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Original Article

Using Shrinkage in Multilevel
Models to Understand
Intersectionality
A Simulation Study and a Guide for Best Practice

Andrew Bell1, Daniel Holman2, and Kelvyn Jones3

1Sheffield Methods Institute, University of Sheffield, UK
2Department of Sociological Studies, University of Sheffield, UK
3School of Geographical Sciences, University of Bristol, UK

Abstract: Multilevel models have recently been used to empirically investigate the idea that social characteristics are intersectional such as

age, sex, ethnicity, and socioeconomic position interact with each other to drive outcomes. Some argue this approach solves the multiple-

testing problem found in standard dummy-variable (fixed-effects) regression, because intersectional effects are automatically shrunk toward

their mean. The hope is intersections appearing statistically significant by chance in a fixed-effects regression will not appear so in a multilevel

model. However, this requires assumptions that are likely to be broken. We use simulations to show the effect of breaking these assumptions:

when there are true main effects/interactions, unmodeled in the fixed part of the model. We show, while the multilevel approach outperforms

the fixed-effects approach, shrinkage is less than is desired, and some intersectional effects are likely to appear erroneously statistically

significant by chance. We conclude with advice to make this promising method work robustly.

Keywords: multilevel models, intersectionality, dummy variable regression, Empirical Bayes residuals, shrinkage

There has been a recent rise in the use of multilevel models

to uncovercomplex interactions between social characteris-

tics (Evans, Williams, Onnela, & Subramanian, 2018; Fisk

et al., 2018; Green et al., 2017; Johnston, Jones, & Manley,

2018; Jones, Johnston, & Manley, 2016; Merlo, 2018). This

is driven by interest in intersectionality theory, focusing on

the intersecting deprivations that result from different

combinations of social characteristics such age, sex, ethnic-

ity, and socioeconomic position on the one hand, and how

these deprivations are the result of interlocking systems of

discrimination, marginalization, oppression, and exclusion

on the other (Crenshaw, 1991; Hill Collins, 2008). Some-

times the combination of social characteristics can have

multiplicative effects that are more than the sum of their

parts. For example, being either black or having a low

income can be disadvantageous, but being both black and

having a low income can be extra disadvantageous. Differ-

ent combinations of attributes represent different socio-

structural positions, entailing differential access to

resources, and different social identities, since the social

groups we belong to give us a sense of who we are (McCall,

2005). Intersectionality research has also been concerned

with multiple marginalized intersectional positions/

identities (Choo & Ferree, 2010) in relation to sexuality, dis-

ability, and nationality, for example (Yuval-Davis, 2006).

Despite the different strands of intersectionality research,

recentmultilevel analyses have so far focused on the “main”

characteristics described, and on intersectional subgroups

rather than wider systems of oppression. The multilevel

approach is argued to be a “new gold-standard” for analyz-

ing differences in health across societal groups (Merlo,

2018). It empirically investigates intersectionality by explic-

itly taking into account subgroups defined by different

combinations of social characteristics, while not assuming

a priori that any particular variable or subgroup is a more

important driver of intersectional effects than others.

One key claim is that multilevel or “random effects”

models obviate the multiple testing problem, whereby if

many parameters (in this case, the effects of intersections)

are tested, they appear statistically significant just by

chance – a particular danger for intersections with small

samples. This means the multilevel approach is preferable

to a more standard “fixed effects” model, which includes

a dummy variable for each intersection, estimated by
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Ordinary Least Squares (OLS) regression.1 In the multilevel

model, the level-2 residuals (the estimates of the intersec-

tional effects – also referred to as random effects) are

shrunk to the mean based on the uncertainty in their

estimate. Where there is no true effect, this shrinkage will

mean that effects will not appear significant just by chance

(see simulations below, also Jones et al., 2016). In contrast,

we would expect 5% of intersections to appear significant at

the 95% level just by chance if intersections were included

as fixed effects with separate parameters for each

intersection.

