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ABSTRACT 

People are an important source of pollution indoors, through activities such as cleaning, and 

also from ‘natural’ emissions from breath and skin. This paper investigates natural emissions 

in high occupancy environments. Model simulations are performed for a school classroom 

during a typical summer in a polluted urban area. The results show that classroom occupants 

have a significant impact on indoor ozone, which increases from ~9 ppb to ~20 ppb when the 

pupils leave for lunch and decreases to ~14 ppb when they return. The concentrations of 4-

OPA, formic acid and acetic acid formed as oxidation products following skin emissions 

attained maximum concentrations of 0.8, 0.5 and 0.1 ppb respectively when pupils were 
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present, increasing from near-zero concentrations in their absence. For acetone, methanol and 

ethanol from breath emissions, maximum concentrations were ~22.3, 6.6 and 21.5 ppb 

respectively, compared to 7.4, 2.1 and 16.9 ppb in their absence. A rate of production 

analysis showed that occupancy reduced oxidant concentrations, whilst enhancing formation 

of nitrated organic compounds, owing to the chemistry that follows from increased aldehyde 

production. Occupancy also changes the peroxy radical composition, with those formed 

through isoprene oxidation becoming relatively more important, which also has consequences 

for subsequent oxidant concentrations.  

 

KEYWORDS 

Human emissions, indoor air chemistry, occupied indoor environments, detailed chemical 

model, indoor air quality 

 

Practical Implications 

This modelling study investigates the impact of occupancy in a school classroom and the 

subsequent consequences for indoor air chemistry. Occupants in buildings enhance the 

formation of indoor air pollutants following emissions from skin and breath. Further, the 

presence of occupants indoors decreases the level of oxidants, such as ozone, hydroxy 

radicals (OH), hydroperoxy radicals (HO2) and peroxy radicals (RO2), and can affect the 

formation of nitrated organic species, a potentially toxic class of compounds. The impact of 

emissions from humans could be potentially important in highly occupied spaces, such as 

classrooms, particularly as energy efficiency measures are making buildings more airtight. 

Ventilation is therefore key to mitigate such impacts and in order to maintain healthy 

buildings. However, in some locations it may also allow the ingress of harmful pollutants 

from outdoors. Clearly then, it is important to understand the impact of human occupancy 
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indoors and crucially, the impact ventilation can have on the concentrations of different 

indoor air pollutants before defining appropriate mitigation strategies. 

 

1 INTRODUCTION 

The impact of humans on indoor air quality is a growing area of research, both in terms of 

what might be thought of ’natural’ emissions (from skin or breath) and also through occupant 

activities such as cooking and cleaning. Several studies
1,2,3,4,5

 have shown that the presence of 

humans in the indoor environment decreases ozone concentrations, while volatile organic 

compound (VOC) (e.g. mono- and dicarbonyls) concentrations increase
6
. Therefore, humans 

are recognized as a sink for ozone in the indoor environment, but also a source of secondary 

oxidation products
7
 and the chemistry of an empty room is likely to differ significantly from 

one which contains occupants. In particular, highly occupied spaces, such as classrooms, 

might be expected to show large differences in air quality when empty or occupied.  

The chemicals that constitute human skin oils can be classified as wax esters, 

glycerols, fatty acids, squalene, esters and sterols and contain unsaturated carbon bonds 

(C=C) which readily react with ozone
4
. For instance squalene (a non-volatile triterpene) 

constitutes ~ 10% and the fatty acids approximately 25% of human skin lipids
8
. Following 

reactions of such species with ozone, a wide range of secondary products can be formed, 

including aldehydes, ketones, acids and secondary organic aerosols (SOA), some of which 

might be harmful to health
2,4,5,9,10,11

.  

The main products of the ozone-squalene reaction are 4-oxopentanal (4-OPA), 6-

methyl-5-hepten-2-one (6-MHO), acetone and geranyl acetone
12

. Additionally, following 

ozonolysis of unsaturated fatty acids, higher aldehydes can be formed, namely hexanal, 

heptanal, octanal, nonanal, decanal, dodecanal and undecanal
4
. Such compounds may be a 

concern particularly when the indoor ozone concentration is high. For instance, Wolkoff et 
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al.
13

 showed that 4-OPA and 6-MHO formed through the squalene-ozone reaction are 

potential sensory and pulmonary irritants and may cause airflow limitation. The rate of ozone 

deposition and subsequent secondary pollutant formation clearly depends on the level and 

duration of occupancy in the indoor environment, given reactive chemistry processes occur 

on human skin, hair or soiled clothes
14,15,16

 

Breath is also a significant source of pollutants emitted indoors, including alcohols, 

hydrocarbons, aldehydes and ketones
14

. Several studies
17,18,19,20,21

 have quantified the major 

VOCs emitted in the exhaled breath of healthy individuals and their concentrations are in the 

range of ppb to ppm. However, their concentrations in the indoor environment depend on the 

volume of the indoor space, the air exchange rate, the number of individuals indoors and also 

individual variations such as dietary habits
22

. For instance, a large number of VOCs are 

present in food and drinks, which may contribute to the VOCs detected in exhaled breath. 

