7→
[

b(1) 0n
0n b(2)

]

, (2.18)

then the momentum map Φ+ : SL(2n,C) → G∗
+ ×G∗

+ is furnished by

Φ+(K) = (π(bL), π(bR)). (2.19)

Indeed, it is readily checked that the analogue of (2.14) holds with X , Y taken from the block-
diagonal subalgebra of su(2n) and bL, bR replaced by their projections. The equivariance
property of this momentum map means that in correspondence to

K 7→ ηLKη
−1
R with (ηL, ηR) ∈ G+ ×G+, (2.20)

one has

(

π(bL)π(bL)
†, π(bR)π(bR)

†
)

7→
(

ηLπ(bL)π(bL)
†η−1
L , ηRπ(bR)π(bR)

†η−1
R

)

. (2.21)

We briefly mention here that, as the notation suggests, G∗
+ is itself a Poisson-Lie group

that can serve as a Poisson dual of G+. The relevant Poisson structure can be obtained by
identifying the block-diagonal subgroup of SB(2n) with the factor group SB(2n)/L, where L
is the block-upper-triangular normal subgroup. This factor group inherits a Poisson structure
from SB(2n), since L is a so-called coisotropic (or ‘admissible’) subgroup of SB(2n) equipped
with its standard Poisson structure. The projected momentum map Φ+ is a Poisson map
with respect to this Poisson structure on the two factors G∗

+ in (2.19). The details are not
indispensable for us. The interested reader may find them e.g. in [6].

Inspired by the papers [13, 11, 20], we wish to study the particular Marsden-Weinstein
reduction defined by imposing the following momentum map constraint:

Φ+(K) = µ ≡ (µL, µR), where µL =

[

euν(x) 0n
0n e−u1n

]

, µR =

[

ev1n 0n
0n e−v1n

]

(2.22)

with some real constants u, v and x. Here, ν(x) ∈ SB(n) is the n×n upper triangular matrix
defined by

ν(x)jj = 1, ν(x)jk = (1− e−x)e
(k−j)x

2 , j < k, (2.23)

whose main property is that ν(x)ν(x)† has the largest possible non-trivial isotropy group
under conjugation by the elements of SU(n).

Our principal task is to characterize the reduced phase space

M ≡ Φ−1
+ (µ)/Gµ, (2.24)

7



where Φ−1
+ (µ) = {K ∈ SL(2n,C) | Φ+(K) = µ} and

Gµ = G+(µL)×G+ (2.25)

is the isotropy group of µ inside G+ × G+. Concretely, G+(µL) is the subgroup of G+

consisting of the special unitary matrices of the form

ηL =

[

ηL(1) 0n
0n ηL(2)

]

, (2.26)

where ηL(2) is arbitrary and

ηL(1)ν(x)ν(x)
†ηL(1)

−1 = ν(x)ν(x)†. (2.27)

In words, ηL(1) belongs to the little group of ν(x)ν(x)† in U(n). We shall see that Φ−1
+ (µ)

and M are smooth manifolds for which the canonical projection

πµ : Φ
−1
+ (µ) → M (2.28)

is a smooth submersion. Then M (2.24) inherits a symplectic form ωM from ω (2.5), which
satisfies

ι∗µ(ω) = π∗
µ(ωM), (2.29)

where ιµ : Φ
−1
+ (µ) → SL(2n,C) denotes the tautological embedding.

3 Solution of the momentum map constraints

The description of the reduced phase space requires us to solve the momentum map con-
straints, i.e., we have to find all elements K ∈ Φ−1

+ (µ). Of course, it is enough to do this up
to the gauge transformations provided by the isotropy group Gµ (2.25). The solution of this
problem will rely on the auxiliary equation (3.11) below, which is essentially equivalent to the
momentum map constraint, Φ+(K) = µ, and coincides with an equation studied previously
in great detail in [11]. Thus we start in the next subsection by deriving this equation.

3.1 A crucial equation implied by the constraints

We begin by recalling (e.g. [21]) that any g ∈ SU(2n) can be decomposed as

g = g+

[

cos q i sin q
i sin q cos q

]

h+, (3.1)

where g+, h+ ∈ G+ and q = diag(q1, . . . , qn) ∈ Rn satisfies

π

2
≥ q1 ≥ · · · ≥ qn ≥ 0. (3.2)

The vector q is uniquely determined by g, while g+ and h+ suffer from controlled ambiguities.
First, apply the above decomposition to gL in K = gLb

−1
R ∈ Φ−1

+ (µ) and use the right-
handed momentum constraint π(bR) = µR. It is then easily seen that up to gauge transfor-
mations every element of Φ−1

+ (µ) can be represented in the following form:

K =

[

ρ 0n
0n 1n

] [

cos q i sin q
i sin q cos q

] [

e−v1n α
0n ev1n

]

. (3.3)

8



Here ρ ∈ SU(n) and α is an n× n complex matrix. By using obvious block-matrix notation,
we introduce Ω := K22 and record from (3.3) that

Ω = i(sin q)α + ev cos q. (3.4)

For later purpose we introduce also the polar decomposition of the matrix Ω,

Ω = ΛT, (3.5)

where T ∈ U(n) and the Hermitian, positive semi-definite factor Λ is uniquely determined
by the relation ΩΩ† = Λ2.

Second, by writing K = bLg
−1
R the left-handed momentum constraint π(bL) = µL tells us

that bL has the block-form

bL =

[

euν(x) χ
0n e−u1n

]

(3.6)

with an n× n matrix χ. Now we inspect the components of the 2× 2 block-matrix identity

KK† = bLb
†
L, (3.7)

which results by substituting K from (3.3). We find that the (22) component of this identity
is equivalent to

ΩΩ† = Λ2 = e−2u1n − e−2v(sin q)2. (3.8)

On account of the condition (1.2), this uniquely determines Λ in terms of q, and shows also
that Λ is invertible. A further important consequence is that we must have

qn > 0, (3.9)

and therefore sin q is an invertible diagonal matrix. Indeed, if qn = 0, then from (3.4) and
(3.8) we would get (ΩΩ†)nn = e2v = e−2u, which is excluded by (1.2).

Next, one can check that in the presence of the relations already established, the (12) and
the (21) components of the identity (3.7) are equivalent to the equation

χ = ρ(i sin q)−1[e−u cos q − eu+vΩ†]. (3.10)

Observe that K uniquely determines q, T and ρ, and conversely K is uniquely defined by the
above relations once q, T and ρ are found.

Now one can straightforwardly check by using the above relations that the (11) component
of the identity (3.7) translates into the following equation:

ρ(sin q)−1T †(sin q)2T (sin q)−1ρ† = ν(x)ν(x)†. (3.11)

This is to be satisfied by q subject to (3.2), (3.9) and T ∈ U(n), ρ ∈ SU(n). What makes
our job relatively easy is that this is the same as equation (5.7) in the paper [11] by Klimč́ık
and one of us. In fact, this equation was analyzed in detail in [11], since it played a crucial
role in that work, too. The correspondence with the symbols used in [11] is

(ρ, T, sin q) ⇐⇒ (kL, k
†
R, e

p̂). (3.12)

This motivates to introduce the variable p̂ ∈ Rn in our case, by setting

sin qk = ep̂k , k = 1, . . . , n. (3.13)

9



Notice from (3.2) and (3.9) that we have

0 ≥ p̂1 ≥ · · · ≥ p̂n > −∞. (3.14)

If the components of p̂ are all different, then we can directly rely on [11] to establish both the
allowed range of p̂ and the explicit form of ρ and T . The statement that p̂j 6= p̂k holds for
j 6= k can be proved by adopting arguments given in [11, 12]. This proof requires combining
techniques of [11] and [12], whose extraction from [11, 12] is rather involved. We present
it in Appendix B, otherwise in the next subsection we proceed by simply stating relevant
applications of results from [11].

Remark 3.1. In the context of [11] the components of p̂ are not restricted to the half-line
and both kL and kR vary in U(n). These slight differences do not pose any obstacle to using
the results and techniques of [11, 12]. We note that essentially the same equation (3.11)
surfaced in [20] as well, but the author of that paper refrained from taking advantage of the
previous analyses of this equation. In fact, some statements of [20] are not fully correct. This
will be specified (and corrected) in Section 5.