However, multilevelmodels assume that the level-2 resid-

uals that assess these differentials are independent and

identically distributed (IID) – that is, they are unrelated to

one another. If this assumption is incorrect, estimates of

intersectional effectsmay be shrunk toomuch ormore likely

too little. This assumption will often not be met in the above

application of the model, because intersections are made up

of variables that vary with some, but not all intersections.

For example, if there is a single effect of gender, and no

other effects, the “male” intersections will be more similar

to each other than to the “female” intersections. Because

these gender differences will not be accounted for in the

model’s residuals (unless gender is controlled for in the

model), the sample of intersections will not be IID. This

would have the effect of not only making those intersections

appear different (indeed, we would want them to do this),

but also affect the estimates of other residuals because

shrinkage would be incorrectly applied.

This paper uses Monte-Carlo simulations to assess the

effect that such violations of these assumptions have on

the statistical significance of residuals – both those that

should be statistically significant, and those that should

not. We show that, in situations such as these, whilst there

is some beneficial shrinkage, meaning the model outper-

forms the fixed-effects approach, it is less than desired, with

some intersection residuals (departures from an overall

mean) still appearing to be significant when they should

not. We give an explanation for why shrinkage behaves in

this way. Finally, we make recommendations for how this

model can be used, so that its potential can be fully

realized. We deal exclusively with the case when the

response variable to be explained is assumed to be

Normally distributed, although similar issues are likely to

arise with other dependent variables, and indeed any

multilevel model where the level-2 residuals are explicitly

analyzed.

Using Multilevel Models to Study

Intersections

Quantitative intersectionality approaches suggest that the

combination of socio-demographic factors, most commonly

age, gender, ethnicity, and Socioeconomic Position (SEP),

comprise different positions in the social structure, which

tend to correspond with different social identities (though

not necessarily; Bauer, 2014). In turn, these positions and

identities are potentially associated with distinct (yet over-

lapping) dis/advantages such as early-life circumstances,

discrimination, life chances, accumulated resources, institu-

tional experiences, or policy effects. Within the social epi-

demiology literature, as noted the focus has mainly been

on intersectional subgroup effects. We therefore specifically

investigate this approach in this paper, mindful that inter-

sectionality theory is as much concerned with power hierar-

chies and social processes as it is with socio-demographic

subgroups.

Traditionally, researchers have used single-level models

to investigate intersectional subgroup effects – most com-

monly by including interaction terms for dummy variables

in regression models – and then perhaps proceeding with

stratified analysis if effects are significant (e.g., specifying

separate models for men and women). While this is rela-

tively unproblematic with two-way interaction terms, mod-

els quickly become unfeasible with three- or more-way

interaction terms because samples are underpowered (the

curse of “dimensionality”) due to the small number of

observations within each possible combination of vari-

ables.2 This means results are difficult to interpret (Green

et al., 2017). At the same time, intersectionality theory

refers to the whole “social matrix” of interlocking systems

of oppression and privilege (Bauer, 2014), and therefore

in theory every social position (and its potential social iden-

tity) is of interest. The multilevel approach to analyzing

intersectionality is entirely consistent with this conceptual-

ization. It models individuals (level-1) within their intersec-

tional positions/identities (level-2), which allows for testing

(i) whether intersectionality matters overall (a “global”

measure), that is, the extent to which individuals’ outcomes

in some measure are explained by the fact that they occupy

different intersections; and (ii) whether particular intersec-

tions have higher or lower values in some measure than

would be expected given the individuals (and their

attributes) that comprise them (a “specific” measure).

1 A more detailed and general comparison between the two formulations of random and fixed effects is given in (Bell & Jones, 2015; Bell et al.,

2019).
2 An alternative approach could be undertaken at the design stage: to stratify on the combination of attributes in sample to obtain sufficient

numbers in each intersection. But this requires a lot of resources and time at the design and data collection stage, which is often unavailable to

researchers.
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The recent analysis by Evans et al. (2018) of Body Mass

Index (BMI) in the USA for intersections based on gender,

race/ethnicity, income, education, and age, is an example

of this and has been heralded by Merlo (2018) as “the

new gold standard for investigating health disparities in

(social) epidemiology.”