Aldehydes can be used as flavoring agents and alcohols (i.e. ethanol) are typically found in 

coffee, tea, beverages and food (i.e. vegetables, fruits, cheese or meat)
23

.  

Children are at a higher risk of exposure to air pollutants compared to adults
24

. As 

well as inhaling a higher volume of air relative to their body weight when compared to 

adults
25

, their immune systems are still developing and less able to deal with potential 

irritants
26

. For this reason, indoor air pollution in classrooms has become a significant 

concern
27

.  

A number of studies have investigated the relationship between the role of ventilation 

indoors and the resulting performance of school pupils
28,29,30,31,32

. For instance, Bakó-Biró et 

al.
31

 reported that the performance of more than 200 pupils in different classrooms improved 

by 2-15% when ventilation rates increased. Lower ventilation rates allow pollutants emitted 

indoors to accumulate. However, whilst increasing ventilation rates lowers concentrations of 

pollutants emitted indoors, in some locations it may also allow the ingress of harmful 
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pollutants from outdoors, e.g. near a busy road. For instance, Mendell and Heath
27

 reported 

indoor/outdoor concentration ratios of outdoor pollutants measured at schools as 0.3-0.8 for 

ozone and 0.6-0.9 for carbon monoxide. Clearly then, it is important to understand the impact 

of human occupancy indoors and crucially, the impact ventilation can have on the 

concentrations of different indoor air pollutants. 

In the absence of comprehensive indoor air measurements, indoor air pollutant 

concentrations and chemical processes indoors can be simulated using models. The aim of 

this paper is to investigate the impact of high occupancy on indoor air chemistry, using a 

detailed chemical model for indoors. This work follows on from Kruza et al.
33

 which used the 

same model to investigate the impact of emissions from materials on indoor air chemistry. 

The main findings were that ozone loss was dominated by deposition onto painted walls, a 

range of C6-C10 aldehydes were produced following the deposition process and emissions 

from these materials promoted the formation of organic nitrates indoors. This work now 

extends the work of Kruza et al.
33

 by examining the chemistry that arises following skin and 

breath emissions in a classroom in Milan during typical outdoor conditions and for a range of 

air exchange rates.  

 

2 METHODOLOGY 

An INdoor Detailed Chemical Model (INDCM)
33,34,35

 has been developed to investigate 

human occupancy in the indoor environment. The INDCM uses a comprehensive chemical 

mechanism called the Master Chemical Mechanism, MCM v3.2
36

, which considers the 

chemical degradation of 143 VOCs
37,38,39

. The degradation of VOCs is initiated by 

reactions with OH, O3, NO3 and photolysis where relevant. Radicals are generated as 

intermediate products, such as oxy (RO) and peroxy (RO2) radicals, excited and stabilized 

Criegee (R’R’’COO) species, which can undergo a number of further reactions. A range of 
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products such as alcohols, carbonyls and nitrates are formed, until carbon dioxide and 

water are produced. The MCM also includes an inorganic scheme including reactions of 

ozone, nitrogen oxides (NOx) and carbon monoxide
37

. The INDCM includes 

approximately 20,000 gas-phase chemical and photolysis reactions, as well as a 

representation of indoor-outdoor exchange, VOC emissions, surface deposition and gas to 

particle partitioning for limonene
35

. 

The INDCM considers a single well-mixed environment and assumes that the 

concentration of each species is calculated according to equation 1
34

: 

 

                                          

 

where Ci (Co) is the indoor (outdoor) concentration of species (molecule cm
-3

),    its 

deposition velocity (cm s
-1

), A the surface area indoors (cm
2
), Vi the volume of air in the 

indoor environment (cm
3
), λr the air exchange rate between indoors and outdoors (s

-1
),   the 

building filtration factor, Ei the indoor emission rate for species i (molecule cm
-3

 s
-1

) and Rij 

the reaction rate between species i and j (cm
3
 molecule

-1
 s

-1
).  

Outdoor photolysis rates were calculated following the method described in detail by 

Carslaw
34

. Basically, a 2-stream isotropic scattering model uses the longitude, latitude, time 

of year and day to calculate location and time specific clear-sky photolysis rates
37

, which are 

attenuated to be representative for indoors. Values of 10% and 3% respectively for 

transmission of outdoor visible and UV light are assumed
34

. The building filtration factor is 

assumed to be equal to 1
40

. 

For this study, the INDCM has been developed to consider ozone deposition onto 

skin, as well as the subsequent emissions of oxygenated products following skin surface 

interaction. The ozone loss rate to a skin surface is calculated according to equation 2:  

(1) 
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                                                Fskin =                                                               (2) 

 

where, Fskin is the ozone deposition flux to the skin surface (s
-1

),       is the total ozone 

deposition velocity to the skin surface (cm s
-1

), As is the skin surface area (cm
2
) and Vi is the 

total volume of the indoor environment (cm
3
).  