3.2 Consequences of equation (3.11)

We start by pointing out the foundation of the whole analysis. For this, we first display the
identity

ν(x)ν(x)† = e−x1n + sgn(x)v̂v̂†, (3.15)

which holds with a certain n-component vector v̂ = v̂(x). By introducing

w = ρ†v̂ (3.16)

and setting p̂ ≡ diag(p̂1, . . . , p̂n), we rewrite equation (3.11) as

e2p̂−x1n + sgn(x)ep̂ww†ep̂ = T−1e2p̂T. (3.17)

The equality of the characteristic polynomials of the matrices on the two sides of (3.17) gives
a polynomial equation that contains p̂, the absolute values |wj|2 and a complex indeterminate.
Utilizing the requirement that |wj|2 ≥ 0 must hold, one obtains the following result.

Proposition 3.2. If K given by (3.3) belongs to the constraint surface Φ−1
+ (µ), then the

vector p̂ (3.13) is contained in the closed polyhedron

C̄x := {p̂ ∈ Rn | 0 ≥ p̂1, p̂k − p̂k+1 ≥ |x|/2 (k = 1, . . . , n− 1)}. (3.18)

Proposition 3.2 can be proved by merging the proofs of Lemma 5.2 of [11] and Theorem 2 of
[12]. This is presented in Appendix B.

The above-mentioned polynomial equality permits to find the possible vectors w (3.16) as
well. If p̂ and w are given, then T is determined by equation (3.17) up to left-multiplication
by a diagonal matrix and ρ is determined by (3.16) up to left-multiplication by elements from
the little group of v̂(x). Following this line of reasoning and controlling the ambiguities in
the same way as in [11], one can find the explicit form of the most general ρ and T at any
fixed p̂ ∈ C̄x. In particular, it turns out that the range of the vector p̂ equals C̄x.
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Before presenting the result, we need to prepare some notations. First of all, we pick an
arbitrary p̂ ∈ C̄x and define the n× n matrix θ(x, p̂) as follows:

θ(x, p̂)jk :=
sinh

(

x
2

)

sinh(p̂k − p̂j)

n
∏

m=1
(m6=j,k)

[

sinh(p̂j − p̂m − x
2
) sinh(p̂k − p̂m + x

2
)

sinh(p̂j − p̂m) sinh(p̂k − p̂m)

]

1
2
, j 6= k, (3.19)

and

θ(x, p̂)jj :=

n
∏

m=1
(m6=j)

[

sinh(p̂j − p̂m − x
2
) sinh(p̂j − p̂m + x

2
)

sinh2(p̂j − p̂m)

]

1
2

. (3.20)

All expressions under square root are non-negative and non-negative square roots are taken.
Note that θ(x, p̂) is a real orthogonal matrix of determinant 1 for which θ(x, p̂)−1 = θ(−x, p̂)
holds, too.

Next, define the real vector r(x, p̂) ∈ Rn with non-negative components

r(x, p̂)j =

√

1− e−x

1− e−nx

n
∏

k=1
(k 6=j)

√

1− e2p̂j−2p̂k−x

1− e2p̂j−2p̂k
, j = 1, . . . , n, (3.21)

and the real n× n matrix ζ(x, p̂),

ζ(x, p̂)aa = r(x, p̂)a, ζ(x, p̂)ij = δij −
r(x, p̂)ir(x, p̂)j
1 + r(x, p̂)a

,

ζ(x, p̂)ia = −ζ(x, p̂)ai = r(x, p̂)i, i, j 6= a,

(3.22)

where a = n if x > 0 and a = 1 if x < 0. Introduce also the vector v = v(x):

v(x)j =

√

n(ex − 1)

1− e−nx
e−

jx
2 , j = 1, . . . , n, (3.23)

which is related to v̂ in (3.15) by

v̂(x) =

√

sgn(x)e−x
enx − 1

n
v(x). (3.24)

Finally, define the n× n matrix κ(x) as

κ(x)aa =
v(x)a√
n
, κ(x)ij = δij −

v(x)iv(x)j
n+

√
nv(x)a

,

κ(x)ia = −κ(x)ai =
v(x)i√
n
, i, j 6= a,

(3.25)

where, again, a = n if x > 0 and a = 1 if x < 0. It can be shown that both κ(x) and ζ(x, p̂)
are orthogonal matrices of determinant 1 for any p̂ ∈ C̄x.

Now we can state the main result of this section, whose proof is omitted since it is a direct
application of the analysis of the solutions of (3.11) presented in Section 5 of [11].
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Proposition 3.3. Take any p̂ ∈ C̄x and any diagonal unitary matrix eiq̂ ∈ Tn. By using the
preceding notations define K ∈ SL(2n,C) (3.3) by setting

T = eiq̂θ(−x, p̂), ρ = κ(x)ζ(x, p̂)−1, (3.26)

and also applying the equations (3.4), (3.5), (3.8) and (3.13). Then the element K belongs
to the constraint surface Φ−1

+ (µ), and every orbit of the gauge group Gµ (2.25) in Φ−1
+ (µ)

intersects the set of elements K just constructed.

Remark 3.4. It is worth spelling out the expression of the element K given by Proposition
3.3. Indeed, we have

K(p̂, eiq̂) =

[

ρ 0n
0n 1n

] [√
1n − e2p̂ iep̂

iep̂
√
1n − e2p̂

] [

e−v1n α
0n ev1n

]

(3.27)

using the above definitions and

α = −i

[

eiq̂
√

e−2ue−2p̂ − e−2v1n θ(−x, p̂)− ev
√

e−2p̂ − 1n

]

. (3.28)

Remark 3.5. Let us call S the set of the elements K(p̂, eiq̂) constructed above, and observe
that this set is homeomorphic to

C̄x × Tn = {(p̂, eiq̂)} (3.29)

by its very definition. This is not a smooth manifold, because of the presence of the boundary
of C̄x. However, this does not indicate any ‘trouble’ since it is not true (at the boundary of
C̄x) that S intersects every gauge orbit in Φ−1

+ (µ) in a single point. Indeed, it is instructive
to verify that if p̂ is the special vertex of C̄x for which p̂k = (1 − k)|x|/2 for k = 1, . . . , n,
then all points K(p̂, eiq̂) lie on a single gauge orbit. This, and further inspection, can lead
to the idea that the variables q̂j should be identified with arguments of complex numbers,
which lose their meaning at the origin that should correspond to the boundary of C̄x. Our
Theorem 4.9 will show that this idea is correct. It is proper to stress that we arrived at such
idea under the supporting influence of previous works [29, 11].

4 Characterization of the reduced system

The smoothness of the reduced phase space and the completeness of the reduced free flows
follows immediately if we can show that the gauge group Gµ acts in such a way on Φ−1

+ (µ)
that the isotropy group of every point is just the finite center of the symmetry group. In
Subsection 4.1, we prove that the factor of Gµ by the center acts freely on Φ−1

+ (µ). Then
in Subsection 4.2 we explain that Cx × Tn provides a model of a dense open subset of the
reduced phase space by means of the corresponding subset of Φ−1

+ (µ) defined by Proposition
3.3. Adopting a key calculation from [20], it turns out that (p̂, eiq̂) ∈ Cx × Tn are Darboux
coordinates on this dense open subset. In Subsection 4.3, we demonstrate that the reduction
of the Abelian Poisson algebra of free Hamiltonians (2.8) yields an integrable system. Finally,
in Subsection 4.4, we present a model of the full reduced phase space, which is our main result.
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4.1 Smoothness of the reduced phase space

It is clear that the normal subgroup of the full symmetry group G+ × G+ consisting of
matrices of the form

(η, η) with η = diag(z1n, z1n), z2n = 1 (4.1)

acts trivially on the phase space. This subgroup is contained in Gµ (2.25). The corresponding
factor group of Gµ is called ‘effective gauge group’ and is denoted by Ḡµ. We wish to show
that Ḡµ acts freely on the constraint surface Φ−1

+ (µ).
We need the following elementary lemmas.

