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Abstract. Encoding to SAT and applying a highly efficient modern SAT solver
is an increasingly popular method of solving finite-domain constraint problems.
In this paper we study encodings of arbitrary constraints where unit propagation
on the encoding provides strong reasoning. Specifically, unit propagation on the
encoding simulates generalised arc consistency on the original constraint. To cre-
ate compact and efficient encodings we use the concept of short support. Short
support has been successfully applied to create efficient propagation algorithms
for arbitrary constraints. A short support of a constraint is similar to a satisfying
tuple however a short support is not required to assign every variable in scope.
Some variables are left free to take any value. In some cases a short support rep-
resentation is smaller than the table of satisfying tuples by an exponential factor.
We present two encodings based on short supports and evaluate them on a set of
benchmark problems, demonstrating a substantial improvement over the state of
the art.

1 Introduction

We address the problem of encoding constraint problems into SAT. This is an impor-
tant step because it allows us to leverage the rich modelling languages available in
constraints such as MiniZinc [26] and Essence Prime [20]. We have previously shown
that the constraint modelling tool SAVILE ROW [17] can be used to translate constraint
problems directly to SAT, exploiting automated modelling techniques such as com-
mon subexpression elimination [21]. We add to the important and growing literature on
modelling of constraints in SAT [6]. Most study has been devoted to constraints such as
linear constraints including the special case of cardinality constraints [1,2,8,24].

In this paper we show that we can improve SAT models of table constraints by
exploiting short supports. Table constraints are vital in constraint modelling as they al-
low arbitrary constraints to be expressed. Table constraints can be expressed in SAT in
such a way as to ensure that unit propagation in the SAT encoding performs reasoning
equivalent to that done by generalised arc consistency (GAC) in the constraint problem
[3]. A short support of a constraint is similar to a satisfying tuple, but a short support
is not required to assign every variable: some variables are left free to take any value.
Where it is possible, exploiting short supports has proved to improve efficiency of GAC
propagation [12,19]. We show that Bacchus’s encoding of table constraints into SAT
can be adapted to exploit short supports. This can lead to much smaller encodings and
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faster propagation, while still obtaining GAC. We present two encodings for table con-
straints with short supports into SAT. We get the advantages of modern SAT solvers
automatically, such as generating explanations of failure and learning.

Short supports represent one method of compressing table constraints, and other
methods have been proposed: MDDs [7], C-tuples [13] and their generalisation [22],
and Smart Tables [14]. Uniquely, short supports allow us to directly improve the encod-
ing of Bacchus without introducing any complications to it.

2 Preliminaries

The Propositional Satisfiability Problem (SAT) is to find an assignment to a set of
Boolean variables so as to satisfy a given Boolean formula, typically expressed in con-
junctive normal form [5]. SAT has many important applications, such as hardware de-
sign and verification, planning, and combinatorial design [15]. Powerful, robust solvers
have been developed for SAT employing techniques such as conflict-driven learning,
watched literals, restarts and dynamic heuristics for backtracking solvers [16], and so-
phisticated incomplete techniques such as stochastic local search [23].

A constraint satisfaction problem (CSP) is defined as a set of variables X , a function
that maps each variable to its domain, D : X → 2Z where each domain is a finite set,
and a set of constraints C. A constraint c ∈ C is a relation over a subset of the variables
X . The scope of a constraint c, named scope(c), is the set of variables that c constrains.
During a systematic search for a solution to a CSP, values are progressively removed
from the domains D. Therefore, we distinguish between the initial domains and the
current domains. The function D refers to the current domains and Ds to the initial
domains. A literal is a variable-value pair (written x 7→ v). A literal x 7→ v is valid if
v ∈ D(x). The size of the largest initial domain is d. For a constraint c we use r for
the size of scope(c). A constraint c is Generalised Arc Consistent (GAC) if and only
if there exists a full-length support containing every valid literal of every variable in
scope(c). GAC is established by identifying all literals x 7→ v for which no full-length
support exists and removing v from the domain of x. We consider only algorithms for
establishing GAC in this paper. A full-length support of constraint c is a set of literals
containing exactly one literal for each variable in scope(c), such that c is satisfied by
the assignment represented by these literals.