The emission of the skin surface products was calculated using equation 3
41

:  

 

                                             Esec = 
                                                                           (3) 

 

where Esec is the secondary product emission rate from the skin surface (molecule cm
-3

 s
-1

), Y 

is the yield of the emitted pollutant and     is the ozone concentration at the skin surface 

(molecule cm
-3

). Since degradation schemes for some of the species emitted from skin are not 

available in the MCM (e.g. geranyl acetone and 6-MHO), this study focuses on those species 

that are already present, namely acetone, nonanal, decanal, 4-OPA, formic and acetic acids. 

The inclusion of 6-MHO and geranyl acetone would involve significant new mechanism 

development. In the case of 6-MHO, we note that Wisthaler and Weschler
4
 concluded from 

their measurements in a simulated aircraft cabin that most 4-OPA was derived from surface 

reactions rather than the reaction of 6-MHO with ozone. 

The skin surface was defined as 2 m
2
 for an adult and 1 m

2
 for a child

8
. Although 

some of the skin surface will be covered by clothing, we assume that the rate of ozone 

deposition and secondary product formation is not significantly different to bare skin
5,6

. This 

assumption appears to be reasonable given the good agreements between our model 

predictions and the measurements of Wisthaler and Weschler
4
 presented in figure 1 in the 
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model validation section. A median value (calculated based on 12 measurements) of the 

ozone deposition velocity onto human bodies (0.285 cm s
-1

) was derived from a literature 

review
1,3,4

. Product yields of various species following ozone-skin interactions were 

measured by Weschler et al.
2
 in an aircraft cabin and were incorporated in this study (table 1).  

 

TABLE 1 Average yields (from 4 experiments) of oxidized products of chemistry following skin 

emissions following exposure to ozone with a stated uncertainty of 15-25%
2
. Note that the yields of 

acetone, nonanal, formic and acetic acids have been halved (see text). 

Compounds Skin emission product yield 

Acetone 0.049 

Nonanal 0.018 

Decanal 0.026 

4-OPA 0.026 

Formic acid 0.0085 

Acetic acid 0.0065 

 

The yields of decanal and 4-OPA reported by Weschler et al.
2
 derive almost 

exclusively from ozone-skin oil chemistry, but those of acetone, nonanal, formic and acetic 

acids also reflect emissions from internal surfaces in the aircraft cabin: the yields of the latter 

four species were therefore halved to represent oxidized products of chemistry following skin 

emissions only based on the experimental conditions (Professor Charles J. Weschler, EOHSI, 

Rutgers University, NJ, USA; personal communication).  

To calculate breath emissions, this study includes weighted averages from several 

studies of the major VOCs found in exhaled breath
14

. The measured values showed large 

variations, owing to differences between individual subjects, but also the sampling and 

measurement methods. For instance, there is a significant difference in the concentration 

range of VOCs in exhaled breath when the subjects of the study had different occupational 
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exposures or habits (i.e. smoking). The highest emissions from breath are for acetone, 

methanol, ethanol, isoprene and isopropanol and we focus on those here.  

The review of Fenske and Paulson
14

 focused on breath emission concentrations from 

adults, but there is a substantial difference in metabolic processes between adults and 

children. Enderby et al.
42

 presented an analysis of VOCs detected in the exhaled breath of 

200 children and a summary of the values used for adults and children are presented in table 

2. Note that the concentration of isopropanol was not included in the study of Enderby et al.
42

 

and was calculated based on correlation with other alcohol species identified in both adults 

and children.  

 

TABLE 2 Weighted average concentrations of VOCs [ppb] in exhaled breath of adults and children 

(based on the measurements from 200 children). n.d. indicates no detectable concentration.  

Compound Adults Children 

Weighted average 

concentration  

(concentration range) 

(ppb) 

Number of 

subjects  

(n) 

Median concentration  

(concentration range) 

(ppb) 

 

Acetone 985 (1.2-1880) 24 297 (89-2342)  

Ethanol 770 (13-1000) 64 187 (13-580) 

Methanol 330 (1.3-2000) 68 193 (31-685) 

Isopropanol 150 (50-260) 94 41 (n.d.) 

Isoprene 210 (12-580) 107 37 (n.d.-184) 

 

The number of breaths per unit time and the volume of each breath vary according to 

age
43,44

. Recent research indicates that the tidal volume of a single exhaled breath of an adult 

is approximately 500 ml and that the adult respiratory rate is 20 breaths per minute
45

. This 

equates to 167 ml s
-1

 of expired air for adults. For a healthy 10 year old child, the respiratory 
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rate is typically 20 breaths per minute, with a tidal volume of approximately 10 ml kg
-1

 of 

body weight
43

. The average weight of a 10-year old child is 31.2 kg
24

. Accordingly, the 

calculated expiration rate for a child is 104 ml s
-1

. 