Lemma 4.1. Suppose that

g+

[

cos q i sin q
i sin q cos q

]

h+ = g′+

[

cos q i sin q
i sin q cos q

]

h′+ (4.2)

with g+, h+, g
′
+, h

′
+ ∈ G+ and q = diag(q1, . . . , qn) subject to

π

2
≥ q1 > · · · > qn > 0. (4.3)

Then there exist diagonal matrices m1, m2 ∈ Tn having the form

m1 = diag(a, ξ), m2 = diag(b, ξ), ξ ∈ Tn−1, a, b ∈ T1, det(m1m2) = 1, (4.4)

for which
(g′+, h

′
+) = (g+diag(m1, m2), diag(m

−1
2 , m−1

1 )h+). (4.5)

If (4.3) holds with strict inequality π
2
> q1, then m1 = m2, i.e., a = b.

Lemma 4.2. Pick any p̂ ∈ C̄x and consider the matrix θ(x, p̂) given by (3.19) and (3.20).
Then the entries θn,1(x, p̂) and θj,j+1(x, p̂) are all non-zero if x > 0 and the entries θ1,n(x, p̂)
and θj+1,j(x, p̂) are all non-zero if x < 0.

For convenience, we present the proof of Lemma 4.1 in Appendix C. The property recorded
in Lemma 4.2 is known [29, 11], and is easily checked by inspection.

Proposition 4.3. The effective gauge group Ḡµ acts freely on Φ−1
+ (µ).

Proof. Since every gauge orbit intersects the set S specified by Proposition 3.3, it is enough
to show that if (ηL, ηR) ∈ Gµ maps K ∈ S (3.27) to itself, then (ηL, ηR) equals some element
(η, η) given in (4.1). For K of the form (3.3), we can spell out K ′ ≡ ηLKη

−1
R as

K ′ =

[

ηL(1)ρ 0n
0n ηL(2)

] [

cos q i sin q
i sin q cos q

] [

ηR(1)
−1 0n

0n ηR(2)
−1

] [

e−v1n ηR(1)αηR(2)
−1

0n ev1n

]

. (4.6)

The equality K ′ = K implies by the uniqueness of the Iwasawa decomposition and Lemma
4.1 that we must have

ηL(2) = ηR(1) = m2, ηR(2) = m1, ηL(1)ρ = ρm1, (4.7)

with some diagonal unitary matrices having the form (4.4). By using that ηR(1) = m2 and
ηR(2) = m1, the Iwasawa decomposition of K ′ = K in (3.27) also entails the relation

α = m2αm
−1
1 . (4.8)
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Because of (3.28), the off-diagonal components of the matrix equation (4.8) yield

θ(−x, p̂)jk =
(

m2θ(−x, p̂)m−1
1

)

jk
, ∀j 6= k. (4.9)

This implies by means of Lemma 4.2 and equation (4.4) that m1 = m2 = z1n is a scalar
matrix. But then ηL(1) = m1 follows from ηL(1)ρ = ρm1, and the proof is complete.

Proposition 4.3 and the general results gathered in Appendix D imply the following theorem,
which is one of our main results.

Theorem 4.4. The constraint surface Φ−1
+ (µ) is an embedded submanifold of SL(2n,C) and

the reduced phase space M (2.24) is a smooth manifold for which the natural projection
πµ : Φ

−1
+ (µ) →M is a smooth submersion.

4.2 Model of a dense open subset of the reduced phase space

Let us denote by So ⊂ S the subset of the elements K given by Proposition 3.3 with p̂ in the
interior Cx of the polyhedron C̄x (3.18). Explicitly, we have

So = {K(p̂, eiq̂) | (p̂, eiq̂) ∈ Cx × Tn}, (4.10)

where K(p̂, eiq̂) stands for the expression (3.27). Note that So is in bijection with Cx × Tn.
The next lemma says that no two different point of So are gauge equivalent.

Lemma 4.5. The intersection of any gauge orbit with So consists of at most one point.

Proof. Suppose that
K ′ := K(p̂′, eiq̂

′

) = ηLK(p̂, eiq̂)η−1
R (4.11)

with some (ηL, ηR) ∈ Gµ. By spelling out the gauge transformation as in (4.6), using the
shorthand sin q = ep̂, we observe that p̂′ = p̂ since q in (3.1) does not change under the action
of G+×G+. Since now we have π

2
> q1 (which is equivalent to 0 > p̂1), the arguments applied

in the proof of Proposition 4.3 permit to translate the equality (4.11) into the relations

ηL(2) = ηR(1) = ηR(2) = m, ηL(1)ρ = ρm, (4.12)

complemented with the condition

α(p̂, eiq̂
′

) = mα(p̂, eiq̂)m−1, (4.13)

which is equivalent to
eiq̂

′

θ(−x, p̂) = meiq̂θ(−x, p̂)m−1. (4.14)

We stress that m ∈ Tn and notice from (3.20) that for p̂ ∈ Cx all the diagonal entries
θ(−x, p̂)jj are non-zero. Therefore we conclude from (4.14) that eiq̂

′

= eiq. This finishes the
proof, but of course we can also confirm that m = z1n, consistently with Proposition 4.3.

Now we introduce the map P : SL(2n,C) → Rn by

P : K = gLb
−1
R 7→ p̂, (4.15)

defined by writing gL in the form (3.1) with sin q = ep̂. The map P gives rise to a map
P̄ : M → Rn verifying

P̄(πµ(K)) = P(K), ∀K ∈ Φ−1
+ (µ), (4.16)
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where πµ is the canonical projection (2.28). We notice that, since the ‘eigenvalue parameters’
p̂j (j = 1, . . . , n) are pairwise different for any K ∈ Φ−1

+ (µ), P̄ is a smooth map. The
continuity of P̄ implies that

Mo := P̄−1(Cx) = πµ(S
o) ⊂ M (4.17)

is an open subset. The second equality is a direct consequence of our foregoing results about
S and So. Note that P̄−1(C̄x) = πµ(S) = M . Since πµ is continuous (actually smooth) and
any point of S is the limit of a sequence in So, Mo is dense in the reduced phase space M .
The dense open subset Mo can be parametrized by Cx × Tn according to

(p̂, eiq̂) 7→ πµ(K(p̂, eiq̂)), (4.18)

which also allows us to view So ≃ Cx×Tn as a model ofMo ⊂M . In principle, the restriction
of the reduced symplectic form toMo can now be computed by inserting the explicit formula
K(p̂, eiq̂) (3.27) into the Alekseev-Malkin form (2.5). In the analogous reduction of the
Heisenberg double of SU(n, n), Marshall [20] found a nice way to circumvent such a tedious
calculation. By taking the same route, we have verified that p̂ and q̂ are Darboux coordinates
on Mo.

The outcome of the above considerations is summarized by the next theorem.

Theorem 4.6. Mo defined by equation (4.17) is a dense open subset of the reduced phase
space M . Parametrizing Mo by Cx × Tn according to (4.18), the restriction of reduced sym-
plectic form ωM (2.29) to Mo is equal to ω̂ =

∑n
j=1 dq̂j ∧ dp̂j (1.4).

4.3 Liouville integrability of the reduced free Hamiltonians

The Abelian Poisson algebra H (2.8) consists of (G+ × G+)-invariant functions
4 generating

complete flows, given explicitly by (2.10), on the unreduced phase space. Thus each element
of H descends to a smooth reduced Hamiltonian on M (2.24), and generates a complete
flow via the reduced symplectic form ωM . This flow is the projection of the corresponding
unreduced flow, which preserves the constraint surface Φ−1

+ (µ). It also follows from the
construction that H gives rise to an Abelian Poisson algebra, HM , on (M,ωM). Now the
question is whether the Hamiltonian vector fields of HM span an n-dimensional subspace of
the tangent space at the points of a dense open submanifold of M . If yes, then HM yields a
Liouville integrable system, since dim(M) = 2n.

Before settling the above question, let us focus on the Hamiltonian H ∈ H defined by

H(K) :=
1

2
tr
(

(K†K)−1
)

=
1

2
tr(b†RbR). (4.19)

Using the formula of K(p̂, eiq̂) in Remark 3.4, it is readily verified that

H(K(p̂, eiq̂)) = H(p̂, q̂; x, u, v), ∀(p̂, eiq̂) ∈ Cx × Tn, (4.20)

with the Hamiltonian H displayed in equation (1.1). Consequently, H in (1.1) is identified
as the restriction of the reduction of H (4.19) to the dense open submanifold Mo (4.17) of
the reduced phase space, wherein the flow of every element of HM is complete.