However, the implications of results relating to (i) or (ii)

for policy and intervention are still to be fully worked-out.

With respect to (i), the multilevel approach specified below

provides a measure of intersectionality in general, which

can “provide evidence for the need to address the social

determinants of such inequalities” (Merlo, 2018, p. 77).

However, results regarding whether intersectionality matter

overall provide no evidence on how to address social deter-

minants or inequalities. One way in which such overall

measures might be useful is in comparative studies, for

example, comparing the extent to which there are intersec-

tional effects for different health outcomes across different

times or locations, similar to how concentration indices can

be used to quantify the extent of inequalities in health.

With respect to (ii), that is, concentrating on particular

intersections, the waters are muddier still. Merlo (2018)

suggests that it is not warranted to focus interventions on

specific intersections when the ICC (see later for defini-

tion/calculation) is low firstly because it might stigmatize

those in “bad” intersections, and secondly because in this

case the intersections do a poor job of discriminating for

individual health – many people with good health will be

in unhealthier intersections and vice versa. We argue that

other factors beside the ICC should be considered deciding

whether and how to focus, for example, interventions or

policies on particular intersections. Some are a lot larger

than others; to maximize population benefit efficiently it

might make sense to concentrate resources not only on

intersections that have the worst health, but those that have

reasonable numbers in the general population, particularly

where repeated studies show consistent effects in multiple

health outcomes.

In sum, understanding both specific and general intersec-

tional effects is important, and the multilevel model out-

lined by Evans et al. (2018) and others is a valuable way

to do so. The next section details that model.

The Multilevel Model

This is a two-level multilevel model, with individuals at

level 1 and intersections at level 2:

yij ¼ β
0
þ uj þ eij: ð1Þ

here, yij is an outcome variable (continuous here), mea-

sured for individual i in intersection j. Those intersections

are defined by looking at a number of characteristics of

individuals simultaneously (e.g., gender, social class,

age, ethnicity, etc.) and producing an identifier for each

combination of those variables, such that each intersec-

tion will contain individuals with the same characteristics.

β0 is the overall mean of the outcome in question across

all groups, and uj are the estimated level-2 residuals

(departures from the mean), for each intersection j; these

are assumed to be Normally distributed, as are the indi-

vidual-level residual terms eij (the departures from inter-

sectional effects for specific individuals).

uj � N 0;σ2

u

� �

; eij � N 0;σ2

e

� �

: ð2Þ

The model can be used in two ways, that we can think of

as “global” and “specific” intersectionality. First, the level-2

variance σ2
u (and its associated variance partitioning

coefficient, VPC, also called Intra Class Correlation, ICC)

can be seen as a measure of the combined importance of

the making up the intersections, including main effects

(e.g., straight effects of age) and intersections. Similarly,

we can use the VPC to assess how this variance compares

to within-group (level-1) variance – specifically the propor-

tion of the total (individual level plus intersection level)

variance that exists at the intersection level. Given the scale

of individual heterogeneity, Merlo (2018, p. 77) suggests

that even when this is relatively modest, for example, 5%

as in the Evans et al. study, it indicates that “important

social forces are generating a shift of the individual distribu-

tion of risk”.

The model can be extended to include main effects:

yij ¼ β
0
þ
X

K

k¼1

X

L�1

l¼1

βklXkl þ uj þ eij; ð3Þ

whereXkl are the main effects of the variables K that make

up the intersections: dummy variables associated with cat-

egory l of categorical variable k (there are L � 1 dummies

included, i.e., the total number of categories less a refer-

ence category). uj and eij have the same distributional

assumptions (Equation 2 as before. The inclusion of these

main effects has the effect of accounting for much of, and

thus reducing, the level-2 variance σ2
u. In other words this,

and the associated VPC, now refer to the (residual) multi-

plicative component of intersectional effects, since the

additive effects of the variables will be absorbed by the

dummy variables. Evans et al. (2018) compare the level-

2 variance produced by the models in Equations 1 and 3

above to give an indication of the level of multiplicative

intersectionality: if level-2 variance remains when the

main effects are included, that implies some degree of

multiplicative intersectionality, that is, there are joint

effects of these variables that are greater than the discrete

variable effects. This is sometimes referred to this as the
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“Percentage Change in Variance” or PCV, although it

should not be confused with the VPC.