 The emission of VOCs from exhaled breath in the indoor environment is calculated 

according to equation 4: 

                                                                                                                                       (4) 

where Evoc is the relevant VOC emission rate from exhaled breath (molecule cm
-3

 s
-1

), Vt is 

the breathing rate of an individual (ml s
-1

), Ct is the weighted average concentration of a 

particular species in a single breath (ppb), n is number of people indoors, NA is the Avogadro 

constant (6.02 x 10
23

 molecule mol
-1

), Vm is the molar gas volume (22.4 litres mol
-1

 at room 

temperature and pressure), Vi is the room volume (m
3
) and 1x10

18
 provides the necessary unit 

conversion. 

The impact of human emissions in a classroom was investigated, assuming thirty 10 

year old pupils and one teacher. We adopted the measurements carried out in 51 French 

classrooms described by Canha et al.
46

, whereby the median volume of the classroom was 

171 m
3
. The school day was assumed to run from 09:00-15:00h with an hour lunch break at 

noon. Canha et al.
46

 indicated that 73% (n= 37) of the studied classrooms had natural 

ventilation and 27% (n=14) had a mechanical ventilation system, so this study focuses on 

classrooms with natural ventilation. The mean measured values of the indoor temperature, 

indoor relative humidity (RH) and air exchange rate (AER) were ~23.3
o
C, 47% and 1.2±0.6 

per hour respectively
46

.  
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Emissions from skin for the classroom occupants were calculated according to 

equation 3. With 30 children and one adult, the total surface area of skin was 32 m
2
, and the 

surface to volume ratio (A/V) of skin ~0.19 m
-1

. The breath emission rates of 30 children and 

one adult were calculated according to equation 4 and are presented in table 3.  

 

TABLE 3 Emission rates of VOCs [ppb s
-1

] calculated for exhaled breath in the classroom. 

Compound VOC emission rate of 

30 children [ppb s
-1

] 

VOC emission rate of one 

adult [ppb s
-1

] 

Acetone 5.83 x 10
-3

 1.03 x 10
-3

 

Ethanol 3.67 x 10
-3

 8.08 x 10
-4

 

Methanol 3.79 x 10
-3

 3.46 x 10
-4

 

Isopropanol 8.04 x 10
-4

 1.57 x 10
-4

 

Isoprene 7.26 x 10
-4

 2.20 x 10
-4

 

 

Along with emissions from skin and breath, those from other internal surfaces (linoleum, 

wood or painted wall) were included as described by Kruza et al.
33

, using a similar process to 

that described above for skin emissions. The internal materials in the classroom considered as 

a source of ozone-derived surface emissions (and hence competing with skin surface for 

ozone removal) included: linoleum on the floor (58 m
2
); painted wall (~138 m

2
); wooden 

furniture such as the desks, chairs and the internal door (~25 m
2
)

46
. The total surface area 

available for ozone-initiated chemistry in the classroom including 30 children, the teacher 

and internal materials amounts to 252.6 m
2
, with a total surface to volume ratio of ~1.48 m

-1
.  

The outdoor NOX and O3 concentrations were based on those from an urban area 

(Milan) in the summer of 2009 as described by Terry et al.
47

 and are shown in Supplementary 

Information (Figure S1). The outdoor VOC concentrations (listed in Table S1 in 

Supplementary Information) were available from the EU OFFICAIR project
48

 or set to 

typical outdoor values in an urban area
49,50

. Of relevance to this study, the mean outdoor 
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concentrations of acetone, methanol, isoprene, isopropanol and ethanol were set to be 7.95, 

4.40, 1.90, 1.90 and 63.70 µg m
-3

 respectively. 

 

3 RESULTS AND DISCUSSION 

3.1 Model validation 

In order to test the model framework, we have used it to simulate the conditions described in 

Wisthaler and Weschler
4
 and Weschler

7
. A simulated aircraft cabin was reconfigured to 

represent an office with a carpeted floor. The walls and ceiling of the ‘office’ were panels 

from a used aircraft interior and were likely to be relatively inert when clean, but more 

reactive towards ozone over time as they became covered with skin flakes and oil. It is 

reasonable to assume that the ozone reactivity of the walls and ceiling was much less than 

that of the carpet and, to a first approximation, can be ignored (Professor Charles J. Weschler, 

EOHSI, Rutgers University, NJ, USA; personal communication). Therefore, the deposition 

velocity of ozone onto the aircraft walls was set to zero in the model and onto carpet at 0.15 

cm s
-1 33

, but all other parameters are defined as described above. 

Two occupants (without having showered or used personal care products) entered the 

office at around 10:00 h and then left at around 14:00 h. The concentrations of ozone and 4-

OPA were measured over this time period. The 4-OPA concentration reached ~2 ppb whilst 

ozone decreased to 17 ppb
7
. The model predicts a 4-OPA concentration of ~2 ppb, with a 

final ozone concentration of 23 ppb (figure 1). 
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FIGURE 1 Comparison of the measured
4
 and modelled concentration profile of ozone and 4-OPA 

[ppb] in the simulated office.  