4More precisely, H = C∞(SL(2n,C))SU(2n)×SU(2n).
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Turning to the demonstration of Liouville integrability, consider the n functions

Hk(K) :=
1

2k
tr
(

(K†K)−1
)k

=
1

2k
tr(b†RbR)

k, k = 1, . . . , n. (4.21)

The restriction of the corresponding elements of HM on Mo ≃ Cx × Tn gives the functions

Hk(p̂, q̂) =
1

2k
tr

[

e2v1n −evα
−evα† (e−2v1n + α†α)

]k

, (4.22)

where α has the form (3.28). These are real-analytic functions on Cx × Tn. It is enough
to show that their exterior derivatives are linearly independent on a dense open subset of
Cx × Tn. This follows if we show that the function

f(p̂, q̂) = det
[

dq̂H1, dq̂H2, . . . , dq̂Hn

]

(4.23)

is not identically zero on Cx × Tn. Indeed, since f is an analytic function and Cx × Tn is
connected, if f is not identically zero then its zero set cannot contain any accumulation point.
This, in turn, implies that f is non-zero on a dense open subset of Cx × Tn ≃ Mo, which is
also dense and open in the full reduced phase space M . In other words, the reductions of Hk

(k = 1, . . . , n) possess the property of Liouville integrability. It is rather obvious that the
function f is not identically zero, since Hk involves dependence on q̂ through e±ikq̂ and lower
powers of e±iq̂. It is not difficult to inspect the function f(p̂, q̂) in the ‘asymptotic domain’
where all differences |p̂j − p̂m| (m 6= j) tend to infinity, since in this domain α becomes close
to a diagonal matrix. We omit the details of this inspection, whereby we checked that f is
indeed not identically zero.

The above arguments prove the Liouville integrability of the reduced free Hamiltonians,
i.e., the elements of HM . Presumably, there exists a dual set of integrable many-body Hamil-
tonians that live on the space of action-angle variables of the Hamiltonians in HM . The
construction of such dual Hamiltonians is an interesting task for the future, which will be
further commented upon in Section 5.

4.4 The global structure of the reduced phase space

We here construct a global cross-section of the gauge orbits in the constraint surface Φ−1
+ (µ).

This engenders a symplectic diffeomorphism between the reduced phase space (M,ωM) and
the manifold (M̂c, ω̂c) below. It is worth noting that (M̂c, ω̂c) is symplectomorphic to R2n

carrying the standard Darboux 2-form, and one can easily find an explicit symplectomor-
phism if desired. Our construction was inspired by the previous papers [29, 11], but detailed
inspection of the specific example was also required for finding the final result given by The-
orem 4.9. After a cursory glance, the reader is advised to go directly to this theorem and
follow the definitions backwards as becomes necessary. See also Remark 4.10 for the rationale
behind the subsequent definitions.

To begin, consider the product manifold

M̂c := Cn−1 × D, (4.24)

where D stands for the open unit disk, i.e., D := {w ∈ C : |w| < 1}, and equip it with the
symplectic form

ω̂c = i

n−1
∑

j=1

dzj ∧ dz̄j +
idzn ∧ dz̄n
1− znz̄n

. (4.25)
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The subscript c refers to ‘complex variables’. Define the surjective map

Ẑx : C̄x × Tn → M̂c, (p̂, eiq̂) 7→ z(p̂, eiq̂) (4.26)

by the formulae

zj(p̂, e
iq̂) = (p̂j − p̂j+1 − |x|/2)

1
2

n
∏

k=j+1

eiq̂k , j = 1, . . . , n− 1,

zn(p̂, e
iq̂) = (1− ep̂1)

1
2

n
∏

k=1

eiq̂k .

(4.27)

Notice that the restriction Zx of Ẑx to Cx × Tn is a diffeomorphism onto the dense open
submanifold

M̂o
c = {z ∈ M̂c |

n
∏

j=1

zj 6= 0}. (4.28)

It verifies

Z∗
x(ω̂c) = ω̂ =

n
∑

j=1

dq̂j ∧ dp̂j , (4.29)

which means that Zx is a symplectic embedding of (Cx × Tn, ω̂) into (M̂c, ω̂c). The inverse
Z−1
x : M̂o

c → Cx × Tn operates according to

p̂1(z) = log(1− |zn|2), p̂j(z) = log(1− |zn|2)−
j−1
∑

k=1

(|zk|2 − |x|/2) (j = 2, . . . , n)

eiq̂1(z) =
znz̄1
|znz̄1|

, eiq̂m(z) =
zm−1z̄m
|zm−1z̄m|

(m = 2, . . . , n− 1), eiq̂n(z) =
zn−1

|zn−1|
.

(4.30)

It is important to remark that the p̂k(z) (k = 1, . . . , n) given above yield smooth functions
on the whole of M̂c, while the angles q̂k are of course not well-defined on the complementary
locus of M̂o

c . Our construction of the global cross-section will rely on the building blocks
collected in the following long definition.

Definition 4.7. For any (z1, . . . , zn−1) ∈ Cn−1 consider the smooth functions

Qjk(x, z) =

[

sinh(
∑k−1

ℓ=j zℓz̄ℓ + (k − j)|x|/2− x/2)

sinh(
∑k−1

ℓ=j zℓz̄ℓ + (k − j)|x|/2)

]

1
2

, 1 ≤ j < k ≤ n, (4.31)

and set Qjk(x, z) := Qkj(−x, z) for j > k. Applying these as well as the real analytic function

J(y) :=

√

sinh(y)

y
, y 6= 0, J(0) := 1, (4.32)
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and recalling (3.21), introduce the n× n matrix ζ̂(x, z) by the formulae

ζ̂(x, z)aa = r(x, p̂(z))a, ζ̂(x, z)aj = −ζ̂(x, z)ja, j 6= a,

ζ̂(x, z)jn =

√

sinh(x
2
)

sinh(nx
2
)

zjJ(zj z̄j)

sinh(zj z̄j +
x
2
)

n
∏

ℓ=1
(ℓ 6=j,j+1)

Qjℓ(x, z), x > 0, j 6= n,

ζ̂(x, z)j1 =

√

sinh(x
2
)

sinh(nx
2
)

z̄j−1J(zj−1z̄j−1)

sinh(zj−1z̄j−1 − x
2
)

n
∏

ℓ=1
(ℓ 6=j−1,j)

Qjℓ(x, z), x < 0, j 6= 1,

ζ̂(x, z)jk = δj,k +
ζ̂(x, z)jaζ̂(x, z)ak

1 + ζ̂(x, z)aa
, j, k 6= a,

(4.33)

where a = n if x > 0 and a = 1 if x < 0. Then introduce the matrix θ̂(x, z) for x > 0 as

θ̂(x, z)jk =
sinh(nx

2
)sgn(k − j − 1)ζ̂(x, z)jnζ̂(−x, z)1k

sinh(
∑max(j,k)−1

ℓ=min(j,k) zℓz̄ℓ + |k − j − 1|x
2
)

, k 6= j + 1,

θ̂(x, z)j,j+1 =
− sinh(x

2
)

sinh(zj z̄j +
x
2
)

n
∏

ℓ=1
(ℓ 6=j,j+1)

Qjℓ(x, z)Qj+1,ℓ(−x, z),
(4.34)

and for x < 0 as
θ̂(x, z) = θ̂(−x, z)†. (4.35)

Finally, for any z ∈ M̂c define the matrix γ̂(x, z) = diag(γ̂1, . . . , γ̂n) with

γ̂(z)1 = zn
√
2− znz̄n, γ̂(x, z)j =

[

1− (1− znz̄n)e
−

∑j−1
ℓ=1(zℓ z̄ℓ+|x|/2)

]

, j = 2, . . . , n, (4.36)

and the matrix

α̂(x, u, v, z) = −i
[

√

e−2ue−2p̂(z) − e−2v1n] θ̂(−x, z) − eve−p̂(z)γ̂(x, z)†
]

, (4.37)

using the constants x, u, v subject to (1.2).