The second way these models are used is to considering

“specific” intersectionality measured by the level-2 residu-

als uj themselves. We can estimate the residuals for each

intersection unit, and see which intersections are associated

with higher and lower levels of the response variable. These

residuals are automatically shrunken in most multilevel

modeling software to account for the reliability of the resid-

uals, by applying Equation 4

uj ¼ rj �
σ2

u

σ2
u þ σ2

e=nj

� � ; ð4Þ

where rj is the raw, unshrunken residual, nj is the number of

observations in intersection j, and all other terms are as in

Equations 1 and 2. This means that residuals are shrunken

or precision weighted to a greater or lesser degree based on

three factors.3 First, if the level-2 between-intersection

variance is low, shrinkage will be more substantial for all

intersections. Second, if the level-1 within-intersection

variance is high, the shrinkage will be greater for all inter-

sections. Finally, if an intersection has a lower number of

observations, the shrinkage will be larger. Because of the

role of the former (the level-2 variance) in this, in a situa-

tion where there are no level-2 effects, this shrinkage will

be substantial.

This is advantageous because, when testing many differ-

ent items, with no theory to guide which intersections might

be significant, we need to be careful of multiple testing.

To appreciate the importance of this formulation, we con-

trast this model to an alternative specification, a standard

regression model, with each intersection included as a

fixed-effect dummy variable Dj:

yij ¼
X

J

j¼1

βjDj þ eij: ð5Þ

In this case, we would expect 5% of the βj estimates to

appear statistically significant (at the 5% level4) just by

chance, when there are in reality no effects of those inter-

sections in the process that generated the data. In contrast,

by shrinking the residuals in the multilevel model, the inter-

section estimates will be shrunk to such an extent that, if

there are no true intersectional effects (i.e., the variance

at the intersection level is very low), none will appear signif-

icant (see simulations below). It thus helps to solve the

problem of multiple testing when the level-2 between-

intersection variance is low. As noted by Jones et al:

“Another important advantage of this random-effects

shrinkage approach is in relation to multiple compar-

isons, which is at the heart of the induction problem

of standard exploratory procedures. If you do enough

testing, the chances of finding significant results

increase rapidly. However, as demonstrated by

Gelman et al. (2012), it is much more efficient to shift

estimates towards each other rather than try to

inflate the usual confidence intervals through a Bon-

ferroni correction to control the overall error rate.

Thus, shrinkage automatically makes for more appro-

priately conservative comparisons while not reducing

the power to detect true differences.” (Jones et al.,

2016, p. 4).

However, this shrinkage will only occur markedly if σ2
u is

small, as per Equation 4. If we use the model in Equation 1,

but there aremain effects in the true data generating process

(DGP), then the variance σ2
u will be greater, and shrinkage

will be less. This could allow aberrant effects of single inter-

sections to appear significant, when actually their effects

have occurred by chance. This could be solved by the inclu-

sion of themain effects, as in Equation 2, which would “soak

up” those main effects, leaving no effects in the level-2 vari-

ance. This is why many suggest only considering residual

estimates for specific strata when the main effects are con-

trolled for (Evans et al., 2018), although this advice is not

always heeded (Hernández-Yumar et al., 2018; Jones et al.,

2016). However, if there were, say, a two-way interaction

in the DGP (between two of the intersecting variables for

instance) then these would not be “soaked up” by the main

effects in the model, and the interacting intersections would

be included in the level-2 variance. As a result, this variance

would be greater, the shrinkage less, and the correction for

multiple testing attenuated on all residuals.

We demonstrate this through the Monte-Carlo simula-

tions below. This involves creating synthetic data with a

particular DGP, and testing a model’s ability to uncover

the attributes of that DGP. This is done many times (in this

case, 100 per scenario) to ensure the results we find are not

chance aberrations.