 

 The modelled 4-OPA concentration profile shows reasonable agreement with the measured 

values. There is less ozone removed than observed, but there is likely to be some additional 

deposition to the walls that we have not considered here that would improve the model-

measured agreement. Further, there is no information available about indoor and outdoor 

NOX and VOC concentrations during this experiment. Therefore, this degree of agreement 

seems reasonable and provides confidence that the model framework is suitable for further 

investigation of the impacts of occupancy on indoor air chemistry. 

 

3.2 Model sensitivity analysis 

Given the uncertainty in the input parameters, a series of sensitivity tests have been carried 

out to investigate the effect of changing key parameters on the predicted concentrations of the 

species following skin and breath emissions. Transmission of outdoor UV and visible light 

through the windows were varied between 0.15% and 25% for UV light and between 0.7% 

and 75% for visible light.
34

 Ozone deposition velocities onto skin were varied to the 25 
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percentile (0.2 cm s
-1

) or the 75 percentile (0.4 cm s
-1

) values of the range reported in Kruza 

et al.
33

 Given that there are fewer measurement values, outdoor concentrations of isoprene, 

skin emission product yields and breath emission concentrations were either decreased or 

increased by 50%. For the latter two parameters, the values of all species were increased or 

decreased by 50% together. The concentrations of the skin and breath emission products 

predicted by the model were then investigated for 9:00-15:00 h excluding an hour lunch 

break, relative to baseline conditions. The results from the sensitivity analysis are shown in 

table 4.  

 

TABLE 4 Sensitivity test results: the % change in concentrations of products arising from skin and 

breath emissions, in an occupied classroom in Milan during typical summer conditions (air exchange 

rate = 1.2 h
-1

) for 9:00-15:00 h (excluding an hour lunch break), relative to baseline conditions, as 

well as the estimated overall uncertainty for each species based on these tests. 

Scenario N
o
n

a
n

a
l 

D
eca

n
a
l 

4
-O

P
A

 

F
o

rm
ic a

cid
 

  A
cetic a

cid
 

A
ceto

n
e
 

M
eth

a
n

o
l 

E
th

a
n

o
l 

Iso
p

ro
p

a
n

o
l 

Iso
p

ren
e 

UV=0.15%, VIS=0.7% -2.5 -3.4 -9.7 -9.9 -9.6 -0.8 0.1 0.1 0.1 2.7 

UV=25%, VIS=75% 13.5 18.4 53.7 57.0 55.1 4.4 -0.1 -0.3 -0.5 -13.5 

   skin = 0.2 cm s
-1

 -1.4 -4.6 -42.0 -41.4 -38.3 -2.7 -0.1 -0.1 -0.1 -0.4 

   skin = 0.4 cm s
-1

 2.5 7.0 59.0 
57

.8 53.7 3.9 0.1 0.1 0.1 0.5 

Outdoor isoprene*0.5 -0.1 -0.1 -0.2 -0.2 -0.2 -0.1 -0.1 -0.1 -0.1 -12.1 

Outdoor isoprene*1.5 0.1 0.1 0.2 0.2 0.2 0.1 -0.1 -0.1 -0.1 12.1 

Skin emission product 

yield*0.5 

-2.9 -6.3 -43.7 -43.3 -40.6 -2.9 -0.1 -0.1 -0.1 -0.1 

Skin emission product 

yield*1.5 

2.3 5.0 34.5 33.9 31.9 2.3 -0.1 -0.1 -0.1 0.1 

Breath emissions*0.5 -0.1 -0.2 -0.4 -0.5 -0.4 -38.3 -38.1 -12.7 -37.7 -38.0 

Breath emissions*1.5 0.1 0.2 0.5 0.6 0.4 38.4 38.1 12.7 37.7 38.1 

Estimated uncertainty 27 37 107 116 110 77 76 25 75 76 
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These sensitivity tests provide an estimate of the likely range of predicted model 

concentrations for the species of interest in this study. The largest source of uncertainties in 

the model output are driven by the uncertainty in the assumed deposition velocity onto skin, 

the yield of production following deposition onto skin and the indoor photolysis rates. The 

uncertainties for the breath emissions species are generally lower than those from skin 

emissions. Based on these results, we estimate conservatively that the model uncertainty is 

double that for the largest individual source of uncertainty for each species, ranging from 27-

116% as shown in the last line of table 4. 

 

3.3 Skin emissions 

The indoor air quality for a naturally ventilated (AER 1.2 h
-1

) classroom during school hours 

(09:00-15:00h) with a 1-hour lunch break (12:00-13:00h) was investigated, assuming that 30 

children and one teacher were present in the classroom. The concentrations of ozone and 

ozone-derived oxygenated products following skin emissions for typical summer conditions 

are shown in figure 2.  
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FIGURE 2 Diurnal profile of the concentrations of ozone and carbonyl species following skin 

emissions (and other internal surface emissions for nonanal and decanal) in the classroom during 

typical summer conditions (air exchange rate = 1.2 h
-1

).  