Although the variable zn appears only in γ̂1, we can regard all objects defined above as
smooth functions on M̂c, and we shall do so below.

The key properties of the matrices ζ̂, θ̂, α̂ and γ̂ are given by the following lemma, which
can be verified by straightforward inspection. The role of these identities and their origin
will be enlightened by Theorem 4.9.

Lemma 4.8. Prepare the notations

τ(x) := diag(τ2, . . . , τn, 1) if x > 0 and τ(x) := diag(1, τ1, . . . , τn−1) if x < 0, (4.38)

τ̃(x) := diag(1, τ2, . . . , τn) if x > 0 and τ̃(x) := diag(τ1, . . . , τn−1, 1) if x < 0 (4.39)

with

τj =

n
∏

k=j

eiq̂k if x > 0 and τj = eiq̂j
n
∏

k=j

e−iq̂k if x < 0. (4.40)
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Then the following identities hold for all (p̂, eiq̂) ∈ C̄x × Tn:

ζ̂(x, z(p̂, eiq̂)) = τ(x)ζ(x, p̂)τ
−1
(x) , (4.41)

θ̂(x, z(p̂, eiq̂)) = τ(x)θ(x, p̂)τ̃
−1
(x) , (4.42)

γ̂(x, z(p̂, eiq̂)) = eiq̂τ(x)τ̃
−1
(x)

√

1n − e2p̂, (4.43)

α̂(x, u, v, z(p̂, eiq̂)) = e−iq̂ τ̃(x)α(x, u, v, p̂, e
iq̂)τ−1

(x) . (4.44)

Here we use Definition 4.7 and the functions on C̄x × Tn introduced in Subsection 3.2.

For the verification of the above identities, we remark that the vector r (3.21) can be
expressed as a smooth function of the complex variables as

r(x, p̂(z))j =

√

sinh(x
2
)

sinh(nx
2
)

n
∏

k=1
(k 6=j)

Qjk(x, z), j = 1, . . . , n. (4.45)

With all necessary preparations now done, we state the main new result of the paper.

Theorem 4.9. The image of the the smooth map K̂ : M̂c → SL(2n,C) given by the formula

K̂(z) =

[

κ(x)ζ̂(x, z)−1 0n
0n 1n

] [

γ̂(x, z) iep̂(z)

iep̂(z) γ̂(x, z)†

] [

e−v1n α̂(x, u, v, z)
0n ev1n

]

(4.46)

lies in Φ−1
+ (µ), intersects every gauge orbit in precisely one point, and K̂ is injective. The pull-

back of the Alekseev-Malkin 2-form ω (2.5) by K̂ is ω̂c (4.25). Consequently, πµ ◦ K̂ : M̂c →
M is a symplectomorphism, whereby (M̂c, ω̂c) provides a model of the reduced phase space
(M,ωM) defined in Subsection 2.2.

Proof. The proof is based upon the identity

K̂(z(p̂, eiq̂)) =

[

κ(x)τ(x)κ(x)
−1 0n

0n τ̃(x)e
−iq̂

]

K(p̂, eiq̂)

[

τ̃(x)e
−iq̂ 0n

0n τ(x)

]−1

, ∀(p̂, eiq̂) ∈ C̄x × Tn,

(4.47)
which is readily seen to be equivalent to the set of identities displayed in Lemma 4.8. It means
that K̂(z(p̂, eiq̂)) is a gauge transform of K(p̂, eiq̂) in (3.27). Indeed, the above transformation
of K(p̂, eiq̂) has the form (2.20) with

ηL = c

[

κ(x)τ(x)κ(x)
−1 0n

0n τ̃(x)e
−iq̂

]

, ηR = c

[

τ̃(x)e
−iq̂ 0n

0n τ(x)

]

, (4.48)

where c is a harmless scalar inserted to ensure det(ηL) = det(ηR) = 1. Using (3.25) and
(4.38), one can check that κ(x)τ(x)κ(x)

−1v̂(x) = v̂(x) for the vector v̂(x) in (3.24), which
implies via the relation (3.15) that (ηL, ηR) belongs to the isotropy group Gµ (2.25), the
gauge group acting on Φ−1

+ (µ).
It follows from Proposition 3.3 and the identity (4.47) that the set

Ŝ := {K̂(z) | z ∈ M̂c} (4.49)

lies in Φ−1
+ (µ) and intersects every gauge orbit. Since the dense subset

Ŝo := {K̂(z) | z ∈ M̂o
c } (4.50)
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is gauge equivalent to So in (4.10), we obtain the equality

K̂∗(ω) = ω̂ (4.51)

by using Theorem 4.6 and equation (4.29). More precisely, we here also utilized that K̂∗(ω)
is (obviously) smooth and M̂o

c is dense in M̂c.
The only statements that remain to be proved are that the intersection of Ŝ with any

gauge orbit consists of a single point and that K̂ is injective. (These are already clear for
Ŝo ⊂ Ŝ and for K̂|M̂o

c
.) Now suppose that

K̂(z′) =

[

ηL(1) 0n
0n ηL(2)

]

K̂(z)

[

ηR(1) 0n
0n ηR(2)

]−1

(4.52)

for some gauge transformation and z, z′ ∈ M̂c. Let us observe from the definitions that we
can write

[

γ̂(x, z) iep̂(z)

iep̂(z) γ̂(x, z)†

]

= D(z)

[

cos q(z) i sin q(z)
i sin q(z) cos q(z)

]

D(z), (4.53)

where sin q(z) = ep̂(z), with π
2
≥ q1 > · · · > qn > 0, and D(z) is a diagonal unitary matrix

of the form D(z) = diag(d1, 1n−1, d̄1, 1n−1). Then the uniqueness properties of the Iwasawa
decomposition of SL(2n,C) and the generalized Cartan decomposition (3.1) of SU(2n) allow
to establish the following consequences of (4.52). First,

p̂(z) = p̂(z′). (4.54)

Second, using Lemma 4.1,
[

ηR(1) 0n
0n ηR(2)

]

=

[

m2 0n
0n m1

]

(4.55)

for some diagonal unitary matrices of the form (4.4). Third, we have

α̂(z′) = ηR(1)α̂(z)ηR(2)
−1 = m2α̂(z)m

−1
1 . (4.56)

For definiteness, let us focus on the case x > 0. Then we see from the definitions that the
components α̂k+1,k and α̂1,n depend only on p̂(z) and are non-zero. By using this, we find
from (4.56) that m1 = m2 = C1n with a scalar C, and therefore

α̂(z′) = α̂(z). (4.57)

Inspection of the components (1, 2), . . . , (1, n− 1) of this matrix equality and (4.54) permit
to conclude that z′2 = z2, . . . , z

′
n−1 = zn−1, respectively. Then, the equality of the (2, n)

entries in (4.57) gives z′1 = z1 which used in the (1, 1) position implies z′n = zn. Thus we see
that z′ = z and the proof is complete. (Everything written below (4.56) is quite similar for
x < 0.)