A short support is a support containing at most one literal for each variable in
scope(c). As a motivating example for short supports, consider the lexicographic order-
ing constraint ≤lex on tuples. We can often know this is true just based on examining a
small number of the variables in the constraint. Consider 〈x1, x2, x3〉 ≤lex 〈x4, x5, x6〉
where variables x1, . . . x6 each have initial domain Ds = {1, 2, 3}. A full-length sup-
port is necessarily size 6: e.g. {x1 7→ 2, x2 7→ 2, x2 7→ 2, x4 7→ 2, x5 7→ 2, x6 7→
2} is a correct full-length support since 〈2, 2, 2〉 ≤lex 〈2, 2, 2〉. In contrast, the set
{x1 7→ 1, x4 7→ 2} is a correct short support even though it contains only two of the
six variables: it is necessarily true that 〈1, ∗, ∗〉 ≤lex 〈2, ∗, ∗〉, whatever replaces the
stars. Short supports can be of variable lengths as needed. For example, the short sup-
port {x1 7→ 2, x2 7→ 2, x4 7→ 2, x5 7→ 3} is a correct short support of size 4, but no
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literal can be removed from it without leaving at least one extension to a set of literals
breaking the constraint. Following [19] we formally define short support as follows.

Definition 1 [Short support] A short support S for constraint c and domains Ds is a

set of literals x 7→ v such that x ∈ scope(c), x 7→ v is valid w.r.t Ds, x occurs only

once in S, and every superset of S that contains one valid (w.r.t Ds) literal for each

variable in scope(c) is a full-length support.1

Note from the definition that any full-length support is also a short support. In the
example the set {x1 7→ 2, x2 7→ 2, x2 7→ 2, x4 7→ 2, x5 7→ 2, x6 7→ 2} is a short
support and indeed no literal can be omitted to give another short support. In some cases
even an empty set can be a short support. Suppose we change the motivating example
so that Ds(x1) = {0} and other domains are unchanged. All valid assignments satisfy
the lexicographic constraint since the only value of x1 is 0 and 〈0, ∗, ∗〉 ≤lex 〈∗, ∗, ∗〉,
so the empty set is a correct short support.

3 Encoding Table Constraints into SAT

Our encoding of constraint problems into SAT follows that which we have previously
used and reported on [21]. When encoding a CSP variable, SAVILE ROW provides SAT
literals for facts about the variable: [x = a], [x 6= a], [x ≤ a] and [x > a] for a CSP
variable x and value a. On all benchmarks used here, CSP variables are encoded in
two ways. A variable with domain size 2 is represented with a single SAT variable. For
variables with larger domains we have one SAT variable representing [x = a] for each
value a ∈ Ds(x), and one SAT variable for each [x ≤ a] except [x ≤ max(Ds(x))] that
would always be true. Also, [x = max(Ds(x))] ↔ ¬[x ≤ max(Ds(x)) − 1] saving
one more SAT variable. If we have a literal, e.g. [x ≤ a], where a 6∈ Ds(x), then the
literal is mapped as appropriate to True, False or an equivalent literal, e.g. [x ≤ b] for
b = max({i ∈ Ds(x)|i < a}). The encoding has 2|Ds(x)| − 2 SAT variables and
consistency among them is maintained by the following clause set (sometimes called
the ladder encoding [10]).

∀a ∈ Ds(x). [x = a] ↔ ([x ≤ a] ∧ ¬[x ≤ a+ 1]) ∧ [x ≤ a− 1] → [x ≤ a]

The only constraint we consider in this paper is the table constraint. This can be used
to encode arbitrary constraints extensionally. The table constraint is very important in
constraint programming, for constraints where no convenient expression in terms of
simpler constraints is available. Suppose we have a constraint C on variables x1 . . . xr

represented as a table of satisfying tuples, each of which is valid w.r.t. initial domains.
Bacchus presented an encoding of table constraints [3]. Each satisfying tuple τi (where
i ∈ {1 . . .m}) is represented with an auxiliary SAT variable ti. The first clause set

1 The set of short supports depends on the domains Ds. We always use the initial domains.
Elsewhere, short supports are generated using the current domains D but these sets are not
necessarily short supports after backtracking [18,19]. A support of either type is valid iff all
literals in it are valid.
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ensures that each ti becomes false when the tuple τi becomes invalid (i.e. a value in τi
has been removed).

∀i ∈ {1 . . .m}. ∀j ∈ {1 . . . r}. ([xj = τi[j]] ∨ ¬ti)

The second clause set states that each domain value of variables x1 . . . xr must be
supported by a valid tuple.

∀i ∈ {1 . . . r}. ∀a ∈ D(xi). ([xi 6= a] ∨
∨

tj where τj [i] = a)

Unit propagation (UP) applied to these clauses firstly removes from consideration
any invalid tuple τi by setting ti to false, then removes any domain value a of variable
xi (by setting [xi 6= a]) where no remaining tuples support the value. Thus UP (re-
)establishes GAC. Bacchus observed that the encoding has size O(mr) which is linear
in the size of the table representation of the constraint and applying UP has the same
time complexity as a generic GAC propagator.