 

Oxidized products of chemistry following skin emissions increase when occupants are 

in the classroom (09:00-12:00h and 13:00-15:00h), although concentrations of carboxylic 

acids and 4-OPA are relatively low (up to ~0.8 ppb during typical summer conditions and up 

to ~1.3 ppb during the extreme summer conditions (not shown)). Nonanal and decanal 

concentrations are enhanced with occupants, though these species derive mainly (~90%) from 

material rather than human emissions in the classroom. Prior to the occupants arriving (after 

they leave) the concentration of these two species decreases (increases) because the OH 

concentration is increasing (decreasing).  

Liu et al.
51

 reported measurements of carboxylic acids in a university classroom. The 

measured concentration of formic acid was in the range of 0.2-3.5 ppb, whereas the predicted 

range of concentration from the model was 0.2-0.5 ppb. Fischer et al.
8
 presented averaged 

measured 4-OPA concentrations of 0.5-0.7 ppb in an occupied school classroom (24 pupils), 

compared to the modelled range here of 0.2-0.7 ppb. 

There is substantial variation in the ozone concentration in the classroom, which 

reflects the outdoor profile (figure S1). The average outdoor O3 concentration during school 

hours was 43.4 ppb. Indoors, the concentration was 15.2 ppb on average for the periods 

without occupants and 9.6 ppb when they are present. There is a clear increase in O3 

concentration when the pupils are at lunch (from ~9 ppb to ~20 ppb in figure 2). When the 

occupants return to the classroom after the break, the ozone concentration decreases to ~14 

ppb. When the school day finishes at 3 p.m. there is again an increase in the ozone 

concentration, as ozone rich air from outdoors replenishes the supply indoors (outdoor 

concentrations of ozone peak at 4 p.m.). Note that we repeated these simulations for more 

polluted conditions, based on outdoor concentrations measured during a heatwave in 2003 
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(outdoor ozone concentration profile shown in Figure S2 in Supplementary Information). The 

results showed similar % reductions and increases in ozone concentrations as pupils entered 

and left the classroom, despite the much higher ozone concentrations outdoors and indoors. 

Fischer et al.
8
 measured ozone loss of 6.3 x 10

-4
 s

-1 
in an occupied (24 pupils and one 

teacher) classroom (volume = 182 m
3
) in semi-rural area in Sweden, whereas in our study 

(volume = 171 m
3
) it is 7.8 x 10

-4
 s

-1
. Each person in the classroom in the study of Fischer et 

al.
8
 removed ozone at a rate of 2.5 x 10

-5
 s

-1
 and in our study with a rate of 1.8 x 10

-5
 s

-1
. 

Therefore, our results seem to be in reasonable agreement with the Fischer et al.
8
 study. 

 

3.4 Breath emissions 

Figure 3 shows the diurnal profile of modelled VOCs due to breath emissions in the 

classroom for typical summer conditions with natural ventilation (AER = 1.2 h
-1

). Again, the 

concentrations increase when the occupants enter the classroom at 9:00 a.m., then decrease 

when children leave the classroom for an hour lunch break (12 p.m.). 

 

 

 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

FIGURE 3 Diurnal profile of the modelled concentrations of VOCs from breath emissions [ppb] in 

the classroom during typical summer conditions and with natural ventilation (air exchange rate = 1.2 

h
-1

). 
 

Acetone shows the most significant variation in concentration with occupancy, 

increasing from ~3 ppb before the children enter the classroom up to ~22 ppb at the end of 

the day. Note that the acetone concentration profile in figure 3 includes skin and breath 

emissions together but breath emissions contribute ~90% to the total. The concentrations of 

methanol and ethanol increase from ~2 to 7 ppb and from ~16 to 22 ppb respectively when 

pupils are present. 

It is interesting to explore the effect of ventilation on emissions from skin and breath. 

For breath emissions, there is a negative relationship between the air exchange rate and 

resultant concentrations, as higher ventilation rates dilute breath emissions as shown for 

isoprene in figure 4. However, skin emissions products are ozone-derived species and higher 

ventilation rates lead to higher indoor ozone concentrations, as indoor ozone derives largely 

from outdoors in the absence of indoor sources such as photocopiers and laser printers
52

. 

Consequently, the concentrations of species derived from oxidized products of chemistry 

following skin emissions increase with ventilation, but only up to the point where production 

exceeds the loss to dilution at higher exchange rates. It can be seen from figure 4 that 4-OPA 

increases as AER increases from 0.2 to 1.2 h
-1

, but then decreases thereafter. 

So far we have focused on skin and breath emissions, rather than including additional 

emissions that may arise following the use of personal care products, such as fragrances and 

body sprays. Tang et al.
53

 measured mixing ratios of selected VOCs in a university classroom 

and also the emission rates/person based on these concentrations. The measurements were 

conducted over a two-week period on five weekdays (during 08:00-20:45h) when at least 17 

adult occupants were present in the classroom. The volume of the classroom was 670 m
3
 and 

air exchange rate with the use of mechanical ventilation was 5.0 ± 0.5 h
-1

. The study 
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presented time-series measurements of VOCs, CO2 and O3, sampling the classroom and 

supply air six times per hour.  