Simulations

We simulated data to show to what extent the multi-

level models described above are vulnerable to multiple

testing – that is, we tackle the question: do the models

3 For a tutorial on shrinkage in multilevel models, see Pillinger (2008); the importance of shrinkage in practice is demonstrated in Jones and

Bullen (1994). Note also that there are other models that have shrinkage properties, such as using Lasso regression or Bayesian Horseshoe

priors. However, these are beyond the scope of this paper, which focuses on the model as it is recently used in the literature.
4 Note that some have argued in favour of using a 10% level for interactions. We disagree with this practice (unless there is a better reason than

“wanting to find significant effects” for being willing to accept a higher degree of uncertainty). For more on this, see Marshall (2007).
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produce statistically significant results for intersections

when the truth is that there are no multiplicative effects?

We generated data either with no effects (Scenarios 1 and

2), or only straight main effects (Scenarios 3, 4, and 5), or

main effects and a (two-way) interaction (Scenario 6). These

effects were in the order of magnitude of those found by

Evans et al. (2018) – larger effects with a magnitude of 1,

and smaller effectswith amagnitude of0.5 – to test if the size

of the effects affected the performance of the model. We

tested these data using the “null” multilevel model with no

fixed-part effects (Scenarios 1, 3, and 4, Equation 1, the mul-

tilevel model with main effects (but no interactions) in the

fixed part (Scenarios 5 and 6, Equation 3, and with

dummy-variable regression (Scenario 2, Equation 5. Table 1

gives details of these.

By choosing these scenarios, we are able to test how the

multilevel model works in the presence of different magni-

tudes of main effects (of the size we might expect given

results in other papers), and in the presence of interaction

effects, and how this compares to the fixed-effects,

dummy-variable approach.

Intersections were generated using simulated versions of

the sort of variables that might make up an intersectional

analysis – income (6 categories), sex (2), ethnicity (6), and

age (4), which combined produce 288 unique intersections

– roughly consistent with the number of intersections used

by others. These were arbitrarily chosen – the results we

find would apply however the intersections are created,

so long as there was more than one observation in each

intersection. Individuals were assigned randomly to each

intersection (meaning that, although not all the same size,

there are no systematic differences between the sizes of

the intersections). We do not foresee this having an effect

(if an intersection is small we would expect it to experience

greater shrinkage in line with Equation 4, but there are no

systematic differences between specific intersections5). One

hundred iterations of each scenario were generated with

sample sizes of 1,000, 10,000, and 100,000 (note that,

with a sample size of 1,000, there were some “empty”

intersections with no individuals assigned, by chance).

The multilevel models were run in MLwiN 2.36

(Charlton, Rasbash, Browne, Healy, & Cameron, 2013)

using the runmlwin command in Stata (Leckie & Charlton,

2013). Monte Carlo Markov Chain (MCMC) estimation was

used (Browne, 2009), with a 10,000 iteration burn-in, a

100,000 iteration chain, and true starting values based

on the data generating process, the best possible start to

the estimation process. We used MCMC and runmlwin,

rather than more standard frequentist multilevel

commands, because of problems with convergence for

some iterations of the simulations when using the mixed

command in Stata and Iterative Generalized Least Squares

estimation in MLwiN. Dummy-variable regression was

conducted in Stata using the regress command. Algebraic

details of the DGPs and models can be seen in Table 1.

For each scenario, we are interested in the number of

intersections that have a statistically significant difference

from the average, taking into account any main effects or

Table 1. Simulation scenarios

Scenario DGP Model

1 No main effects nor interactions: Two-level null model:

yij = eij yij = β0 + uj + eij

2 No main effects nor interactions: Dummy-variable “Fixed-Effects” regression

yij = eij yij ¼
P

J

j¼1

βjDj þ eij

3 A main effect of income but no interactions: Two-level null model:

yij = (�1 � X1j) + (1 � X6j) + eij yij = β0 + uj + eij

4 A main effect of income (weaker effect) but no interactions: Two-level null model:

yij = (�0.5 � X1j) + (0.5 � X6j) + eij yij = β0 + uj + eij

5 A main effect of income but no interactions: Two-level model with a main effect for income (category):

yij = (�1 � X1j) + (1 � X6j) + eij yij ¼ β0 þ
P

6

k¼2

βkXkj þ uj þ eij

6 A main effect of income and an interaction between

income and age:

Two-level model with main effects for income (category)

and age (category):

yij = (�1 � X1j) + (1 � X6j) + (�1 � X1j � Z1j) + eij yij ¼ β0 þ
P

6

k¼2

βkXkj þ
P

4

l¼2

βlZlj þ uj þ eij

Notes. Xkj is a dummy variable for income category k (k = 1, . . ., 6). Zlj is a dummy variable representing for age category l (l = 1, . . ., 4); j represents

intersections of income (6 categories), gender (2 categories), age (4 categories), and ethnicity (6 categories) making a total maximum of 6 � 2 � 4 � 6 = 288

intersections. In each of the scenarios, residuals in the model are assumed to be Normally distributed, such that eij � N 0; σ2e
� �

, and (except Scenario 2)

uj � N 0; σ2
u

� �

. In the DGPs, σ2e is set to 1.

5 We have not simulated systematically different sizes of intersections (nj) in order to see the effect on shrinkage of the main effects/interactions,

without systematic differences in nj interfering with that.
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interactions that should appear significant. In Scenarios 1, 2,

and 5, this is simply the intersections that are deemed statis-

tically different from the average across the intersections. In

Scenarios 3 and 4, we subtract the estimates from the

income-group average (example.g., the average residual

estimate for strata in income category 1, the average in

income category 2, etc.) and test the significance of that

de-meaned residual, in order to find the value of the residual

net of any main effects in the DGP. In Scenario 6, we sub-

tract the income-age-group average (e.g., the average resid-

ual estimate for strata in income category 1 and age category

1, etc.).We then use these to see the proportion of significant

results, averaged across the 100 simulations. It should be

noted that Evans et al. (2018) do not suggest using these

themodels used in Scenarios 3 and 4 to test specific interac-

tions; however we test these models because (a) others have

suggested using suchmodels in this way (Hernández-Yumar

et al., 2018; Jones et al., 2016), and (b) the problems with

those models are indicative of the problems encountered

with the main-effects model as well in Scenario 6.

Residuals are also visualized with “caterpillar” plots from

a single example simulation run (Rasbash, Steele, Browne,

& Goldstein, 2009, chapter 3). We focus on statistical sig-

nificance because (a) it gives a clear way of quantifying

the “wrongness” of the model (that is more difficult to do

with size of the estimated residuals) and (b) it is the best

way of testing how well the method compensates for

multiple comparisons, where the interest is in statistical

significance or lack thereof. The size of residuals is, of

course also important (perhaps more so) when interpreting

the meaning of the effects, and this is visualized in the

caterpillar plots that we produce.

Results

The results are summarized in Table 2 and Figure 1.

First it can be seen that, when there are no effects (either

main effects or interactions) of the intersecting variables,

multilevel models work well – no intersections appear signif-

icant (Scenario 1). This is an improvement on using dummy-

variable regression (Scenario 2), where, as expected, around

5% of intersections are found to be statistically significant

despite no such effects existing in the DGP.

When there are main effects (Scenarios 3 and 4), we see

that this “null” model performs less well, with between

0.1% and 4% of intersections appearing statistically signif-

icant when there are, in fact, no such effects in the DGP.

It is clear from this (and particularly clear in Figure 1) that

there is less shrinkage in these scenarios than in Scenario 1,

and this can be explained by the higher level-2 variance that

is really the result of the main effects in the DGP. But that

shrinkage is not only reduced in the intersections affected

by the main effect – it occurs in all intersections equally,

meaning that there is more chance of finding significant

effects when those effects are absent. There are some dif-

ferences as a result of both sample size and effect size,

but these do not seem to follow a clear pattern (other than

that there is more shrinkage when the sample size is very

small, which is to be expected given Equation 4. Note that

the residuals successfully pick up the differences between

groups that they are supposed to (see Figure 1, Scenario

3, where there are two clear groups of estimates appearing

different from the rest) but they also pick up other aberrant

effects. It should be noted, though, that the fixed-effects/

dummy-variable approach will produce more unwanted

effects, so this approach is still preferable to that.