Remark 4.10. Let us hint at the way the global structure was found. The first point to
notice was that all or some of the phases eiq̂j cannot encode gauge invariant quantities if
p̂ belongs to the boundary of C̄x, as was already mentioned in Remark 3.5. Motivated by
[11], then we searched for complex variables by requiring that a suitable gauge transform of
K(p̂, eiq̂) in (3.27) should be expressible as a smooth function of those variables. Given the
similarities to [11], only the definition of zn was a true open question. After trial and error,
the idea came in a flash that the gauge transformation at issue should be constructed from
a transformation that appears in Lemma C.1. Then it was not difficult to find the correct
result.
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Remark 4.11. Let us elaborate on how the trajectories p̂(t) corresponding to the flows of
the reduced free Hamiltonians, arising from Hk (4.21) for k = 1, . . . , n, can be obtained.
Recall that for k = 1 the reduction of H1 completes the main Hamiltonian H (1.1). Since
Hk(K) = hk(bR) with hk(b) =

1
2k
tr(b†b)k, the free flow generated by Hk through the initial

value K(0) = gL(0)b
−1
R (0) is given by (2.10) with dRhk(b) = i(b†b)k. Thus the curve gL(t)

(2.10) has the form

gL(t) = gL(0) exp(−itL(0)k) with L(0) = bR(0)
†bR(0). (4.58)

The reduced flow results by the usual projection algorithm. This starts by picking an initial
value z(0) ∈ M̂c and setting K(0) = K̂(z(0)) by applying (4.46), which directly determines
gL(0) and bR(0) as well. Then the map P (4.15) gives rise to p̂(t) via the decomposition of
gL(t) ∈ SU(2n) as displayed in (3.1), that is

p̂(t) = P(K(t)). (4.59)

More explicitly, if D(t) stands for the (11) block of gL(t), then the eigenvalues of D(t)D(t)†

are
σ(D(t)D(t)†) = {cos2 qj(t) | j = 1, . . . , n}, (4.60)

from which p̂j(t) can be obtained using (3.13). In particular, the ‘particle positions’ evolve
according to an ‘eigenvalue dynamics’ similarly to other many-body systems. This involves
the one-parameter group e−itL(0)k , where L(0) is the initial value of the Lax matrix (cf. (4.22))

L(z) =
[

e2v1n −evα̂(z)
−evα̂(z)† (e−2v1n + α̂(z)†α̂(z))

]

, (4.61)

where we suppressed the dependence of α̂ (4.37) on the parameters x, u, v. A more detailed
characterization of the dynamics will be provided elsewhere.

5 Discussion and outlook on open problems

In this paper we derived a deformation of the trigonometric BCn Sutherland system by means
of Hamiltonian reduction of a free system on the Heisenberg double of SU(2n). Our main
result is the global characterization of the reduced phase space given by Theorem 4.9. The
Liouville integrability of our system holds on this phase space, wherein the reduced free flows
are complete. These flows can be obtained by the usual projection method applied to the
original free flows described in Section 2.

The local form of our reduced ‘main Hamiltonian’ (1.1) is similar to the Hamiltonian
derived in [20], which deforms the hyperbolic BCn Sutherland system. However, besides a
sign difference corresponding to the difference of the undeformed Hamiltonians, the local
domain of our system, Cx × Tn in (1.3), is different from the local domain appearing in [20],
which in effect has the form C′

x × Tn with the open polyhedron5

C′
x := {p̂ ∈ Rn | p̂n > 0, p̂k − p̂k+1 > |x|/2 (k = 1, . . . , n− 1)}. (5.1)

We here wish to point out that C′
x × Tn is not the full reduced phase space that arises from

the reduction considered in [20]. In fact, similarly to our case, the constraint surface contains
a submanifold of the form C̄′

x × Tn in the case of [20], where C̄′
x is the closure of C′

x. Then a

5The notational correspondence between [20] and the present paper is: (q, p, α, x, y) ↔ (p̂, q̂, e
x

2 , e−v, e−u).
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global model of the reduced phase space can be constructed by introducing complex variables
suitably accommodating the procedure that we utilized in Subsection 4.4. Erroneously, in
[20] the full phase space was claimed to be C′

x×Tn; the details of the correct description will
be presented elsewhere.

Throughout the text we assumed that n > 1, but we now note that the reduced system
can be specialized to n = 1 and the reduction procedure works in this case as well. The
assumption was made merely to save words. The formalism actually simplifies for n = 1
since the Poisson structure on G+ = S(U(1)× U(1)) < SU(2) is trivial.

As explained in Appendix A, the Hamiltonian (1.1) is a singular limit of a specialization
of the trigonometric van Diejen Hamiltonian [35], which (in addition to the deformation
parameter) contains 5 coupling constants. As a result, at least classically, van Diejen’s
system can be degenerated into the trigonometric BCn Sutherland system either directly, as
described in [35], or in a roundabout way, going through our system. Of course, a similar
statement holds in relation to hyperbolic BCn Sutherland and the system of [20].

Except in the rational limit [26], no Lax matrix is known that would generate van Diejen’s
commuting Hamiltonians. In the reduction approach a Lax matrix arises automatically, in
our case it features in equations (4.22) and (4.61). This might be helpful in searching for
a Lax matrix behind van Diejen’s 5-coupling Hamiltonian. The search would be easy if
one could derive van Diejen’s system by Hamiltonian reduction. It is a long standing open
problem to find such derivation. Perhaps one should consider some ‘classical analogue’ of the
quantum group interpretation of the Koornwinder (BCn Macdonald) polynomials found in
[23], since those polynomials diagonalize van Diejen’s quantized Hamiltonians [37].

Another open problem is to construct action-angle duals of the deformed BCn Sutherland
systems. Duality relations are not only intriguing on their own right, but are also very useful
for extracting information about the dynamics [28, 29, 30, 27]. The duality was used in
[4, 10] to show that the hyperbolic BCn Sutherland system is maximally superintegrable, the
trigonometric BCn Sutherland system has precisely n constants of motion, and the relevant
dual systems are maximally superintegrable in both cases. These studies, which were heavily
influenced by Pusztai’s paper [26] (see also [14]), may provide inspiration for a future inves-
tigation of the dualities for the deformed BCn Sutherland systems. We here only remark
that deformed dual systems should arise from considering the reduction of alternative sets of
commuting free Hamiltonians on the pertinent Heisenberg doubles.

After we finished our work, there appeared a preprint [38] dealing with the quantum
mechanics of a lattice version of a 4-parameter Inozemtsev type limit of van Diejen’s trigono-
metric/hyperbolic system. The systems studied in [20] and in our paper correspond to further
limits of specializations of this one. The statements about quantum mechanical dualities con-
tained in [38] and its references should be related to classical dualities.

We hope be able to return to some of these questions in the future.

Acknowledgements. L.F. wishes to thank S. Ruijsenaars for suggesting the role of the
kind of singular limit described in Appendix A. This work was supported in part by the
Hungarian Scientific Research Fund (OTKA) under the grant K-111697. The work was
also partially supported by the European Union and the European Social Fund through the
project TAMOP-4.2.2.D-15/1 at the University of Szeged.
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A Links to systems of van Diejen and Schneider

Recall that the trigonometric BCn van Diejen system [35] has the Hamiltonian

HvD(λ, θ) =

n
∑

j=1

(

cosh(θj)Vj(λ)
1/2

V−j(λ)
1/2 − [Vj(λ) + V−j(λ)]/2

)

, (A.1)

with V±j (j = 1, . . . , n) defined by

V±j(λ) = w(±λj)
n
∏

k=1
(k 6=j)

v(±λj + λk)v(±λj − λk), (A.2)

and v,w denoting the trigonometric potentials

v(z) =
sin(µ+ z)

sin(z)
and w(z) =

sin(µ0 + z)

sin(z)

cos(µ1 + z)

cos(z)

sin(µ′
0 + z)

sin(z)

cos(µ′
1 + z)

cos(z)
, (A.3)

where µ, µ0, µ1, µ
′
0, µ

′
1 are arbitrary parameters. By making the substitutions

λj → i(p̂j +R),

θj → iq̂j ,
∀j and µ→ ig/2,

µ0 → i(g0 +R),

µ′
0 → i(g′0 −R),

µ1 → ig1 + π/2,

µ′
1 → ig′1 + π/2

(A.4)

the potentials become hyperbolic functions and their R → ∞ limit exists, namely

lim
R→∞

v(±(λj + λk)) = e±g/2, lim
R→∞

v(±(λj − λk)) =
sinh(±g/2 + p̂j − p̂k)

sinh(p̂j − p̂k)
, ∀j, k (A.5)

and
lim
R→∞

w(±λj) = eg0−g
′

0±(g1+g′1)−2p̂j − e±(g0+g′0+g1+g
′

1), ∀j. (A.6)

In the 1-particle case we have V±(λ) = w(±λ), thus HvD takes the following form

HvD(λ, θ) = cosh(θ)w(λ)1/2w(−λ)1/2 − [w(λ) + w(−λ)]/2. (A.7)

By utilizing (A.6) one obtains

lim
R→∞

w(λ)1/2w(−λ)1/2 =
[

1− (e2g0 + e−2g′0)e−2p̂ + e2g0−2g′0−4p̂
]1/2

,

lim
R→∞

[w(λ) + w(−λ)]/2 =
eg0−g

′

0+g1+g
′

1 + eg0−g
′

0−g1−g
′

1

2
e−2p̂ − cosh(g0 + g′0 + g1 + g′1).