4 Short Support Encodings of Arbitrary Constraints

The idea of short support has already been successfully applied in constraint propaga-
tors [18,19,12]. Short support is defined above (Definition 1). Our contribution here is
to exploit short supports in a new encoding that is smaller and more efficient than the
Bacchus encoding while keeping the property that unit propagation establishes GAC.
We assume that we already have a short support set for the constraint we wish to encode.
It is often straightforward to construct a short support set for a constraint. Otherwise,
an automated approach may be used such as the Greedy-Compress algorithm [12] that
takes the table of full-length supporting tuples and compresses them to a short support
set. It is possible that no short supports are available: in this case our encoding will
provide neither harm nor benefit as it is equivalent to the Bacchus encoding.

The encoding for constraint C on variables x1 . . . xr is as follows. Each short sup-
port σi (i ∈ {1 . . .m}) is represented with an auxiliary SAT variable si. The first clause
set ensures that si is false when σi contains a literal that is invalid.

∀i ∈ {1 . . .m}. ∀(xj 7→ a) ∈ σi. ([xj = a] ∨ ¬si)

The second clause set states that each literal (xi 7→ a) of variables x1 . . . xr must
be supported by a valid short support, either explicitly (where the short support simply
contains (xi 7→ a)) or implicitly (where the short support contains no literal of the
variable xi, meaning xi may take any value).

∀i ∈ {1 . . . r}. ∀a ∈ Ds(xi).
([xi 6= a] ∨

∨

sj where (xi 7→ a) ∈ σj or ∀b.(xi 7→ b) /∈ σj)

The two clause sets are sufficient for unit propagation to establish GAC on the con-
straint: the first clause set removes from consideration any short support that is invalid
by setting the relevant si to false, and the second prunes any values that have no re-
maining short supports of either type (explicit or implicit).
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This encoding has the property that the auxiliary variables si may not be uniquely
determined when all SAT variables representing CSP variables have been assigned.
This occurs when more than one short support is valid w.r.t. the CSP assignment. In this
case at least one of the corresponding si must be true, but otherwise their values float
freely. The free variables may cause additional search, and would cause a problem if we
wished to count solutions. We obtain a second encoding without this issue by including
the following additional clause set, which sets an si variable to true when all literals in
σi are set true.

∀i ∈ {1 . . .m}.
(

∨

[xj 6= a] where (xj 7→ a) ∈ σi

)

∨ si

Compared to the full-length table encoding, the short support encoding has fewer
auxiliary variables, each representing a smaller conjunction of literals of the primary
SAT variables. This is likely to be beneficial for conflict learning, facilitating more
general and reusable explanations for conflicts.

We will refer to the short support encoding without the optional clause set as Short-
TableSAT, and with the optional clause set as ShortTableSAT+.

5 Experimental Evaluation

To show the potential benefit of encoding using short supports, we evaluated our encod-
ings of them on a number of problem classes. These are not intended to be an exhaustive
or representative sample of possible problems, but a set of instances where short sup-
ports are available and thus show the potential benefit of our encodings. The instances
we study are drawn from three general categories.

5.1 Case Study 1: Rectangle Packing

The rectangle packing problem [25] (with parameters n, width and height) consists of
packing all squares from size 1× 1 to n× n into the rectangle of size width × height .
This is modelled as follows: we have variables x1 . . . xn and y1 . . . yn, where (xi, yi)
represents the Cartesian coordinates of the lower-left corner of the i×i square. Domains
of xi variables are {0 . . .width − i}, and for yi variables are {0 . . . height − i}. The
only type of constraint is non-overlap of squares i and j: (xi + i ≤ xj) ∨ (xj + j ≤
xi) ∨ (yi+ i ≤ yj) ∨ (yj + j ≤ yi). The domains of xn and yn are reduced to break flip
symmetries [25]. The short supports of the non-overlap constraints are all of length two.
Each short support satisfies one of the four disjuncts, thus satisfying the constraint. In a
given instance, each constraint has a distinct short supports table because the constants
i and j differ.

We compared the full length table encoding to both short table encodings on a set
of instances taken from Jefferson and Nightingale [12] in addition to some generated
ones. We generated two sets of instances: some small instances for all combinations
of values for n ∈ {2 . . . 6}, width ∈ {10, 15, 20, 25}, and height ∈ {10, 15, 20, 25};
and some larger instances for all combinations of values for n ∈ {2, 4 . . . 30}, width ∈
{20, 25, 30, 35}, and height ∈ {20, 25, 30, 35}. For both of these sets we only kept
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those instances where width < height and also filtered out those which were trivially
unsatisfiable due to area constraints.