In Scenario 5, main effects were included in the model.

In this case, because these soak up all the main effects in

the DGP, the remaining level-2 residuals will be as in

Scenario 1. The result is a large degree of shrinkage, and

so no intersections appear statistically significant. However,

this is not an all-purpose solution, since it only works if

there are no additional interactions of the intersecting

variables in the DGP. If there are such interactions (as in

Scenario 6), these have a similar (though smaller) effect

as the main effects in Scenarios 3 and 4: increasing the

between-intersection variance, reducing the shrinkage,

and increasing the chance of finding intersection effects

where none exist. The effect is smaller than with main

effects because fewer intersections are affected by the

interaction, meaning the resulting level-2 variance is smal-

ler. And, again, the model still outperforms the fixed-effects

approach, where we would expect 5% of the intersections

to appear significant just by chance.

Discussion

These simulations help us to understand when this model is

valuable, and what its limits are. As stated above, there are

two ways these models can be used: (1) to see whether mul-

tiplicative intersectionality matters generally, via the level-2

variance and associated VPC, and (2) to look at the level-2

residuals themselves. We argue here that the former is not

problematic – the variance is in effect calculated prior to

shrinkage anyway with most standard multilevel modeling

estimation procedures, so is unaffected by any shrinkage

that may or may not occur. From a policy perspective, the

latter is often more interesting, but is found here to be more

problematic – while it is an improvement on standard fixed

effects dummy-variable regression, the amount of shrink-

age is not always correct unless all true variable effects,

including interactions, are included in the fixed part of

the model. The inclusion of main effects improves the situ-

ation, but does not solve it: if there are interactions between
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variables, these will produce variance that changes the

amount of shrinkage experienced by the intersection

residuals.

One option could be an iterative approach, starting with a

null model, then including first main effects (potentially

one-by-one as suggested by Merlo, 2018), then two-way

(first-order) interactions, then three-way (second-order)

interactions, and so on until all the level-2 variance is

accounted for. Once these effects are in the fixed part of

the model, there is less likelihood that the remaining inter-

sections are the result of random chance. So long as at each

stage all possible effects are included, this will not treat any

particular variables as having primacy over the others

(although, of course, it might find that a particular variable

Figure 1. Caterpillar plots showing

example intersection effect estimates

from a single simulation for four sce-

narios (all using sample size of 10,000).

Intersections found to be incorrectly

statistically significant are highlighted.

Table 2. The average proportion of intersections appearing incorrectly statistically significant (p < .05), for each scenario and with different sample

sizes (averaged across 100 simulation iterations)

Sample 1k (mean 3.6 obs/

intersection)

Sample 10k (mean 34.7/

intersection)

Sample 100k (mean 347/

intersection)

Scenario Mean Range Mean Range Mean Range

1 0 (0,0) 0 (0,0) 0 (0,0)

2 0.052 (0.022,0.117) 0.049 (0.021,0.087) 0.050 (0.024,0.799)

3 0.012 (0.000,0.052) 0.036 (0.014,0.068) 0.021 (0.0055,0.40)

4 0.001 (0.000,0.010) 0.022 (0.004, 0.049) 0.038 (0.011,0.068)

5 0 (0,0) 0 (0,0) 0 (0,0)

6 0.00005 (0,0.005) 0.004 (0,0.0183) 0.018 (0.003,0.036)

Notes. Scenario 1 has no effects in the DGP, and no main effects (only intersection random effects) specified in the model. Scenario 2 has no effects in the

DGP, and the model is specified with fixed effect dummy variables for intersections. Scenarios 3 and 4 have no effects specified in the model, but large (Sc2)

and small (Sc3) effects in the DGP. Scenario 5 has a large additive effect in the DGP, and additive effects (and random effects) specified in the model. Finally,

Scenario 6 has large additive effects and an interaction effect in the DGP, with only additive effects (and the random effects) specified in the model.