(A.8)

Equating the R → ∞ limit of HvD(λ, θ) (A.7) with the Hamiltonian H(p̂, q̂; x, u, v) (1.1)
yields a system of linear equations involving g0, g1, g

′
0, g

′
1 as unknowns and u, v as parameters.

Actually, four sets of linear equations can be constructed, each with infinitely many solutions
depending on one (real) parameter, but these sets are ‘equivalent’ under the exchanges:
g0 ↔ g′0 or g1 ↔ g′1. Therefore it is sufficient to give only one set of solutions, e.g.

g0 = v − u, g′0 = 0, g1 = u+ v − g′1, g′1 ∈ R. (A.9)

Setting g = x and g′1 = 0 provides the following special choice of couplings in (A.4)

µ = ix/2, µ0 = i(v − u+R), µ′
0 = −iR, µ1 = i(u+ v) + π/2, µ′

1 = π/2, (A.10)
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and one finds the following

lim
R→∞

HvD

(

λ(p̂, R), θ(q̂)
)

= −H(p̂, q̂; x, u, v) + cosh
(

2u
)

. (A.11)

In the n-particle case, by using (A.5) and (A.6) it can be shown that with (A.10) one has

lim
R→∞

HvD

(

λ(p̂, R), θ(q̂)
)

= −H(p̂, q̂; x, u, v) +

n
∑

j=1

cosh
(

(j − 1)x+ 2u
)

, (A.12)

i.e., the Hamiltonian H (1.1) is recovered as a singular limit of HvD (A.1).
Consider now the function H(p̂, q̂; x, u, v) and introduce the real parameter σ through the

substitutions
u → u− σ, v → v − σ (A.13)

and apply the canonical transformation

p̂j → −Qj + σ, q̂j → −Pj , ∀j. (A.14)

Then we have
lim
σ→∞

H(p̂(Q, σ), q̂(P ), x, u(σ), v(σ)) = HSch(Q,P, x, u), (A.15)

with Schneider’s [32] Hamiltonian

HSch(Q,P, x, u) =
e−2u

2

n
∑

j=1

e2Qj −
n

∑

j=1

cos(Pj)
n
∏

k=1
(k 6=j)

[

1− sinh2
(

x
2

)

sinh2(Qj −Qk)

]

1
2
. (A.16)

Remark A.1. (i) In (A.4) only two of the four external field couplings µ0, µ
′
0, µ1, µ

′
1 are scaled

with R. However, scaling all four of these parameters also leads to an integrable Ruijsenaars-
Schneider type system with a more general 4-parameter external field. For details, see Section
II.B of [36]. (ii) The connection to Schneider’s Hamiltonian was mentioned in Remark 7.1
of [20] as well, where a singular limit, similar to (A.15) was taken.

B Proof of a key result

In this appendix we prove Proposition 3.2 which states that the range of the ‘position variable’
p̂ is contained in the closed thick-walled Weyl chamber C̄x (3.18).

Proof of Proposition 3.2. According to (3.17) the matrices e2p̂ and e2p̂−x1n + sgn(x)ep̂ww†ep̂

are similar and therefore have the same characteristic polynomial. This gives the identity

n
∏

j=1

(e2p̂j − λ) =

n
∏

j=1

(e2p̂j−x − λ) + sgn(x)

n
∑

j=1

[

e2p̂j |wj|2
n
∏

k=1
(k 6=j)

(e2p̂k−x − λ)

]

, (B.1)

where λ is an arbitrary complex parameter. The constraint on p̂ arises from the fact that
|wm|2 (m = 1, . . . , n) must be non-negative and not all zero because of the definition (3.16).

Let us assume for a moment that the components of p̂ are distinct such that p̂1 > · · · > p̂n.
This enables us to express |wm|2 for all m ∈ {1, . . . , n} from the above equation by evaluating
it at n different values of λ, viz. λ = e2p̂m−x, m = 1, . . . , n. We obtain the following

|wm|2 = sgn(x)(1 − e−x)
n
∏

j=1
(j 6=m)

e2p̂j+x − e2p̂m

e2p̂j − e2p̂m
, m = 1, . . . , n. (B.2)
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For x > 0 and any p̂ with p̂1 > · · · > p̂n the formula (B.2) implies that |wn|2 > 0 and for
m = 1, . . . , n − 1 we have |wm|2 ≥ 0 if and only if p̂m − p̂m+1 ≥ x/2. Similarly, if x < 0
and p̂ ∈ Rn with p̂1 > · · · > p̂n, then (B.2) implies |w1|2 > 0 and for m = 2, . . . , n we have
|wm|2 ≥ 0 if and only if p̂m−1 − p̂m ≥ −x/2. In summary, if p̂1 > · · · > p̂n, then |wm|2 ≥ 0
∀m implies that p̂ ∈ C̄x.

Now, let us prove our assumption, that all components of p̂ must be different. Indirectly,
suppose that some (or maybe all) of the p̂j’s coincide. This can be captured by a partition
of the positive integer

n = k1 + · · ·+ kr, (B.3)

where r < n (or equivalently, at least one integer k1, . . . , kr must be greater than 1) and the
indirect assumption can be written as

p̂1 = · · · = p̂k1, p̂k1+1 = · · · = p̂k1+k2, . . . , p̂k1+···+kr−1+1 = · · · = p̂k1+···+kr ≡ p̂n. (B.4)

Then (B.1) can be reformulated as

r
∏

j=1

(∆j − λ)kj =

r
∏

j=1

(∆je
−x − λ)kj + sgn(x)

r
∑

m=1

Zm∆m(∆me
−x − λ)km−1

r
∏

j=1
(j 6=m)

(∆je
−x − λ)kj ,

(B.5)
where we introduced r distinct variables

∆1 = e2p̂k1 , ∆2 = e2p̂k1+k2 , . . . , ∆r = e2p̂k1+···+kr ≡ e2p̂n , (B.6)

and r non-negative real variables

Z1 = |w1|2 + · · ·+ |wk1|2, Z2 = |wk1+1|2 + · · ·+ |wk1+k2 |2,
. . . , Zr = |wk1+···+kr−1+1|2 + · · ·+ |wn|2.

(B.7)

Notice that Z1 + · · ·+ Zr = |w|2 = sgn(x)e−x(enx − 1) > 0, therefore at least one of the Zj’s
must be positive. Next, we define the rational function of λ

Q(∆, x, λ) =
r
∏

j=1

(∆j − λ)kj

(∆je−x − λ)kj−1
, (B.8)

and use it to rewrite (B.5) as

Q(∆, x, λ) =
r
∏

j=1

(∆je
−x − λ) + sgn(x)

r
∑

m=1

Zm∆m

r
∏

j=1
(j 6=m)

(∆je
−x − λ). (B.9)

The above equation implies that all poles of Q are apparent, i.e., there must be cancelling
factors in its numerator. This observation has a straightforward implication on the ∆’s.

(∗) For every index m ∈ {1, . . . , r} with km > 1, there exists an index s ∈ {1, . . . , r} s.t.
∆s = ∆me

−x and ks ≥ km − 1.

The quantities Zm = Zm(∆, x) can be uniquely determined by evaluating (B.9) at r different
values of the parameter λ, namely λm = ∆me

−x (m = 1, . . . , r). However, there are 3 disjoint
cases which are to be handled separately.
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Case 1: km = 1 and ∄s ∈ {1, . . . , r}: ∆s = ∆me
−x. Then we find

Zm = sgn(x)(1− e−x)e(n−1)x
r
∏

j=1
(j 6=m)

(

∆j −∆me
−x

∆j −∆m

)kj

> 0. (B.10)

Case 2: km > 1 and ks = km − 1. Then we find

Zm = (−1)km+1sgn(x)(1− e−x)e(n−km)x
r
∏

j=1
(j 6=m,s)

(

∆j −∆me
−x

∆j −∆m

)kj

> 0. (B.11)

Case 3: km = 1 and ∃s ∈ {1, . . . , r}: ∆s = ∆me
−x or km > 1 and ks > km − 1. Then we get

Zm = 0. (B.12)

Since there is at least one Zm which is positive, the set of indices belonging to Case 1 or
Case 2 must be non-empty. Introduce a real positive parameter ε and associate to every
degenerate configuration (B.4) a continuous family of configurations, denoted by p̂(ε), with
components p̂(ε)1, . . . , p̂(ε)n defined by the formulae

exp(2p̂(ε)a + aε) = ∆1, a = 1, . . . , k1,

exp(2p̂(ε)∑j−1
m=1 km+a + aε) = ∆j, a = 1, . . . , kj, j = 2, . . . , r.