 

 

 

FIGURE 4 Modelled 4-OPA and isoprene concentrations following skin and breath emissions 

respectively [ppb] in the classroom during typical summer conditions for different air exchange rates. 

 

The calculated VOC emission rates by Tang et al.
53

 were ~50-100 times higher than 

those used to drive the model runs described here. In fact, there was a clear decline in 

emissions over the course of the day, as the personal care products worn by the students 

gradually degassed from their bodies
53

. Given that the model described here accounted only 

for the ‘natural’ human emissions, it can be estimated that these emissions were only~ 5% of 

the total human emissions, presented by Tang et al.
53

, which included personal care products. 

To test the sensitivity of the model to higher emissions rates which also include the 

use of personal care products, we increased our calculated emission rates by 50% and 100% 

and then compared the results to those we presented earlier (table 5).  
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The increase in emission factors enhances the production of oxygenated products 

indoors, particularly for those species that are mainly derived from occupants (e.g. 4-OPA, 

formic and acetic acids, acetone, methanol, isopropanol and isoprene), whilst those that are 

dominated by internal material emissions (nonanal, decanal) or outdoor concentrations 

(ethanol) are less sensitive to changes. Clearly, the use of personal care products can have a 

large impact on the resulting concentrations in an indoor environment such as a classroom. 

 

TABLE 5 Sensitivity test results: the % change in concentrations of the species following increases to 

baseline skin and breath emissions in the classroom in Milan for typical summer conditions (AER=1.2 

h
-1

) during school hours when the occupants were present. 

Scenario N
o
n

a
n

a
l 

D
eca

n
a
l 

4
-O

P
A

 

F
o

rm
ic a

cid
 

  A
cetic a

cid
 

A
ceto

n
e
 

M
eth

a
n

o
l 

E
th

a
n

o
l 

Iso
p

ro
p

a
n

o
l 

Iso
p

ren
e
 

Human emissions * 50% 2.4 5.2 35.1 34.6 32.4 40.6 38.1 12.7 37.7 38.1 

Human emissions * 100% 4.4 9.4 63.6 62.5 58.6 80.9 76.2 25.3 75.5 76.3 

 

 

3.5 Impact of human occupancy on chemical processing in the classroom 

Table 6 presents a detailed comparison of average oxidant concentrations for an occupied and 

an unoccupied classroom during the school day during typical and polluted summer 

conditions. Outdoor ozone concentration and hence indoor ozone concentrations were 

elevated during the latter episode, making such conditions ideal for the study of reactive 

chemistry indoors. The unoccupied classroom was a model simulation of the furnished 

classroom without the occupants. The concentrations of O3, OH, HO2 and RO2 for the 

unoccupied classroom were higher compared to the occupied classroom. Weschler
7
 suggested 

that the presence of humans in a building would decrease the net level of oxidants, as ozone 

is deposited onto skin. However, these results also confirm that the OH, HO2 and RO2 radical 

concentrations decrease with occupancy, across a range of ventilation rates and outdoor 
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conditions. During typical summertime conditions and for an AER of 1.2 h
-1

, the 

concentration of O3, OH, HO2, RO2 decrease by ~40%, 16%, 32% and 44% respectively for 

the occupied versus unoccupied classroom. 

TABLE 6 Average oxidant concentrations for occupied and unoccupied classroom (during typical 

and polluted summer conditions) and different air exchange rates (0.6; 1.2; 1.8 h
-1

) for 9:00-15:00 h 

excluding the lunch break. Ozone concentrations are given in ppb, OH in units of 10
5 

molecule cm
-3

, 

both HO2 and RO2 in ppt. 

 Typical summer 

conditions 

Polluted summer 

conditions 

AER (h
-1

) AER (h
-1

) 

0.6 1.2 1.8 0.6 1.2 1.8 

O3 No occupants  12.4 15.9 18.3 20.3 27.8 33.2 

Occupants 6.6 9.6 11.9 10.7 16.4 20.6 

OH No occupants  4.0 4.5 4.7 4.4 5.0 5.2 

Occupants  3.2 3.8 4.0 3.6 4.2 4.5 

HO2 No occupants  5.4 3.4 2.8 7.3 5.1 4.3 

Occupants  3.6 2.3 1.9 5.1 3.6 3.1 

RO2 No occupants  10.6 6.1 4.7 16.3 10.5 8.6 

Occupants  5.6 3.4 2.8 8.4 5.6 4.8 

 

The higher the air exchange rate, the higher the indoor concentrations of O3, NO2 and 

NO. The OH radical concentration increases along with the higher air exchange rate, as more 

OH can be formed through ozone oxidation of terpenes.  However, the concentrations of HO2 

and RO2 are suppressed by higher NOX concentrations indoors as the AER increases. 