5.2 Case Study 2: The Oscillating Life Problem and variants thereof

We consider the problem of maximum density oscillators (repeating patterns) in John
Conway’s Game of Life. We consider this and three variants. Immigration has two alive

states. When a cell becomes alive, it takes the state of the majority of the 3 neighbouring
live cells that caused it to become alive. Otherwise the rules of Immigration are the same
as those of Life. Quadlife has four alive states. When a cell becomes alive, it takes the
state of the majority of the 3 neighbouring live cells which caused it to become alive,
unless all 3 neighbours have different colours in which case it takes the colour which
none of its neighbours have. Apart from this the rules are the same as Life. Finally
Brian’s Brain has three states: dead, alive and dying. If a cell is dead and has exactly
two alive (not dying) neighbours, it will become alive, otherwise it remains dead. If a
cell is alive, it becomes dying after one time step. If a cell is dying, it becomes dead

after one time step. We use an n× n grid with t time steps, for all pairs of values (n, t)
where n ∈ {3 . . . 7} and t ∈ {2 . . . 6}, giving 25 instances.

We use the problem and constraint model as described by Gent et al. [9]. For all four
problems, we make one change: we minimise the occurrences of the value 0 (dead) in all
layers. For Immigration, Quadlife and Brian’s Brain we also add extra domain values for
each additional state. For each cell and each time step, a single constraint links the cell
and its eight neighbours to the same cell in the next time step. Therefore the constraints
have arity 10. Short supports arise from sums in the rules, e.g. a live cell with more than
three live neighbours will die: if the current cell is alive, any four neighbours are alive,
and the next cell is dead then the constraint is satisfied and we have a short support of
length 6.

5.3 Case Study 3: The Antichain Problem

The antichain problem is to find a set of multisets under some conditions [11]. Rep-
resenting a multiset as a vector of integers (giving the cardinality of each possible
value), we find a set of size n of vectors of length l, containing integers from the
set {0 . . . d − 1}. For each pair of vectors v1, v2, there must exist an index i where
v1[i] < v2[i] and a second index j where v1[j] > v2[j]. The problem is modelled with
a two-dimensional matrix A with size n by l. Each pair of vectors is linked by a single
constraint capturing both the < and > requirements, with scope size 2l. The constraint
linking any two vectors has short supports of length four. We compared the full length
table encoding to both short table encodings on a set of 50 instances that includes all
instances used by Jefferson et al [11].

5.4 Experimental Results

For a SAT solver we used the SAT’14 Competition version of Lingeling [4] (ver-
sion ayv 86bf266b9332599f1b876e28a02fe8427aeaa2db). Each instance was solved 5
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times, with random seeds changing from 1 to 5. We report the median of the five run-
times reported by Lingeling. Experiments were performed with 32 processes in parallel
on a 32-core AMD Opteron 6272 at 2.1 GHz with 256 GB RAM. We set a limit of 1
hour for each Lingeling process. Results are in Figure 1. The x axis shows instances, or-
dered by increasing run time of ShortTableSAT+. Each position on the x axis represents
the same instance within a plot. The y axis shows run time in seconds of Lingeling. Run
time of the SAVILE ROW translation process is ignored, except that nothing is plotted if
SAVILE ROW overran its time or space limit. We do plot (in red) the points where Lin-
geling reported that it reached its time limit. In some cases Lingeling reported reaching
the time limit but also reported a time substantially less or greater than 1 hour. We
simply plotted the time Lingeling reported using a red point.

For the packing problem (Figure 1, top), we see that we benefit greatly from use of
short supports. There are many instances where LongTableSAT is unable to solve the
instance, but both short table encodings are. On most other instances both short sup-
port methods are at least one and often several orders of magnitude faster. There is no
clear preference between the two short encodings, with both methods faster on some
instances, although ShortTableSAT+ is typically faster on the instances which can be
solved fastest. We see in the antichain problem (Figure 1, middle) that again short sup-
ports provide improved search performance compared to LongTableSAT, by orders of
magnitude. In this case it seems that ShortTableSAT is the better of the two short ta-
ble encodings. For the Life, Immigration, Brian’s Brain and Quadlife problem classes
(Figure 1, bottom), we see that short supports do improve search but to a much lesser
degree than in the previous cases. There are a small number of cases where LongTable-
SAT beats one of the short methods. However, using short tables is still much faster in
most cases.

Our results show that the use of short supports in a SAT encoding can greatly im-
prove solving performance over the use of full length table constraints.

6 Conclusions

Encoding to SAT and solving with a modern CDCL SAT solver is a very effective way
to solve difficult finite-domain constraint problems. We have studied the encoding of
table constraints, and proposed two new encodings based on the idea of short supports.
These improve upon an existing encoding in both size and solving efficiency. In our
experiments, the new encoding is consistently faster, frequently by over 10 times and in
some cases by over 1000 times.
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