(B.13)

This way coinciding components of p̂ (B.4) are ‘pulled apart’ to points successively separated
by ε/2. It is clear that with sufficiently small separation the configuration p̂(ε) sits in the
chamber {x̂ ∈ Rn | 0 > x̂1 > · · · > x̂n}. For such non-degenerate configurations p̂(ε), let us
consider the expressions

|wℓ(p̂(ε), x)|2 = sgn(x)(1 − e−x)
n
∏

j=1
(j 6=ℓ)

e2p̂(ε)j+x − e2p̂(ε)ℓ

e2p̂(ε)j − e2p̂(ε)ℓ
, ℓ = 1, . . . , n, (B.14)

which give the unique solution of equation (B.1) at p̂(ε). The limits limε→0 |wℓ(p̂(ε), x)|2
exist, and do not vanish for ℓ = k1 + · · · + km if km belongs to Case 1 or Case 2. For such
ℓ = k1 + · · ·+ km we must have

lim
ε→0

|wk1+···+km(p̂(ε), x)|2 = Zm(∆, x) > 0, (B.15)

where Zm is given by (B.10) in Case 1 and by (B.11) in Case 2. It can be also seen that

|wℓ(p̂(ε), x)|2 ≡ 0 ⇐⇒











ℓ /∈ {k1, k1 + k2, . . . , k1 + · · ·+ kr}
or

ℓ = k1 + · · ·+ km with km from Case 3,

(B.16)

i.e., |wℓ(p̂(ε), x)|2 vanishes identically except for the components in (B.15). Notice that
for a small enough ε some coordinates of p̂(ε) are separated by less than |x|/2. Thus, as
it was shown at beginning the proof, we have |wℓ(p̂(ε), x)|2 < 0 for some index ℓ, which
might depend on ε. Moreover, (B.16) implies that the index in question must have the form
ℓ = k1 + · · · + km∗ for some m∗ appearing in (B.15). But since the number of indices is
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finite, a monotonically decreasing sequence {εN}∞N=1 tending to zero can be chosen such that
|wk1+···+km∗

(p̂(εN), x)|2 < 0 for all N . This together with (B.16) gives the contradiction

0 ≥ lim
N→∞

|wk1+···+km∗
(p̂(εN), x)|2 = Zm∗(∆, x) > 0 (B.17)

proving that all components of p̂ must be distinct. This concludes the proof.

The above proof is a straightforward adaptation of the proofs of Lemma 5.2 of [11] and
Theorem 2 of [12]. We presented it since it could be awkward to extract the arguments from
those lengthy papers, and also our notations and the ranges of our variables are different.

C Proof of an elementary lemma

We here prove the following equivalent formulation of Lemma 4.1.

Lemma C.1. Suppose that π
2
≥ q1 > · · · > qn > 0 and

[

ηL(1) 0n
0n ηL(2)

] [

cos q i sin q
i sin q cos q

] [

ηR(1)
−1 0n

0n ηR(2)
−1

]

=

[

cos q i sin q
i sin q cos q

]

(C.1)

for ηL, ηR ∈ G+. Then

ηL(1) = ηR(2) = m1, ηL(2) = ηR(1) = m2 (C.2)

with some diagonal matrices m1, m2 ∈ Tn having the form

m1 = diag(a, ξ), m2 = diag(b, ξ), ξ ∈ Tn−1, a, b ∈ T1, det(m1m2) = 1. (C.3)

If in addition π
2
> q1, then m1 = m2.

Proof. The block off-diagonal components of the equality (C.1) give

ηL(1) = (sin q)ηR(2)(sin q)
−1, ηL(2) = (sin q)ηR(1)(sin q)

−1. (C.4)

Since ηL(1)
−1 = ηL(1)

†, the first of these relations implies ηR(2) = (sin q)2ηR(2)(sin q)
−2. As

the entries of (sin q) are all different, this entails that ηR(2) is diagonal, and consequently we
obtain the relations in (C.2) with some diagonal matrices m1 and m2. On the other hand,
the block-diagonal components of (C.1) require that

cos q = ηL(1)(cos q)ηR(1)
−1, cos q = ηL(2)(cos q)ηR(2)

−1. (C.5)

Since cos qk 6= 0 for k = 2, . . . , n, the formula (C.3) follows. If an addition cos q1 6= 0, then
we also obtain from (C.5) that a = b, i.e., m1 = m2 = m with some m ∈ Tn.

D Auxiliary material on Poisson-Lie symmetry

The statements presented here are direct analogues of well-known results [3, 15] about Hamil-
tonian group actions with zero Poisson bracket on the symmetry group. They are surely
familiar to experts, although we could not find them in a reference.

Let us consider a Poisson-Lie group G with dual group G∗ and a symplectic manifold P
equipped with a left Poisson action of G. Essentially following Lu [18] (cf. Remark D.4), we
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say that the G-action admits the momentum map ψ : P → G∗ if for any X ∈ G, the Lie
algebra of G, and any f ∈ C∞(P ) we have

(LXP
f)(p) = 〈X, {f, ψ}(p)ψ(p)−1〉, ∀p ∈ P, (D.1)

where XP is the vector field on P corresponding to X , 〈., .〉 stands for the canonical pairing
between the Lie algebras of G and G∗, and the notation pretends that G∗ is a matrix group.
Using the Hamiltonian vector field Vf defined by LVfh = −{f, h} (∀h ∈ C∞(P )), we can
spell out equation (D.1) equivalently as

(LXP
f)(p) = −〈X,

(

Dψ(p)Rψ(p)−1

)(

(Dpψ)(Vf(p))
)

〉, ∀p ∈ P, (D.2)

where Dpψ : TpP → Tψ(p)G
∗ is the derivative, and Rψ(p)−1 denotes the right-translation on

G∗ by ψ(p)−1. Since the vectors of the form Vf(p) span TpP , we obtain the following charac-
terization of the Lie algebra of the isotropy subgroup Gp < G of p ∈ P .

Lemma D.1. With the above notations, we have

Lie(Gp) =
[(

Dψ(p)Rψ(p)−1

)(

Im(Dpψ)
)]⊥

. (D.3)

This directly leads to the next statement.

Corollary D.2. An element µ ∈ G∗ is a regular value of the momentum map ψ if and only
if Lie(Gp) = {0} for every p ∈ ψ−1(µ) = {p ∈ P | ψ(p) = µ}.

Let us further suppose that ψ : P → G∗ is G-equivariant, with respect to the appropriate
dressing action of G on G∗. Then we have

Gp < Gµ, ∀p ∈ ψ−1(µ). (D.4)

Here Gp and Gµ refer to the respective actions of G on P and on G∗. Corollary D.2 and
equation (D.4) together imply the following useful result.

Corollary D.3. If Gµ acts locally freely on ψ
−1(µ), then µ is a regular value of the equivariant

momentum map ψ. Consequently, ψ−1(µ) is an embedded submanifold of P .

We finish by a clarifying remark concerning the momentum map.

Remark D.4. Let B be the Poisson tensor on P , for which {f, h} = B(df, dh) = LVhf .
We can write Vh = B♯(dh) with the corresponding bundle map B♯ : T ∗P → TP . Any
X ∈ G = TeG = (Te′G

∗)∗ extends to a unique right-invariant 1-form ϑX on G∗ (e ∈ G and
e′ ∈ G∗ are the unit elements). With this at hand, equation (D.1) can be reformulated as

XP = B♯(ψ∗(ϑX)), (D.5)

which is a slight variation of the defining equation of the momentum map found in [18].
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