Therefore, the concentrations of HO2 and RO2 decrease, while those of ozone and OH 

radicals increase with AER. 
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Figure 5 presents the reaction rates for (i) the unoccupied classroom and for (ii) the 

occupied classroom (in units of 10
4
 molecule cm

-3
 s

-1
) for typical summer conditions and an 

AER of 1.2 h
-1

. When the occupants are present, O3 and hence OH concentrations are lower 

as discussed above. Thus the propagation reaction of OH with alkanes, alkenes, dicarbonyls 

and aldehydes become less important and the production rate of RO2 radicals also decreases. 

However the reaction rate of OH with isoprene is enhanced given that there is a higher 

concentration of isoprene when the occupants are present in the classroom. When OH reacts 

with aldehydes, acyl peroxy radicals are formed, which then react with NO2 to form PAN 

(peroxy acetyl nitrate)-type species. When isoprene reacts with OH on the other hand, alkyl 

peroxy radicals are formed which can then react with NO to form organic nitrates. Therefore, 

as more OH reacts with isoprene and less with aldehydes, the termination products of RO2 

shift more towards organic nitrates and away from PANs.  

FIGURE 5 Simplified rate of production analysis for the major rates of reaction for the unoccupied 

classroom (figures in normal font) and the occupied classroom (figures in bold) in Milan during 
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typical summer conditions (AER = 1.2 h
-1

) in units of 10
4
 molecule cm

-3
 s

-1
. MTs denotes 

monoterpenes. Red arrows denote radical initiation processes, blue arrows are termination processes 

with green arrows representing radical propagation. 
 

We also compared RO2 composition in the occupied and unoccupied classroom. The 

main difference between the two scenarios is that RO2 produced from isoprene oxidation 

become more important (increased from ~ 2 to 9% of the total) when occupants were in the 

room and those produced from limonene oxidation become less important (decreased from 

~42 to 34% of the total) as expected from the rate of production analysis in figure 5. Isoprene 

reacts more slowly than limonene with both OH and ozone. Therefore as isoprene becomes 

more important, fewer RO2 radicals are formed (table 6) and the feedback to OH radicals via 

VOC oxidation by ozone also becomes less significant (figure 5). Clearly, occupancy affects 

both quantity and composition of radicals indoors. 

 Finally, we investigated the different loss processes for ozone in the occupied 

classroom (table 7). The results show that for the average AER of 1.2 h
-1

, loss of ozone is 

dominated by reaction with NO (39%), deposition to the occupants (~29%) and the internal 

materials (~13%), and air exchange (18%) with minor contributions from reactions with 

limonene and NO2. However, at the lower AER of 0.6 h
-1

, deposition became relatively more 

important with 37% to occupants, 17% to internal materials, ~33% through reaction with NO 

and ~12% through air exchange. Therefore, the removal of ozone by occupants is the most 

important removal process for ozone for this low air exchange rate under our study 

conditions. 
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TABLE 7 The rate of ozone loss [%] to different pathway processes for a range of air exchange rates 

(0.6; 1.2; 1.8 h
-1

).  

 

 

AER (h
-1

) 

0.6 1.2 1.8 

NO 32.5 39.0 39.7 

NO2 0.5 0.6 0.6 

Limonene 1.6 0.8 0.5 

Material deposition 16.6 12.9 11.1 

Human deposition 37.3 28.9 25.0 

Exchange 11.5 17.8 23.1 

 

 

4 CONCLUSIONS 

This study has examined the changes in indoor air chemistry when occupants are present in a 

classroom. The model results show that people can remove a significant quantity of indoor 

ozone, just by being present and particularly when the air exchange rate is low. Also, 

occupants in a building can deplete oxidants and affect the concentration and composition of 

radicals and nitrated organic material. The results also demonstrate the importance of 

ventilation rate: whilst higher ventilation rates can provide more ozone to indoor 

environments and aid surface production of secondary species such as on the skin surface, 

there is also more dilution of the products under these conditions and also of emissions from 

breath. Therefore, the point at which maximum impact from human emissions can be found 

on indoor concentrations will be a function of the number of occupants, the ventilation rate 

and the dimensions of the room and the other indoor surfaces. 
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Highly occupied indoor environments, such as classrooms, could experience 

relatively high concentrations of species derived from human emissions indoors. Such 

concentrations could be a concern for human health, though there is relatively little known 

about the toxicological effects of many of these pollutants at present. In addition, there is 

increasing evidence that there may be many more VOCs emitted from skin than those we 

consider here: future model simulations will need to consider more of this newly available 

information
54

. Finally, occupants also add to the reactivity of surfaces via transferring skin 

oils to surfaces, and through cooking or cleaning activity
7
. Such processes may result in 

increased reactivity of indoor surfaces over time. In the future, models will benefit from more 

extensive field measurements of indoor air chemistry in occupied homes, as well as 

information on surface interactions for indoor pollutants other than ozone. More 

comprehensive information on emissions from breath would also be beneficial.  
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