For Scenarios 3, 4, and 6, the fixed effects in the DGP that are not in the fixed part of the estimated model are subtracted from the residuals, so these do not

include the differences we would expect given the real differences in the DGP.
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or interaction is of particular importance in its effects).

It should be noted, though, that effects in the fixed part

of the model are not subject to shrinkage, so will become

more at risk of multiple testing issues as multiway interac-

tions increase. If we include final-order interactions in the

model, these will have the same issue of multiple testing

as in the “fixed effects” approach with dummy variables

outlined above. The advantage of this iterative approach

is that we might not get to that point, if the level-2 variance

reaches zero (statistically, based on model comparison

statistics such as the Deviance Information Criterion,

DIC, Spiegelhalter, Best, Carlin, & van der Linde, 2002)

as a result of the inclusion of lower order interactions.

Indeed, this seems to be what happens for Johnston et al.

(2018), who see the level-2 variance reach zero with just

the introduction of some two-way interactions. Similarly,

if the variance reaches zero with just the introduction of

main effects, that suggests there are no multiplicative

effects (no interactions) at all. Once this has happened,

one should not continue to test for higher order interac-

tions, as significant effects are likely to be a result of multi-

ple testing. If there remains variance at level 2 when all but

the final-order interactions are included, these would repre-

sent the remaining, final order intersectional effects, net of

lower order interactions, and are probably a better measure

of their magnitude than fixed effects estimates (given, by

this stage, most residual patterning should be removed to

the fixed part of the model by the interactions).

A method like this could then be used to understand the

extent and type of intersectionality experienced in the

model, and how intersected the variables are. This is an

extension of the method suggested by Evans et al. (2018)

– they compared the VPC of a model with no effects, and

again with main effects, though they did not consider

whether the remaining variance is the result of two-way

interactions or more-way interactions. By seeing how the

level-2 variance decreases as increasing orders of interac-

tions are included, it would be possible to see how “deep”

the intersectionality goes – whether it is the result of two

variables interacting, three, or more.

Fisk et al. (2018), in their study of Chronic Obstructive

Pulmonary Disease, found that the level-2 variance in their

logistic model reduced from an ICC of 20% to 1% with the

introduction of main effects in the fixed part of the model,

finding only three significant intersections (out of 96). They

downplay the importance of that 1% variance, stating the

three interactions are “about what would be expected by

chance” (p. 16). We disagree slightly with this interpretation.

First, our simulations suggest that intersections will be

erroneously significant much less than 5%of the time, given

at least some shrinkage will have occurred, so it is likely that

those three intersectional effects are real. Second, in a

logisticmodel, an ICCof0.01 is a small but not substantively

insignificant effect size6 (Duncan & Raudenbush, 1999,

p. 33), so the results imply that there remains some poten-

tially important intersectional effects. It would have been

interesting to see (a) whether the remaining level-2 variance

was statistically significant (compared via the DIC to a

model without this term), and (b) whether the inclusion of

two-way interactions reduces the variance, and significance

of those three intersections. This would help to judge

whether the remaining significant intersections were

actually the result of low-order (e.g., two-way) interactions.

Overall, these results can be summarized as “OK, but”.

The model is an improvement on the dummy-variable

fixed-effects approach, but it is not perfect, and the nuanced

approach suggested above could improve it further. It is

worth noting, though, that the approach is inherently

exploratory and so will be most valuable when repeated

studies show the same results.

It should be noted that the results found here have impli-

cations beyond the study of intersectionality – it is relevant

to all studies using multilevel models to identify “signifi-

cant” level-2 units. For example, if a study of student attain-

ment finds that certain schools are significantly better or

worse than others, it could be that there is an unmeasured

attribute of the school that is causing greater level-2 vari-

ance, reducing shrinkage and so introducing differences

between schools that do not actually exist. This study should

act as a warning (a) to include higher level variables as fixed

effects in a multilevel model, and not to rely on higher level

residuals to identify such differences, and (b) to not over-

interpret differences between higher level units like schools,

as in the presence of important unmeasured variables, they

could be vulnerable to the perils of multiple testing.
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